
Contents

The Hieroglyphs

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 i

Contents

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 ii

(Third Draft) The Hieroglyphs: Building

Speech Applications Using CMU Sphinx

and Related Resources

Arthur Chan Evandro Gouvêa Rita Singh

Mosur Ravishankar Ronald Rosenfeld Yitao Sun

David Huggins-Daines Mike Seltzer

March 11, 2007

Contents

Copyright c© by Arthur Chan, Evandro Gouvêa, Rita Singh, Ravi Mosur, Ronald Rosenfeld, Yitao Sun,

David Huggins-Daines and Mike Seltzer

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 ii

Contents

Table of Contents iii

List of Figures xiii

List of Tables xiv

I Before You Start 1

1 License and use of CMU Sphinx, SphinxTrain and CMU-Cambridge

LM Toolkit 3

1.1 License Agreement of Sphinx 2 , Sphinx 3 and SphinxTrain
Source Code . 4

1.2 License Agreement of CMU Sphinx 4 5

1.3 License Agreement of the CMU-Cambridge LM Toolkit 6

1.4 About The Hieroglyphs . 6

1.5 How to contribute? . 7

1.6 Version History of Sphinx 2 . 7

1.6.1 Sphinx 2 .5 Release Notes 7

1.6.2 Sphinx 2 .4 Release Notes 8

1.7 Version History of Sphinx 3 . 8

1.7.1 A note in current development of Sphinx 3.7 8

1.7.2 Sphinx 3 .6.3 Release Notes 8

iii

Contents

1.7.3 Sphinx 3 .6.2 Release Notes 9

1.7.4 Sphinx 3 .6.1 Release Notes 10

1.7.5 Sphinx 3 .6 Release Notes 11

1.7.6 Sphinx 3 .5 Release Notes 15

1.7.7 Sphinx 3.4 Release Notes 16

1.8 Version History of Sphinx 4 . 17

1.9 Version History of PocketSphinx 19

1.9.1 Pocket Sphinx 0.2 . 19

1.9.2 Pocket Sphinx 0.2.1 . 19

1.9.3 Pocket Sphinx 0.2.1 . 19

2 Introduction 21

2.1 Why do I want to use CMU Sphinx? 21

2.2 The Hieroglyphs . 22

2.3 The Sphinx Developers . 23

2.4 Which CMUSphinx should I use? 23

2.5 Other Open Source Speech Recognition Project in CMU: Hep-
haestus . 26

2.5.1 Festival . 26

2.5.2 CMU Communicator Toolkit 27

2.5.3 CMUdict, CMUlex . 27

2.5.4 Speech Databases . 27

2.5.5 OpenVXML and OpenSALT browser 28

2.5.6 Miscellaneous . 28

2.6 How do I get more help? . 28

II Tutorial 29

3 Software Installation 31

3.1 Sphinx 3 .X . 31

3.2 SphinxTrain . 32

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 iv

Contents

3.3 CMU LM Toolkit . 33

3.4 Other tools related to the recognizer 34

3.5 FAQ of the installation process 34

3.5.1 What if I am a user of Microsoft Windows? 34

3.5.2 How about other Windows compilers? 34

3.5.3 How about other Unix platforms? 35

3.5.4 What if I can’t build Sphinx 3 .X or SphinxTrain ? . . . 35

3.5.5 What if I am not a fan of C? 35

3.5.6 How do I get help for installation? 35

4 Building speech recognition system 37

4.1 Step 1: Design of a Speech Recognition System 38

4.1.1 Do you really need speech? 39

4.1.2 Is Your Requirement Feasible? 39

4.1.3 System Concern . 43

4.1.4 Our recommendation . 43

4.1.5 Summary . 43

4.2 Step 2: Design the Vocabulary 44

4.2.1 The System for This Tutorial 44

4.2.2 Pronunciations of the Words 44

4.3 Step 3: Design the Grammar for a Speech Recognition System 49

4.3.1 Coverage of a Grammar 49

4.3.2 Mismatch between the Dictionary and the Language
Model . 49

4.3.3 Intepretation of ARPA N-gram format 51

4.3.4 Grammar for this tutorial 52

4.3.5 Conversion of the language model to DMP file format . . 54

4.4 Step 4: Obtain an Open Source Acoustic Model 55

4.4.1 How to get a model? . 55

4.4.2 Are there other models? 57

4.4.3 Why Acoustic Models are so Rare? 57

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 v

Contents

4.4.4 Interpretation of Model Formats 57

4.4.5 Summary . 62

4.5 Step 5: Develop a speech recognition system 63

4.5.1 About the Sphinx 3 ’s Package 63

4.5.2 A batch mode system using decode and decode anytopo:
What could go wrong? . 66

4.5.3 A live mode simulator using live pretend 71

4.5.4 A Live-mode System . 71

4.5.5 Could it be Faster? . 73

4.6 Step 6: Evaluate your own system 75

4.6.1 On-line Evaluation . 75

4.6.2 Off-line Evaluation . 76

4.7 Interlude . 77

4.8 Step 7: Collection and Processing of Data 77

4.8.1 Determine the amount of data needed 78

4.8.2 Record the data in appropiate condition: environmen-
tal noise . 78

4.9 Step 8: Transcription of data . 80

4.9.1 Word-level and Phoneme-level Transcription 80

4.9.2 Checking of Transcription 80

4.9.3 Software Tools for Transcription 80

4.9.4 Transcription for Acoustic Modeling and Language Mod-
eling . 81

4.9.5 SphinxTrain ’s and align Transcription Formats 81

4.10Step (7 & 8) Plan B : Buying Data 83

4.11Training of Acoustic Model. A note before we proceed 84

4.11.1SphinxTrain as a Set of Training Tools 84

4.11.2Training follow a recipe 85

4.11.3Training from scratch . 86

4.11.4Our Recommendations 86

4.12Step 9 and beyond . 88

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 vi

Contents

III CMU SphinxSpeech Recognition System 89

5 Sphinx’s Front End 91

5.1 Introduction . 91

5.2 Block Diagram . 92

5.3 Front End Processing Parameters 93

5.4 Detail of Front End processing 93

5.4.1 Pre-emphasis . 93

5.4.2 Framing . 95

5.4.3 Windowing . 95

5.4.4 Power Spectrum . 95

5.4.5 Mel Spectrum . 95

5.4.6 Mel Cepstrum . 96

5.5 Mel Filter Banks . 97

5.6 The Default Front End Parameters 97

5.7 Computation of Dynamic Coefficients 98

5.7.1 Generic and simpilified notations in SphinxTrain . . . 100

5.7.2 Formulae for Dynamic Coefficient 100

5.7.3 Handling of Initial and Final Position of an Utterance . 100

5.8 Cautions in Using the Front End 101

5.9 Compatibility of Front Ends in Different Versions 102

5.10cepview . 102

6 General Software Description of SphinxTrain 105

6.1 On-line Help of SphinxTrain . 105

6.2 Software Architecture of SphinxTrain 107

6.2.1 General Description of the C-based Applications 107

6.2.2 General Description of the Perl-based Tool 109

6.3 Basic Acoustic Models Format in SphinxTrain 110

6.4 Sphinx data and model formats 110

6.4.1 Sphinx 2 data formats 110

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 vii

Contents

6.4.2 Sphinx 2 Model formats 111

6.4.3 Sphinx 3 model formats 116

6.4.4 Sphinx 4 model formats 120

7 Acoustic Model Training 121

8 Language Model Training 123

8.1 Installation of the Toolkit . 123

8.2 Terminology and File Formats 125

8.3 Typical Usage . 126

8.4 Discounting Strategies . 127

8.4.1 Good Turing discounting 127

8.4.2 Witten Bell discounting 128

8.4.3 Linear discounting . 128

9 Search structure and Speed-up of the speech recognizer 129

9.1 Introduction . 129

9.2 Sphinx 3 .X’s recognizer general architecture 130

9.3 Importance of tuning . 131

9.4 Sphinx 3 .X’s decode anytopo (or s3slow) 131

9.4.1 GMM Computation . 132

9.4.2 Search structure . 132

9.4.3 Treatment of language model 133

9.4.4 Triphone representation 133

9.4.5 Viteri Pruning . 133

9.4.6 Search Tuning . 133

9.4.7 2-nd pass Search . 134

9.4.8 Debugging . 135

9.5 Sphinx 3 .X’s decode (aka s3 fast) 135

9.6 Architecture of Search in decode 135

9.6.1 Initialization . 136

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 viii

Contents

9.6.2 Lexicon representation 137

9.6.3 Language model . 139

9.6.4 Pruning . 142

9.6.5 Phoneme look-ahead . 145

9.7 Architecture of GMM Computation in decode 145

9.7.1 Frame-level optimization 145

9.7.2 GMM-level optimization 146

9.7.3 Gaussian-level optimization : VQ-based Gaussian Se-
lection and SVQ-based Gaussian Selection 146

9.7.4 Gaussian/Component-level optimization : Sub-vector
quantization . 147

9.7.5 Interaction between different level of optimization 148

9.7.6 Related tools, gs select, gs view, gausubvq 148

9.7.7 Interaction between GMM computation and search rou-
tines in Sphinx 3 .X . 148

9.8 Overall search structure of decode 149

9.9 Multi-pass systems using Sphinx 3 .X 150

9.9.1 Word Lattice . 150

9.9.2 astar . 152

9.9.3 dag . 152

9.10Other tools inside S3.X packages 153

9.10.1align . 153

9.10.2allphone . 154

9.11Using the Sphinx 3 decoder with semi-continuous and con-
tinuous models . 155

10 Speaker Adaptation using Sphinx 3 157

10.1Speaker Adaptation . 157

10.2Different Principles of Speaker Adaptation 158

10.2.1In terms of the mode of collecting adaptation data . . . 158

10.2.2In terms of technique of parameter estimation 159

10.3MLLR with SphinxTrain . 160

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 ix

Contents

10.3.1Using bw for adaptation 161

10.3.2mllr solve . 162

10.3.3Using mllr transform to do offline mean transformation 162

10.3.4On-line adaptation using Sphinx 3 .0 and Sphinx 3 .X
decoder . 163

10.4MAP with SphinxTrain . 163

A Command Line Information 167

A.1 Sphinx 3 Decoders . 167

A.1.1 decode . 167

A.1.2 livedecode . 175

A.1.3 livepretend . 184

A.1.4 gausubvq . 193

A.1.5 align . 196

A.1.6 allphone . 196

A.1.7 dag . 196

A.1.8 astar . 196

A.1.9 cepview . 196

A.2 SphinxTrain : Executables . 197

A.2.1 agg seg . 197

A.2.2 bldtree . 201

A.2.3 bw . 204

A.2.4 cp parm . 209

A.2.5 delint . 211

A.2.6 dict2tri . 213

A.2.7 inc comp . 215

A.2.8 init gau . 217

A.2.9 init mixw . 220

A.2.10kmeans init . 222

A.2.11map adapt . 226

A.2.12make quests . 228

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 x

Contents

A.2.13mixw interp . 230

A.2.14mk flat . 232

A.2.15mk mdef gen . 234

A.2.16mk mllr class . 236

A.2.17mk model def . 238

A.2.18mk s2cb . 240

A.2.19mk s2hmm . 242

A.2.20mk s2phone . 244

A.2.21mk s2phonemap . 246

A.2.22mk s2sendump . 248

A.2.23mk s3gau . 250

A.2.24mk s3mix . 252

A.2.25mk s3tmat . 254

A.2.26mk ts2cb . 256

A.2.27mllr solve . 258

A.2.28mllr transform . 260

A.2.29norm . 262

A.2.30param cnt . 264

A.2.31printp . 266

A.2.32prunetree . 268

A.2.33tiestate . 270

A.2.34wave2feat . 273

A.2.35QUICK COUNT . 278

A.3 SphinxTrain: Perl Training Scripts 280

A.3.1 00.verify/verify all.pl . 280

A.3.2 01.vector quantize/slave.VQ.pl 280

A.3.3 02.ci schmm/slave convg.pl 280

A.3.4 03.makeuntiedmdef/make untied mdef.pl 280

A.3.5 04.cd schmm untied/slave convg.pl 280

A.3.6 05.buildtrees/slave.treebuilder.pl 280

A.3.7 06.prunetree/prunetree.pl 280

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xi

Contents

A.3.8 07.cd-schmm/slave convg.pl 280

A.3.9 08.deleted-interpolation/deleted interpolation.pl 280

A.3.10Summary of Configuration Parameter in script level . . 280

A.3.11Notes on parallelization 280

A.4 CMU-Cambridge LM Toolkit . 281

A.4.1 binlm2arpa . 281

A.4.2 evallm . 282

A.4.3 idngram2lm . 284

A.4.4 idngram2stats . 286

A.4.5 interpolate . 287

A.4.6 mergeidngram . 289

A.4.7 ngram2mgram . 289

A.4.8 text2idngram . 290

A.4.9 text2wfreq . 291

A.4.10text2wngram . 292

A.4.11wfreq2vocab . 293

A.4.12wngram2idngram . 294

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xii

List of Figures

4.1 Resource used by the decoders 67

5.1 Block Diagram for the front-end processing 92

xiii

Contents

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xiv

List of Tables

4.1 Description of Phone Set in CMU Lex 50

5.1 Command-line options for the front end parameters in wave2feat
and Sphinx 3 ’s decoders . 94

5.2 Default Parameters for the front end in Sphinx 3 98

5.3 Naming Convetion table for feature type s2 4x 99

5.4 Naming Convetion table for feature type s3 1x39 99

5.5 Naming Convetion table for feature type 1s c d dd 100

5.6 Generic and Simplified notations fro parameters in Sphinx-
Train . 101

A.1 Typical paramater values for common sampling rates 273

xv

Contents

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xvi

Preface at Draft III

The open source project “CMU Sphinx” started by providing only the speech
recognizers or devices for transforming speech to text (STT). By definition,
they are devices which are capable of transforming acoustic waveforms
into words.

Later on, the developers realized that building speech applications in-
volved not only the recognizers (or technical the decoders) but also several
interrelated resources. Therefore, the CMU Sphinx project now includes
the acoustic model trainer, language model trainer, as well as publicly
available acoustic and language models.

The comprehensiveness of the tools and components which CMU Sphinx-
provides did not preclude the fact that building a speech application re-
quires special techniques and knowledge. In the discussion forum of
Sphinx, we observed many users are stumbled on trivial issues of build-
ing a system. It became obvious that the most challenging problem which
many developers faced was still the access to documentation.

The difficulty to find documented information made the use of Sphinx
restricted to users with long year of experience in programming and speech
recognition research. If one could find any information, they are dis-
tributed in several web pages of experienced users and developers. Using
Sphinx seemed like playing jigsaw puzzle, the user always need to gather
a lot of information before building a real system.

Some of The Sphinx Developers , including me, were soon convinced
that the best way to change this situation was to introduce a document
that recorded most, if not all, knowledge about using Sphinx and its re-
lated resources to build speech applications.

When I told this idea to mentors and friends of mine in CMU, many of
them shook their heads. It was a great task but also a tremendous one.
Nevertheless, Prof. Alex Rudnicky, my mentor at that time, told me that
it was a good idea. Half jokingly, he appointed me the “Editor” of this
document. The true meaning of the title really means I cut and pasted a

xvii

Contents

lot of documents in this tiny notes.

That’s why I started to work on this about 2 years ago. It starts with
two chapters and the progress was very slow.

There are a lot of material to cover, so later on I decided to expand it to
a thirteen chapters book. Dr. Evandro Gouvêa and David Huggins Daines
have given me a lot help, At the end of 2005 summer. About 10 chapters
of the book had the first draft.

That was the point I decided to give this document a name. Following
the CMU Sphinx Group’s tradition of naming projects after mythological
or ancient items, we named the current effort “The Hieroglyphs”.

The name “The Hieroglyphs” symbolizes an important aspect of learning
any speech recognition toolkit: it requires extensive knowledge. It is not an
exaggeration that experts in any speech recognition system are usually ex-
perts in several seemingly unrelated fields, such as phonetics, linguistics,
signal processing, pattern recognition, computer algorithms and artificial
intelligence. The knowledge required might be as deep as the knowledge
required to understand hieroglyphs.

It was then a long year of work in funded project(s) for me. I was very
exhausted towards the end of them and seeking for a new change. That’s
why I decided to leave CMU and join a small company named Scanscout.
Project “The Hieroglyphs” has been abandoned for 8 months.

Professionalism made me restarted the writing again. Mainly because
“The Hieroglyphs” is probably the only CMU project which is not wrapped
up well. Sphinx 3.X now has X equals to 6. SphinxTrain with the lead
of Dave and Evandro have became more robust. Even CMU-Cambridge
LM Toolkit was re-licenced in version 3. These softwares are probably my
favorite things, I was glad to see their progress.

I also witnessed the emergence of Sphinx 4 mainly by the Sun Microsys-
tem Team and PocketSphinx mainly by David Huggins-Daines. Many
believe that they are future of the sphinx projects. For this I absolutely
agreed.

Progress doesn’t seem to happen in “The Hieroglyphs”. My life-time
problem in writing is that I would like to share a lot of things and some-
times too much. I used to hope that “The Hieroglyphs” will also grow from
being a mere manual for Sphinx into an introduction to speech recogni-
tion systems, a book that allows both beginners and experts to learn the
essential facts of using Sphinx and its related tools. But that could be too
much, in a way it makes me feel two exhausted to finish it.

However, I finally realized that we could stil share parts of the knowl-
edge to the user first. Therefore, I decided to trim some part of the docu-

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xviii

Contents

ment and put it as the third draft. There are several parts including,

• The history section.

• The introduction of speech recognition.

• Some portion in the recipe section

• All of the sections in acoustic modeling

• development and research using Sphinx

• FAQ.

They will be rewritten sometime in the future drafts.

Compare to the first draft, the only draft I have released in the public,
the third draft looks more like a book. The reader will also find that it is
more informative. Some chapters could be essentialy in working on speech
recognition systems. For example, the chapter about the front-end is very
useful, I usually used it as a reference myself.

I hope that the information we collect in last few years could be shared
with the users, even if they are not sufficiently polished in a scholarly
manner. I would like to say my knowledge in speech recognition, or even
Sphinx, are very limited. Therefore, I hope the reader of this book could
understand the drafty nature of the book and provide feedback to improve
it in future.

My thanks go to other authors of this book, especially Dave and Evan-
dro. I would also like to thank Prof. Alex Rudnicky, Prof. Richard Stern
and Prof Alan Black for the encouragement.

Note in Second Draft: The writing process and

current status

The Writing Process

There are vast amount of knowledge of using Sphinx, the fact that multiple
versions of Sphinx(en)exist also steepen the users learning curve. There-
fore, we chose to use one single recognizer as a starting point of the ma-
terial. The goal of the first edition is therefore to create a single document
that a developer could use

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xix

Contents

Sphinx 3 + SphinxTrain + CMU-Cambridge LM Toolkit

to create an application. We chose to use Sphinx 3 mainly because it
was the active branch which CMU was maintaining at the time. We also
found that the combination is more coherent because all three tools are
written in same programming language.

Even with the more limited scope, the editor still found that there are
15 chapters of material (2 of them are appendices) are required to be com-
pleted. It is fortunate that the original of all previous documents of each
part of Sphinx are willing to give permission to either reprint or re-use
their material. It makes the writing process much easier.

As at Jun, 2005, the first drafts of 9 chapters have already fully com-
pleted.

As at the end of Aug, 2005, the first draft of Chapter 6, 7, 8 are also
completed.

Here are descriptions of the completed chapters, material they refer-
ences and their current status.

In Chapter 1, the license and version history of Sphinx 2 , Sphinx 3 ,
Sphinx 4 , SphinxTrain and CMU-Cambridge LM Toolkit will be described.
This chapter is completed.

Chapter 2 describes the history of development of Sphinx 2 , Sphinx 3 ,
Sphinx 4 , SphinxTrain and CMU-Cambridge LM Toolkit . The difference
between different versions of Sphinx and a brief guideline on how to choose
which recognizer to use. The part of history of Sphinx largely referenced
Dr Rita Singh’s “History of Sphinx” document. This chapter is completed.

Chapter 3 describes how to install software of Sphinx. This part is
completed.

Chapter 5 provides information of how Sphinx carries out feature ex-
traction and dynamic coefficient computation. This part is largely refer-
enced from Dr. Mike Seltzer’s document of “Sphinx 3 front end Specifi-
cation”. This content of this part is almost completed but required proof-
reading. We also feel that it is necessary to add details such as CMN,
variance normalization and AGC into this chapter.

Chapter 6 provides a general description of the software package of our
training process. It is almost completed. However, some details such as
description of Sphinx 3 file format and how the headers look like are still
missing.

Chapter 7 provides a detail look on how acoustic model could be
training for both continuous HMM and semi-continous HMM. It is largely
adapted from Dr. Rita Singh’s web page for “instruction of training”. This

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xx

Contents

part is largely completed. However, it still lacks of example that could help
users to solve a problem when they have a real-life situation. In the next
revision, we will focus on solving these problems.

Chapter 8 provides a manual for using CMU-Cambridge language model
toolkit. The material is largely adapted from Dr. Philip Clarkson’s web page
on the instruction.

Chapter 9 provides detail description on how the search of Sphinx 3
works. This part reference Dr. Mosur Ravishankar’s tutorial on “Sphinx
3 ” and my own presentations on “From Sphinx 3.3 to Sphinx 3 .4” and
“From Sphinx 3 .4 to Sphinx 3 .5”. This part is largely completed. How-
ever, important detail description on how lexical tree, n-gram search and
context-dependent triphones work on decode and decode anytopo is still
missing at the current stage.

Chapter 10 discusses how to use the speaker adaptation facilities be-
gan to be provided by SphinxTrain and Sphinx 3 from 2004. This part
is mostly completed. However, we might still want to add detail on how
better alignment on the transcription could provide larger gain in speaker
adaptation.

Appendix A provides all command line information for all tools in Sphinx
3 , SphinxTrain and CMU-Cambridge LM Toolkit . This part relies on au-
tomatic generation of the tex file from the SphinxTrain and Sphinx 3 ’s
command line. The SphinxTrain tool part is completed but need to be up-
dated. The command-line information SphinxTrain script, Sphinx 3 and
CMU-Cambridge LM Toolkit are not yet completed.

Two chapters are ended up removed in the second draft

This includes “Development using Sphinx” which discuss how to make
use of live-mode APIs of Sphinx 3 to develop speech application. The back-
bone of this chapter is completed. It was largely reference Yitao Sun’s
code documentation that was automatically generated by doc++. However,
in 2005, the Sphinx developer decide to switch from doc++ to doxygen.
Therefore, we will expect to replace the current documentation very soon.

Also “FAQ of using Sphinx” which lists all frequently asked questions
that were collected by Dr. Rita Singh. This part largely copied from the
page from cmusphinx.org which is first collected by Dr. Rita Singh and is
no maintained by Dr. Evandro Gouvêa. This part is completed. However,
updates will be necessary when new questions come up in the developers
mind.

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xxi

Contents

Focus of writing of second draft

The editor is currently focused on working chapter 4 which provides detail
description on how to use the Sphinx System from scratch. After comple-
tion of it, the document will be released in the editor’s web page again.

Furture Plan of this Document

The coexistence of Sphinx 2 , Sphinx 3 and Sphinx 4 and their extensive
usage in industry are perhaps a sign of the creativity of workers of speech
recognition. We hope that this trend could be continued. Each Sphinx
represent a spectrum of speech application that developers or researchers
want to build. Therefore, it is fair to explain their usage in details in this
document as well.

As we mentioned, the writing of edition one of Hieroglyph will only cover
Sphinx 3 which happens to be the active branch. After its completion, we
will extend it to cover Sphinx 2 and Sphinx 4 ’s usage as well.

For the users

This manual was created to aide the users in dealing with difficulties of us-
ing Sphinx and its related tools. It is reasonable for us to include so much
material in the first place. Serious knowledge of building an HMM-based
speech recognizer could hardly be written using only 10 pages. Making
a serious speech recognition is a very difficult task. Even with advanced
tools like Sphinx, it could still require high-level of skill and perhaps more
importantly tremendous amount of knowledege as well as patience.

We recommend the users without basic knowledge of HMM to at least go
through the background material to find standard text book of the topic. At
this point, some effort has been made to write and introduction of speech
recognition. We hope that it could be completed in near future.

For users who have basic knowledge of HMM, we will recommend them
to browse through Chapter 2 and then follow the instruction as given in
Chapter 4. Chapter 2 has a nice interview what resource the CMU Sphinx
Group to build a speech recognition system. Whereas Chapter 4 can serve
as a reference to build the first system.

For users who already have knowledge in Sphinx, we will recommend

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xxii

Contents

you to keep track of the new release of this document and the release and
backward compatibility notes we augment in every minor version updates.

We are also well aware that the document itself could have mistakes and
we are always welcome for users’ feedback on how to improve it. Just send
your opinions to the current maintainers, Arthur Chan, David Huggins-
Daines, Evandro Gouvêa, Alan Black and Kevin Lenzo.

Arthur Chan

The Editor (who only cuts and pastes)

This page was generated with the help of DOC++

http://docpp.sourceforge.net March 11, 2007 xxiii

Part I

Before You Start

1

Chapter 1

License and use of CMU Sphinx,

SphinxTrain and CMU-Cambridge

LM Toolkit

Author: Arthur Chan, Editor: Arthur Chan

• CMU Sphinx 2 , CMU Sphinx 3 and SphinxTrain have been developed
by researchers and developers at Carnegie Mell University (CMU).

• CMU Sphinx 4 have been co-developed by research and developers
at Carnegie Mellon University (CMU), Sun Microsystems Laboratories,
Mitsubishi Electric Research Labs (MERL), and Hewlett Packard (HP),
with contributions from the University of California at Santa Cruz
(UCSC) and the Massachusetts Institute of Technology (MIT)..

• CMU-Cambridge LM Toolkit was co-developed by researchers at CMU
and Cambridge University.

If you are interested in any CMU Sphinx, your right regarding the code
and binaries in Sphinx 2 , Sphinx 3 , Sphinx 4 , SphinxTrain and CMU-
Cambridge LM Toolkit must be your major concern. Here is something
you may want to know:

1. Copying of Sphinx 2 , Sphinx 3 , Sphinx 4 and SphinxTrain The
code and binaries of all CMU Sphinx(en)are free for commercial/non-

3

commercial users with or without modification. For more details,
please check the license terms below.

2. Copying of CMU-Cambridge LM Toolkit The code of the CMU-
Cambridge LM Toolkit is made available for research purposes only.
It may be redistributed freely for this purpose.

3. Academic license We are not using GPL-ed license. Hence, you are
not obligated to distribute your source code.

4. Warranty

Although the license of Sphinx 2 , Sphinx 3 , Sphinx 4 and Sphinx-
Train source code are free and the CMU-Cambridge LM Toolkit ’s
source code is free for research purpose, we do not provide any war-
ranty and support at all. However, the maintainers of the Sphinx
Project are always willing to discuss and help developers to build
applications using any Sphinx(en). As of March 11, 2007, the main-
tainers are Arthur Chan, David Huggins-Daines, Evandro Gouvêa,
Alan Black and Kevin Lenzo, you are always welcome to talk to any
one of them.

Sections 1.1, refssec:sphinxivlicense and 1.3 contain the full license
terms for the software.

1.1 License Agreement of Sphinx 2 , Sphinx 3

and SphinxTrain Source Code

Copyright (c) 1995-2004 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistribution of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distribution.

This work was supported in part by funding from the Defense Ad-
vanced Research Projects Agency and the National Science Foundation
of the United States of America, and the CMU Sphinx Speech Consortium.

4

THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY
“AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL CARNEGIE MELLON UNIVERSITY NOR ITS EMPLOY-
EES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 License Agreement of CMU Sphinx 4

Copyright 1999-2004 Carnegie Mellon University.

Portions Copyright 2002-2004 Sun Microsystems, Inc.

Portions Copyright 2002-2004 Mitsubishi Electric Research Laborato-
ries.

All Rights Reserved. Use is subject to license terms.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright no-
tice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distribution.

3. Original authors’ names are not deleted.

4. The authors’ names are not used to endorse or promote products
derived from this software without specific prior written permission.

This work was supported in part by funding from the Defense Ad-
vanced Research Projects Agency and the National Science Foundation
of the United States of America, the CMU Sphinx Speech Consortium, and
Sun Microsystems, Inc.

CARNEGIE MELLON UNIVERSITY, SUN MICROSYSTEMS, INC., MIT-
SUBISHI ELECTRONIC RESEARCH LABORATORIES AND THE CONTRIB-

5

UTORS TO THIS WORK DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS. IN NO EVENT SHALL CARNEGIE MELLON UNIVER-
SITY, SUN MICROSYSTEMS, INC., MITSUBISHI ELECTRONIC RESEARCH
LABORATORIES NOR THE CONTRIBUTORS BE LIABLE FOR ANY SPE-
CIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

1.3 License Agreement of the CMU-Cambridge

LM Toolkit

Copyright (C) 1996, Carnegie Mellon University, Cambridge University,
Ronald Rosenfeld and Philip Clarkson.

All rights reserved.

This software is made available for research purposes only. It may
be redistributed freely for this purpose, in full or in part, provided that
this entire copyright notice is included on any copies of this software and
applications and derivations thereof.

This software is provided on an ”as is” basis, without warranty of any
kind, either expressed or implied, as to any matter including, but not lim-
ited to warranty of fitness of purpose, or merchantability, or results ob-
tained from use of this software.

1.4 About The Hieroglyphs

We hope that this document, The Hieroglyphs, itself can be distributed
so that its quality can be improved. Hence, the following permissions are
granted to the users:

• Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

6

• Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a per-
mission notice identical to this one.

• Permission is granted to copy and distribute translations of this man-
ual into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a trans-
lation approved by the Carnegie Mellon Unversity.

1.5 How to contribute?

The Sphinx Project is developed for all researchers and developers over
the world. We chose to use the X11 style license because this will allow
users to have higher flexibility in incorporating the code.

To truely achieve this goal, your participation is necessary. Due the
limitation of resources, The Sphinx system’s performance still has a cer-
tain gap with the state-of-the-art system. Your participation is necessary
to refine and perfect this software. We would also like to collect mod-
els for different languages and in different conditions. This will allow
users/developers in the world to develop speech recognition systems eas-
ily.

The software is still under heavy development to know which part of the
software requires change. You are visit the CMU Sphinxweb page:

http://cmusphinx.org

to learn about the open projects within the Sphinx group.

Please contact Arthur Chan, David Huggins-Daines, Evandro Gouvêa,
Alan Black and Kevin Lenzoif you are interested in contributing to the
Sphinx speech recognition system.

1.6 Version History of Sphinx 2

1.6.1 Sphinx 2 .5 Release Notes

This release (Sphinx 2 -0.5) includes support for language model defined
as a Finite State Grammar (FSG), as well as bug fixes.

7

The FSG implementation supports:

• an application can chose at run time which FSG to use, from a list
provided by the user (also supported with the statistical LM).

• the FSG can be passed to the decoder as a data structure instead of
as a file name.

• FSG automatically inserts multiple pronunciations and noise models,
if provided.

Among the fixes, the executables and libraries created with MS Visual
Studio are placed in a more sensible location.

It should work in several flavors of Unix (including Linux and Solaris),
and Windows NT or later.

1.6.2 Sphinx 2 .4 Release Notes

CMU Sphinx is a speech recognition system.

This version includes a FreeBSD-style license (2 conditions), and nu-
merous fixes. It should work for Linux, Solaris, various Unixes, and Win-
dows under buth Visual Studio and cygwin

1.7 Version History of Sphinx 3

1.7.1 A note in current development of Sphinx 3.7

Sphinx 3.7 requires the use of a common library set called SphinxBase to
compiled. Please consult the sphinx web site for instruction in compila-
tion.

1.7.2 Sphinx 3 .6.3 Release Notes

Sphinx is a speaker-independent large vocabulary continuous speech rec-
ognizer released under a Berkeley-style license. It is also a collection of
open source tools and resources that allows researchers and developers to
build speech recognition systems.

8

You can download release 3.6.3 from here:

https://sourceforge.net/project/showfiles.php?group id=1904

Sphinx 3.6.3

(Corresponds to Sourceforge SVN rev 5957.)

Sphinx 3.6.3 is a bug fix release.

(rev 5906) The hypseg generated by sphinx3 decode (mode 4) was ill-
formed. This used to corrupt sphinx3 conf in confidence generation. This
is now fixed.

(rev 5912) Frame length is now checked to make sure it is smaller than
number of fft points. The number oof ffts is also checked to see if it is a
power of 2.

For Developers (rev 5915) sphinx3 conf is now tested. PASS counts is
now 98 in make check (rev 5955) wave2feat is not installed in sphinx3.
Users and developers are recommended to use the SphinxTrain version
instead.

1.7.3 Sphinx 3 .6.2 Release Notes

Sphinx is a speaker-independent large vocabulary continuous speech rec-
ognizer released under a Berkeley-style license. It is also a collection of
open source tools and resources that allows researchers and developers to
build speech recognition systems.

You can download release 3.6.2 from here:

https://sourceforge.net/project/showfiles.php?group id=1904

Sphinx 3.6.2

(Corresponds to Sourceforge SVN rev 5842.)

Sphinx 3.6.2 fixed another issue related to 32bit LM; It now allows the
use of LM with tg seg size more than 0xffff. It also included a completed
but un-tested version of full-covariance modeling.

Several bug fixes:

(rev 5814) When decode,decode anytopo or lm convert were used to
read in LM with unigram less than 0xffff words, current code will assume
the LM is in 16 bit mode. Now lm convert will back-off to use 32 bit mode
to read in. Users, except those who happened to read this message, will
have no idea this happens.

(rev 5794) Fixed a compile warning which also happened to be a bug. A

9

16 bit LM word id was used in the 32 bit LM mode. This will cause problem
when users put < s > and < /s > outside the range of 0xffff.

Developing Features:

(rev 5757:5761,5763,5771,5774:5776) Incorporated full covariance ma-
trix as in acoustic modeling.

(rev 5766) Fixed front-end issues, now sphinx 3.6 could accept feature
that was accepted in Sphinx 3.0 (or archive s3)

For Developers:

(rev 5785, 5786, 5791 and 5792) sphinx3 is now indented using the
scheme originally designed for PocketSphinx and sphinxbase.

(rev 5819) Several tests are added to support the fixes. Now PASSes
count in make check is 97.

1.7.4 Sphinx 3 .6.1 Release Notes

Sphinx 3.6.1 (Corresponds to Sourceforge SVN rev 5753.)

Sphinx 3.6.1 (from rev 5660) enables 32-bit LM. It is tested under a
real-life scenario and shown to provide better results. Also LTS code has
bug so it was not truly enable in official sphinx 3.6

Several bug fixes:

• (rev 5621) Random crash with multiple LMs.

• (rev 5639) Don’t allow ld end utt() to be called if ld begin utt() hasn’t
been called (this leads to crashing and badness).

• (rev 5663) Fixed FST output behavior.

• (rev 5711) Fixed underflow problem of ug if backoff weight is too small
(<< 0). LTS now truely enabled.

• (rev 5730) Fixed Visual Studio 8.0 compilation

• (rev 5732) Fixed astar memory problem, tested in a 64000 words sce-
nario.

Developing features:

• (rev 5738) full covariance matrices

• (rev 5744) Enable fast GMM computation for align.

10

1.7.5 Sphinx 3 .6 Release Notes

Sphinx 3.6 official release included all changes one found in Sphinx 3.6
RC I.

From 3.6 RC I to 3.6 official:

New Features:

• Added support for sphinx 2-style semi-continuous HMM in Sphinx 3.

• Added sphinx3 continuous which performs on-line decoding in both
windows and linux platforms.

• Synchronized the frontend with Sphinx2, adding implementation of
VTLN. (i.e. -warp type = inverse linear, piewise linear, affine)

Changes:

• Prefix ”sphinx3 ” has been added to programs align, allphone, astar,
dag, decode, decode anytopo, ep to avoid confusion in some unix sys-
tems.

Bug Fixes:

1459402 Serious memory relocation is fixed.

• In RCI, -dither was not properly implemented, this has been fixed.

Known Problem:

• When the model contains nan, there will be abnormal output of the
result. At this point, this issue is resolved in SphinxTrain

Sphinx 3.6 Release Candidate I

The corresponding SphinxTrain’s tag is SPHINX3 6 CMU INTERNAL RELEASE
One can check out the matching SphinxTrain of the sphinx3.6 release by
command,

svn co https://svn.sourceforge.net/svnroot/cmusphinx/tags/SPHINX3 6 CMU INTERNAL

A Summary of Sphinx 3.6 RC I

Sphinx 3.6 is a gently refactored version of Sphinx 3.5. Our program-
ming is defensive and we only aim at further consolidation and unification
our code-bases in Sphinx 3.

Despite our programming is defensive, there are still several interesting
and new features could be found in this release. Their details could be
found in the ”New Feature” section below. Here is a brief summary:

11

1. Further speed-up of CIGMMS in the 4 level GMM Computation Schemes
(4LGC)

2. Multiple regression classes an MAP adaptation in SphinxTrain

3. Better support in using LM in Sphinx 3.X.

4. FSG search is now supported. This is adapted from Sphinx 2.

5. Support of full triphone search in flat lexicon search.

6. Some support of different character sets other than of Sphinx 3.X.
Models in multiple languages are now tested in Sphinx 3.X.

We hope you enjoy this release candidate. In future, we will continue to
improve the quality of CMU Sphinx and CMU Sphinx’s related software.

New Features

-Speaker Adaptation: Multiple regression class (phoneme-based) is now
supported.

-GMM Computation

1. Improvements of CIGMMs is now incorporated.

(a) One could specify the upper limit of the number of CD senones
to be computed in each frame by specifying -maxcdsenpf.

(b) The best Gaussian index (BGI) are not stored and could be used
as a mechanism to speed up GMM computation

(c) tightening-factor (-tighten factor) is introduced to smooth between
fix naive down-sampling technique and CI-GMMS.

2. Support of SCHMM and FCHMM

(a) decode will fully support computation of SCHMM.

-Language Model

1. reading an LM in ARPA text format is now supported. Users now have
an option to by-pass the use of lm3g2dmp.

2. live decoding API now supports switching of language models.

3. full support of class-based LM. See also the Bug fixes section

4. lm convert is introduced. lm convert supersede the functionalities of
lm3g2dmp. Not only could lm convert convert an LM from TXT format
to DMP format. It could also do the reverse.

12

-Search

This part will detail the change we make in different search algorithms.
In 3.6, collection of algorithms could all be used under a single executable
decode. decode anytopo is still reserved for backward compatibility pur-
pose. Decode now support three modes of search.

1. Mode 2 (FSG): (Adapted from Sphinx 2) FSG search.

2. Mode 3 (FLAT): Flat-lexicon search. (The original search in decode anytopo
in 3.X (X < 6))

3. Mode 4 (TREE): Tree-lexicion search. (The original search in decode
in 3.X (x <6)

Some of these functionalities will only be applicable in one particular
search. We will mark them with FSG, FLAT and TREE.

1. One could now turn off -bt wsil to control whether silence should be
used as the ending word. (FLAT, TREE)

2. In FLAT, full triphones could be used instead of multiplexed triphones.

3. FSG is a new added routine in 3.6 which is adapted from Sphinx 2.5

-Frontend

1. -dither is now supported in live pretend and live decode, the initial
seed could always be set the command -seed. (Jerry Wolf will be very
happy about this feature.)

-Miscellaneous

1. One could turn on built-in letter-to-sound rule in dict.c by using -
lts mismatch.

2. current Sphinx 3.6 is tested to work on setup of English, Chinese
Mandarin, French and English.

3. changes in allphone: allphone can now generate a match and a match-
seg just like decode* recognizers.

Bug fixes

1. Miscellaneous memory leak fixed in the tree search (mode 4)

13

2. Initialization class-based LM routine use to switch the order of word
insertion penalty and language model weight. This is now fixed.

3. Assertion generated vithist.c is now turn into an error message. In-
stead of causing the whole program stopped. The decoding will just
fail for that sentnece. We suspect that this is the problem which
caused possible wipe out of memory in Sphinx 3.4 & 3.5

4. Number of CI phones could now be at most 32767 (instead of 127)

1236322 : str2words special character bugs.

Behavior Changes

1. Endpointer (ep) now used computation of s3 log.

2. Multi-stream GMM computation will not truncate the pdf to 8 bit
anymore. This will avoid confusion of programmer. However

3. Except in allphone and align, When .cont. is used in -senmgau, the
code will automatically turn to use fast GMM computation routine.
To make sure the multiple-stream GMM computation will be in effect,
one need to specify .s3cont.

4. executable dag hadn’t accounted for the language weight. Now this
issue is fixed.

5. (See Bug fixes also) decode will now return error message when vithist
was fed in with history -1. Instead of asserting the problem. The
recognizer will dump Warning message. Usually that means beam
widths need to increase.

Functions still under test

1. Encoding conversion in lm convert.

2. LIUM contribution: LM could now represented as AT&T fsm format.

Known bugs

1. Confidence estimation, the computations of forward and backward
posterior probability have mismatch

2. In allphone, sometimes the scores generated in the matchseg file will
have very low scores.

3. Regression test on second-stage search still have bugs.

14

Corresponding changes in SphinxTrain

Please note that SphinxTrain is distributed as a separate package and
you can get it by: svn co https://svn.sourceforge.net/svnroot/cmusphinx/tags/SPHINX3 6

1. Support for generation of MAP, multiple-class MLLR.

2. Support for BBI tree generation

1.7.6 Sphinx 3 .5 Release Notes

New features of this release:

• Live-mode APIs are stable and are now officially released.

• Windows version of live-mode decoder based on the new APIS is re-
leased.

• Live-mode decoder simulator (livepretend) based on the new APIS is
still under development. We expect it to be stable in Sphinx 3.6.

• Mean transformation-based adaptation is now supported.

• The feature extraction library of sphinx3 is now EXACTLY the same
as SphinxTrain

• Four of the s3.0 (flat decoder) tools are now incorporated in Sphinx 3
.x.

– align - a time aligner

– astar - an N-best genertor

– allphone - a phoneme recognizer

– dag - a best-path finder for a lattice

SphinxTrain has been tagged to match the release 0.5 of Sphinx 3 .
One can retrieve the matching SphinxTrain by the command:

$ cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/cmusphinx/
co -r SPHINX3 5 CMU INTERNAL RELEASE SphinxTrain

New features of this release:

• The feature extraction libraries of SphinxTrain is now EXACTLY the
same as sphinx3.

15

• New tools introduced

– mllr solve, given the EM posterior probabilities of the mean and
regression class definition, this routine estimates regression ma-
trices for each class.

– mllr transform, given a transformation matrix, this tools applies
the transformation to the mean vector of the models.

• The command line interface for all SphinxTrain tools are unified.

1.7.7 Sphinx 3.4 Release Notes

1. Sphinx 3.4 has a re-written the Gaussian computation routine. The
following techniques are implemented.

• Naive and model-based down-sampling such that some of the
frames are computed.

• Context-independent phone-based Gaussian mixture model Se-
lection.

• Two Gaussian selection algorithms including Vector Quantizater-
based Gaussian selection and Sub-vector quantizer-based Gaus-
sian selection.

• Sub-vector quantization.

2. Phoneme lookahead based on three different types of heuristics are
implemented.

3. Sphinx 3.3 front-end problem is fixed. Current front-end supports
the original s3 1x39 feature and also the standard 1s c d dd features.

4. Live mode recognizer’s core dump problem is fixed.

5. sphinx-test and sphinx-simple should work as it is.

6. Visual C++ .dsw file is moved to upper most level of the code, a
project is also built for the program decode in windows.

7. README and several compilation document is now included in the
distribution.

16

1.8 Version History of Sphinx 4

Sphinx 4 1.0 beta

In this release, we have provided the following new features and improve-
ments over the 0.1 alpha release:

• Confidence scoring

• Dynamic grammar support

• JSGF limitations removed

• Improved performance for large, perplex JSGF grammars

• Filler support for JSGF Grammars

• Out-of-grammar utterance rejection

• Narrow bandwidth acoustic model

• WSJ5K Language model

• More demonstration programs

• Better control over microphone selection

• Lots of bug fixes

Sphinx 4 is a state-of-the-art, speaker-independent, continuous speech
recognition system written entirely in the Java programming language. It
was created via a joint collaboration between the Sphinx group at Carnegie
Mellon University, Sun Microsystems Laboratories, Mitsubishi Electric Re-
search Labs (MERL), and Hewlett Packard (HP), with contributions from
the University of California at Santa Cruz (UCSC) and the Massachusetts
Institute of Technology (MIT).

The design of Sphinx 4 is based on patterns that have emerged from
the design of past systems as well as new requirements based on areas
that researchers currently want to explore. To exercise this framework,
and to provide researchers with a ”research-ready” system, Sphinx 4 also
includes several implementations of both simple and state-of-the-art tech-
niques. The framework and the implementations are all freely available via
open source under a very generous BSD-style license.

With the 1.0 beta release, you get the complete Sphinx 4 source tree
along with several acoustic and language models capable of handling a

17

variety of tasks ranging from simple digit recognition to large vocabulary
n-Gram recognition.

Because it is written entirely in the Java programming language, Sphinx
4 can run on a variety of platforms without requiring any special compi-
lation or changes. We’ve tested Sphinx 4 on the following platforms with
success: the Solaris 9 Operating System on the SPARC platform, Mac OS
X 10.3.5, RedHat 9.0, Fedora Core 1, Microsoft Windows XP, and Microsoft
Windows 2000.

Please give Sphinx 4 1.0 beta a try and post your questions, comments,
and feedback to one of the CMU Sphinx Forums:

https://sourceforge.net/forum/?group id=1904

We can also be reached at cmusphinx-contacts@lists.sourceforge.net.

Sphinx 4 -alpha

Sphinx 4 is a state-of-the-art, speaker-independent, continuous speech
recognition system written entirely in the Java programming language. It
was created via a joint collaboration between the Sphinx group at Carnegie
Mellon University, Sun Microsystems Laboratories, Mitsubishi Electric Re-
search Labs (MERL), and Hewlett Packard (HP), with contributions from
the University of California at Santa Cruz (UCSC) and the Massachusetts
Institute of Technology (MIT).

The design of Sphinx 4 is based on patterns that have emerged from
the design of past systems as well as new requirements based on areas
that researchers currently want to explore. To exercise this framework,
and to provide researchers with a ”research-ready” system, Sphinx 4 also
includes several implementations of both simple and state-of-the-art tech-
niques. The framework and the implementations are all freely available via
open source under a very generous BSD-style license.

With the Alpha 0.1 release, you get the complete Sphinx 4 source tree
along with several acoustic and language models capable of handling a
variety of tasks ranging from simple digit recognition to large vocabulary
n-Gram recognition.

Because it is written entirely in the Java programming language, Sphinx
4 can run on a variety of platforms without requiring any special compi-
lation or changes. We’ve tested Sphinx 4 on the following platforms with
success: the Solaris 9 operating system on the SPARC platform, Mac OS X
10.3.3, RedHat 9.0, Fedora Core 1, Microsoft Windows XP, and Microsoft
Windows 2000.

18

Please give Sphinx 4 0.1 alpha a try and post your questions, com-
ments, and feedback to one of the CMU SphinxForums:

https://sourceforge.net/forum/?group id=1904

We can also be reached at cmusphinx-contacts@lists.sourceforge.net.

1.9 Version History of PocketSphinx

1.9.1 Pocket Sphinx 0.2

This is the first real release of PocketSphinx. PocketSphinx is a derivative
of Sphinx-II designed for embedded and handheld systems.

See the release notes for more information.

This release corresponds to revision 5967 in Subversion.

1.9.2 Pocket Sphinx 0.2.1

This is a bug-fix release to make fixed-point computation work, which was
inadvertently broken in the 0.2 release.

1.9.3 Pocket Sphinx 0.2.1

New versions of PocketSphinx and SphinxBase are now available.

This version of SphinxBase will be used as the base for the next version
of Sphinx3. It includes many updates to the utility library, the feature
extraction code, and the dynamic feature computation code.

This version of PocketSphinx is quite different from the last one. It is
considerably smaller due to the elimination of large amounts of redundant
and legacy code. It is also up to 20% faster in some cases. The command-
line arguments have been synchronized with Sphinx3, and support for
Sphinx2-format acoustic models has been removed.

19

20

Chapter 2

Introduction

Author: Arthur Chan, Rita Singh, Editor: Arthur Chan

In this chapter, we describe the history of Sphinx as a tool of speech
recognition and give an overview of different software packages of Sphinx.

2.1 Why do I want to use CMU Sphinx?

If you are a developer, the major reason you want to use Sphinx is be-
cause Sphinx currently is the most complete archive of speech recognition
tool. Sphinx is also released using a liberal license. You may aware that
other very powerful toolkits, are also open-sourced. Unfortunately, some
of their licenses disallows you to use their code in your project. It may also
disallow you to use the code and distribute them later in your project.

Sphinx allows you to have full control of your source code as well
Sphinx’s code. You are free to use, modify and distribute your code with
Sphinx’s code. In another way, Sphinx is not using GPL, that means you
don’t have to make the code to be free and keep it close source. We believe
this is the kind of flexibility developers really want.

Another aspects of the Sphinx Project is that based on Sphinx and its
related resources, and with enough knowledge 1, you can build a lot of
different types of applications. By speech applications, I mean things like
dictation, automatic speech server. More importantly, the most common

1The knowledge of proper usage of a speech recognizer and produce high performance

results will be as difficult as modifying the gcc compiler or the linux kernel source code.

21

denominator or all these applications, i.e the recognizer is open-sourced
in CMU Sphinx. You will also get a lot of bundling resource such as dic-
tionary, phone list from CMU’s speech archive. This is something very
important if you want to have full-control of you speech recognition sys-
tem.

If you are researchers and your interest is in HMM-based speech recog-
nition, there are several reasons why you may want to use Sphinx 3 and
Sphinx 4 as your research tools.

First of all Sphinx(en)assumes that GMM computation and the search
process are separate. The important consequence is that you could carry
out two different types of research without conflicting each others. For
example, you could try to device a new observation probability without
touching the source code of the search routine. At the same time, you
could also build a new search algorithms without thinking of the GMM
computation. This gives you a better advantage in speech recognition re-
seach.

The second reason is in training. Most of the time when you were
doing modeling research, what you would like to change is the algorithm
of estimation. SphinxTrain ’s Baum-Welch’s algorithm solve this problem
in two stages. It first dump the posterior probabitlites count in a separate
file and can be easily readable by libraries of SphinxTrain . You can just
play with these counts and there is no need to device you own Baum-Welch
trainer. This advantage can greatly shorten your research time from weaks
to dates.

The third reason is in the code-clairity, later recognizers such as Sphinx
3 and Sphinx 4 have put readability of the code as one of the most impor-
tant design goal. Many researchers, not only they want to use the recog-
nizer as a tool. They also want to change the code to suit there purpose.
Sphinx 3 , for example, has only 4 layers of code from main() to the GMM
computation. This become a good advantage for researchers who like to
make changes in a speech recognizer.

2.2 The Hieroglyphs

Author: Arthur Chan, Editor: Arthur Chan

That is this manual.

As a continuous effort of improving every aspect of Sphinx, one of the
goal of the team is to create high quality documentation for expert as well
as general users. At 2004, this manual was created by Arthur Chan to

22

fulfill this goal.

The project name “Hieroglyph” symbolize two aspects of documentation
of speech recognizer. First of all, the usage a speech recognizer and build-
ing sucessful speech recognition system required large amount of knowl-
edege. The depth of the knowledge required by a researcher can be com-
pared with how a type of character could endoded. The second aspect is
that building a speech recognizer is sometimes very hard and that might
required the developer or the researcher. It sometimes requires to pay
effort that is similar to learn a type of Hieroglyphs.

The first draft of the Hieroglyph document aims at provide a compre-
hensive guide on how to use Sphinx 3 , SphinxTrain and CMU LM Toolkit
to build a speech recognition system. Future plan will include the use of
Sphinx 2 and Sphinx 4 .

As at 2005 Jun, 70% of the first draft of the hieroglyph document is
completed and currently could be found in

http://www-2.cs.cmu.edu/∼archan/sphinxDoc.html

2.3 The Sphinx Developers

The Sphinx Developers are the people who maintain and continue to de-
velop aspects of Sphinx Project . A large portion of them are from aca-
demic institutes such as CMU. There are also significant amount of them
are from companies such as Sun, Compaq and Mitsubishi.

The development of CMU Sphinxis not exclusive to Sphinx Develop-
ers . Users are welcomed to contribute patches of code to Sphinx and
patches are continuously incorporate to enrich and strengthen the current
code base. If you are interested in developing Sphinx, you could contact
Arthur Chan, David Huggins-Daines, Evandro Gouvêa, Alan Black and
Kevin Lenzo.

2.4 Which CMUSphinx should I use?

It depends on what kind of application you are trying to build. Here are
couple of consideration you need to think about.

• FSG and natural language In one word, if you expect to build a sys-
tem with highly structured dialog. Possibly an FSG system is suitable

23

for you. Currently, your choice will be either Sphinx 2 or Sphinx 4 .

If you want to build a system with more natural input and less con-
straints. Then a speech recognizer + robust parser system will be
something more suitable to you. What you need to do is to use a
speech recognizer to generate output string . Then use a parser to
parse this possilby errorful output. The later can be well handled by
parser such as Phoenix.

• Programming Languages Sphinx 2 and III is in C which is quite
portable in general. Sphinx 4 is in Java. You may also need to decide
whether you and your team can handle either of these two languages.
Many people are religious in only one programming language. The
different versions could give you a lot of flexibility to choose.

• Accuracy and Speed

We didn’t carry out very extensive benchmarking of different Sphinx(en).
The following can only be regarded as a rough estimate According to
our measurement. The accuracy numbers can be rougly summarized
as

Sphinx 4 >= Sphinx 3 >> Sphinx 2

and in terms of speed,

Sphinx 4 >= Sphinx 3 >= Sphinx 2

That means Sphinx 2 is still the fastest recognizer we had in our
inventory. However its accuracy is also the lowest. Sphinx 3 contains
our best C’s recognizer which can be configured as both fast and
pretty accurate. Sphinx 4 is possibly the most all round recognizer
we have and contrary to people’s belief, it can actually be pretty fast.
Partially, Java’s development has come to a stage where it can handle
heavy loaded computation.

• Interfaces

Sphinx have several versions. Depends on your goal, your choice of
recognizer will be different.

In general, Sphinx 4 provides the best interface among all. It can be
used by specifying a config.xml and command-line. This advantage
can make your web developers are much easier task in general.

Usage of Sphinx 2 and Sphinx 3 requires much more skill in scripting
and in general understanding of the program. At the current stage,

24

they are stil regarded as systems for expert users. Though the Sphinx
team is seeking to continuously improve the interface and try to make
it easier to use for more users.

• Platforms

Sphinx 2 , Sphinx 3 and Sphinx 4 are all highly platform-independent.
However, the use of Java language in Sphinx 4 could potentially allow
higher degree of platform independency.

It is also of common interest that whether any version of the decoders
could be used in an embedded platform. David Huggins-Daines cre-
ated an embedded version (based on Sharp Zaurus) for Sphinx 2 .
In that case, Sphinx 2 will perhaps the choise of the recognizer for
embedded platform.

• Research

We would recommend you to use the three recognizer because all of
them have clean design. They all supports continuous HMMs which
is currently a de-facto standard of HMM

In the case of doing individual research. We have the following rec-
ommendation.

For acoustic modeling and fast GMM computation , Sphinx 3 is ac-
tually are pretty good research platforms for speech recognition. By
itself, it support SCHMM, CHMM and Sub-vector quantized HMM.
They represent there different kinds of modeling technique for speech
recognitions.

For research in search, Sphinx 4 is a good candidate, because you
can avoid annoying memory management and focus on implementa-
tion of the search algorithm.

For speaker adaptation or general acoustic model research, you will
find that you need to directly change SphinxTrain . The stage’s esti-
mation process will be a very nice process for you to use.

A lot of research requires a very fast implementation of speech recog-
nizer. We believe Sphinx 2 coulbe the choice.

It is very unlucky that currently Sphinx’s architecture makes feature
extraction research pretty difficult to carry out. In future, we will try
to change situation.

• Documentation, support and commnity

As at 2005, all three Sphinx(en)(II, III and IV) are actively maintained
by current maintainers of CMU Sphinx. Most of the developers have
years of experience in large scale code development and industrial

25

experience. They usually provide very fast turn around to most of the
problems.

Documentation in both Sphinx 3 and Sphinx 4 are probably more
comprehensive than that of Sphinx 2 . Both Sphinx 3 and Sphinx
4 provided Javadoc style of code documentation as well very detailed
documentation for the software itself.

For the community, one could imagine Sphinx 4 attracts more young,
energetic researchers. Whereas, many users of Sphinx 2 and Sphinx
3 turns out to be experts with experience. Though as each of the
software turns out to be more balanced, more users found that all
three recognizers are pretty good choice in general.

2.5 Other Open Source Speech Recognition Project

in CMU: Hephaestus

Author: Arthur Chan, Editor: Arthur Chan

Project Hephaestus of CMU is a project that tries to collect open source
toolkits in speech and language processing. CMU Sphinxis one of the key
tool in this project. A lot of effort is also put in toolkit such as speech syn-
thesis, dialogue system and general speech resource. In this section, you
will learn some of these efforts. They are important because just having
the speech recognizer cannot build interesting application such as dialog
system. Running a recognizer and a trainer also requires many relevant
resource such as dictionary and training data. Therefore, it is very impor-
tant to have some basic understanding of each of these components.

2.5.1 Festival

Festival is a free open-sourced text-to-speech synthesizer developed in Ed-
inburgh Unversity. It is now mainly maintained by Prof. Alan Black in
CMU. In the simplest case, you can feed in a string and festival will cre-
ate the waveform and output through your speaker. The funtionalities of
festival allow users to modify speech-synthesis in multiple levels. It is also
extremely flexible and has very good programming interface.

Festival has very good documentation on-line at

• Festival’s main page www.cstr.ed.ac.uk/projects/festival/

26

• FestVox www.festival.org

2.5.2 CMU Communicator Toolkit

CMU Communicator is a project that allows users to get flight information
using speech. It is led by Prof. Alex Rudnicky in CMU. The whole system
is available as a tool kit so the public can used it freely. CMU Communica-
tor contains several of open source components including CMU Sphinx(the
recognizer), Phoenix (the robust parser), Helios (post-processor that gen-
erate confidence), Rosetta(the language generation routine) and Festival
(speech synthesizer). Therefore, this is one very interesting demonstration
on how speech recognition system can be built in general.

Another important aspect of it is that CMU Communicator data is free
to be used and its collection process allows you to use is data as freely as
you like. CMU will allow charge you the distribution charge for the whole
acquisition process.

For more detail about Communicator, you can go to

http://www.speech.cs.cmu.edu/Communicator/

For the information of the corpus, you can go to

http://www.speech.cs.cmu.edu/Communicator/Corpus/

for details.

2.5.3 CMUdict, CMUlex

CMUdict is the dictionary collected and built in CMU from its 15 years of
research. CMUdict is the short-form of Carnegie Mellon University Pro-
nouncing Dictionary. You can download it at

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

2.5.4 Speech Databases

CMU provides few databases for research purpose. For example, AN4
and Communicator databas. Please contact Arthur Chan, David Huggins-
Daines, Evandro Gouvêa, Alan Black and Kevin Lenzofor further detail.

27

2.5.5 OpenVXML and OpenSALT browser

Voice XML (VXML) and Speech Application Language Tags (SALT) are two
markup languages that integrates speech services into markup languages.
It becomes a very important toolkit to builld speech application for people
who used to web development. You can find their information at

http://www.speech.cs.cmu.edu/openvxi/index.html

and

http://hap.speech.cs.cmu.edu/salt/

2.5.6 Miscellaneous

CMU’s speech group’s web page contains a lot of useful information for
using, building and researching speech recognition systems. You can find
its web site at

http://www.speech.cs.cmu.edu/

2.6 How do I get more help?

CMU Sphinxis currently maintained by CMU, a lot of developers/researchers
from research institutions such as Sun Microsystem, Hewlett-Packard,
Mitsubishi and MIT. Feel free the ask any questions in the discussion
forum at

http://sourceforge.net/forum/?group id=1904

28

Part II

Tutorial

29

Chapter 3

Software Installation

Author: Arthur Chan, Editor: Arthur Chan This chapter describe general
installation procedure for multiple software toolkits that you will need to
build a speech recognition system. We will assume Unix is the environ-
ment we will use. If you were a window user, we will recommend you to
use cygwin. (

There are couple of components you need to download before we start.
Make sure you have the following standard software that can be found
in Unix. These are tools if you installed linux or cygwin in a windows
machine. They usually come standard. They are also not so difficult to
get.

• tar and gzip Software to decompress a file. If you are Windows users,
WinZip, WinRar and 7-Zip will work for you.

• gcc C compiler, Sphinx 3 supports both gcc 3.2.2 and 2.95 to know
the version, type gcc -v

• make A utility that automatically determine which part of the soft-
ware need to be compiled given a makefile.

3.1 Sphinx 3 .X

Thee first software we will get is Sphinx 3 .X and you can download it at

http://sourceforge.net/projects/cmusphinx/

31

Go to the section of “Latest File Releases” and click sphinx3. Then
choose the top most labelled with sphinx3-0.5.tgz is the one. 1

We will go through the standard compilation Linux toolkit compilation
process here (i.e. configure − > make − > make install).

1. Configure the makefile

$ configure

2. Compile the program

$ make

3. Install the program

$ make install

By default the program will be installed in /usr/local/bin/, if you want
to change the path of installation, you can type

$ configure--prefix=<yourpath>

in the configuring step.

3.2 SphinxTrain

If you want to get a copy of SphinxTrain , you need to use cvs to get it.
Again, you can use the above configure− >make− >make install process
to compile the code.

1. Check out the source code You could get the latest source code
from Sourceforge by typing

$ cvs -d:pserver:anonymous@cvs.sf.net:/cvsroot/cmusphinx co

SphinxTrain

When you were ask for password, just type enter. Then check out
process will start.

You will see something like this on the screen

cvs checkout: Updating SphinxTrain

1For some reason that caused by early interaction of sphinx developers and Source-

forge, sphinx3-0.X.tgz end up means sphinx3.X . It becomes a legacy problem that later

maintainer just follow the old rules.

32

U SphinxTrain/COPYING

U SphinxTrain/Makefile

U SphinxTrain/README.tracing

U SphinxTrain/README.txt

U SphinxTrain/ReleaseNotes

U SphinxTrain/SphinxTrain.dsw

U SphinxTrain/config.guess

U SphinxTrain/config.sub

U SphinxTrain/configure

U SphinxTrain/configure.in

U SphinxTrain/install-sh

U SphinxTrain/missing

U SphinxTrain/mkinstalldirs

cvs checkout: Updating SphinxTrain/bin

2. Configure the makefile

$ configure

3. Compile the program

$ make

3.3 CMU LM Toolkit

You can get the Toolkit at

http://svr-www.eng.cam.ac.uk/∼prc14/toolkit.html

1. Configure the makefile

> configure

2. Compile the program

> make

33

3.4 Other tools related to the recognizer

There are two extra tools which are not packaged in the above distribu-
tions. One is called cepview which can allow one to inspect the mfcc file.
One is called lm3g2dmp which can transform standard text-based LM to a
specific DMP file format that could be accepted by Sphinx 2 and Sphinx 3
. Both of these could be found in the share directory in Sourceforge. You
could get the latest source code from Sourceforge by typing

$ cvs co -d:pserver:anonymous@cvs.sf.net:/cvsroot/cmusphinx
co share

3.5 FAQ of the installation process

3.5.1 What if I am a user of Microsoft Windows?

Our recommendation for you is that you should consider to use cygwin.

What if I know only how to use Visual C++? So in that case I won’t be
able to use Sphinx ? Don’t worry. Sphinx’s developers have create a setup
for Microsoft Visual C++. From our testing, it works for both VC 6.0 and
VC.Net at 2003. Thought, with the constant change of Microsoft’s changes
of programmers user interface. It is very unlikely we can follow all the
changes they made. So if you have a new compiler, you may need to make
the setup itself.

For sphinx 3.X, you just need to go to click program.dsw and do a Build.
Then you are done. The files can be found in ./bin/{Debug,Release}.

For SphinxTrain , you also just need to go to click program.dsw and do
a build. The files can be found in ./bin/{Debug,Release}.

Very unfortunately, there is no VC setup for CMU LM Toolkit. May be
we will try to fix this problem later.

3.5.2 How about other Windows compilers?

The software itself doesn’t impose any restrictions on the compilers. The
problems where most people are facing usually caused by lack of knowl-
edge of the compiler itself.

34

The basic principle of compilation is simple. First create libraries for
libaudio/, libs3decoder/ and libutil/ . Then use the compile the files in
program with the libaries. The VC setup are basically done by the above
procedure.

If you work out a setup to compile Sphinx, please kindly contact Arthur
Chan, David Huggins-Daines, Evandro Gouvêa, Alan Black and Kevin
Lenzo.

3.5.3 How about other Unix platforms?

Sphinx 3 and SphinxTrain are written in ANSI C and they are fairly portable
to other Unix platforms. Though there is not much testing has been done
for platform other than windows , Linux and Mac OS X. Though, we con-
tinuously try to make sure the code is as portable as possible

3.5.4 What if I can’t build Sphinx 3 .X or SphinxTrain ?

Please report to the Sphinx Developers .

3.5.5 What if I am not a fan of C?

In that case, try Sphinx 4 , it is a better, cleaner system written by Java.
Documentation of Sphinx 4 is not the purpose of this manual. You can
check out its installation procedure at

http://cmusphinx.sourceforge.net/sphinx4/

As we mentioned in the Preface, the current manual will only focus on
the usage of Sphinx 3 . Of course, don’t be disappointed. :-). There will
always be a new addition.

3.5.6 How do I get help for installation?

Try the Sphinx Forum in Sourceforge, there are multiple experts there to
help you. The URL is

http://sourceforge.net/forum/?group id=1904

35

36

Chapter 4

Building speech recognition

system

Author: Arthur Chan, Editor: Arthur Chan

Sphinx 3 and SphinxTrain are good candidates for application program-
mer to build a speech recognition systems. By itself, it only provide a bare
bone demonstation system (or livedecode) for speech recognition. This is
far from what most user need. 1 This chapter provides a step by step guide
to build a speech recognition system.

There are two approaches of building a speech recognition system.

The first way is to create a system by using the decoder of Sphinx
Project and some open source models of Sphinx Project , this mode of
development is easiest.

The knowledge required in building a speech recognition system using
the first approach can be divided into two parts. One is to understand the
specialty of using speech as an input of a program. For basic knowledge
of HMM-based speech recognition, please consult Chapter 3 for further
detail. The other part is to interface the speech recognizer with other pro-
grams. Both of this knowledge is not trivial. The first 5 steps will guide
you through the procedure.

The second way and a prefered way to create a system is to build a full
system including the acoustic model yourself. There are several reasons
for doing so. One of them is despite the fact that the model you could

1Unfortunately, manuy users have misunderstanding that livedecode is a full system.

37

found in open source model archive is fairly good. They may not be the
best for your situation. For example, if one would like to build a simple
digit recognition system, models trained with multiple hours of data may
have Gaussian distribution which is too “flat” that doesn’t match with the
special need of digit recognition. Training your own model can allow you
to control the quality of the acoustic model. 2.

Experts of the second mode of development usually attain advanced
knowledge in pattern recognition, thorough understanding in speech recog-
nition and also savvy skills of manipulate different tools of speech recog-
nition tools. It is one of the most satisfactory process in the world. Step
6 to Step 11 will briefly go through this process. In Chapter 6, a detail
description of every sub-component of the process will be described.

After you tried the last two modes of development, you might be inter-
ested in 1) tuning the current system to make faster and more accurate or
2) understand what’s going on internal to Sphinx 3 . Step 12 and Step 13
will describe it further.

A final note of this tutorial, there are several high quality tutorials al-
ready exists in the web. If you found that this tutorial alone couldn’t solve
all of your problems. Also try the following Evandro Gouvêa’s tutorial

http://www-2.cs.cmu.edu/ robust/Tutorial/opensource.html

It consists of a full run-through tutorial which contains a full recipe
of training using the AN4 or RM1 database. The resulting system would
be a very simple evaluation system for these databases. You are highly
recommended to run-through either this tutorial or the on-line tutorial if
you are new to speech recognition or Sphinx.

4.1 Step 1: Design of a Speech Recognition Sys-

tem

In this section, I will list some concerns you might need to consider before
you build a speech recognition system.

2Sometimes it might give you a job as well.

38

4.1.1 Do you really need speech?

Not every type of information is suitable for speech input. For example,
digit string, is very good candidate for input by speech and it is not very
natural to be input by other modes of input (such as touch pad).

What kind of application is suitable for speech? For example, dicta-
tion is well-known to be one application that speech is doing very well.
Other applications can be simply summarized as variants of command-
and-control type of applications. For example, if you just need several
types of “speech shortcut” when you are using Windows. You might just
want to have a few commands in your system and when each command
was recognized, corresponding action would be taken by your system.

4.1.2 Is Your Requirement Feasible?

Using a HMM-based speech recognition, there are several types of input
are very hard to be recognized. Some of them are intrinsic to the problem
itself.

Let’s first talk about some linguistic confusion, in general, if there is no
linguistic constraints (e.g. N-gram LM or FSM), the recognition rate will
usually very low. This situation is a very common and that occurred in
research of conversational speech recognition and there is no easy solution
to solve it. So if your goal is to recognize everything that can be spoken by
anyone, Sphinx (include all Sphinx(en)) probably can’t help you so.

There are two major factors in desigining your systems, one is linguistic

confusibility and one is acoustic confusability. They are usually the cause
of how speech system is poor in practice.

Linguistic Confusibility

If you rank order the difficulties of building a system. You could probably
get a list 3

1. Recognize everything that could be said by anyone in the world

3A very important note should be put here. Despite the author put 3000 words to

be doable, this is just reflecting an expert level that beginning users could do. It is

very important to realize, Sphinx, with one capable speech recognition expert can create

arbitrary type of speech application with large amount of vocabulary (> 20k).

39

The case we just mentioned. This is very hard. There are also effects
of multiple languages and it is generally not easy to do.

2. Recognize everything that could be said by everyone who speaks the
same language

This is slightly easier but still we have no constraints.

3. Recognize what two persons are saying in a conversation

This might be easier if we could impose a constraint by the topic. For
example, if we know that the two persons are programmers and if
we know they are likely to talk about programming all the time, then
we could probably assume terms such as “program”, “function” could
appear more.

4. Recognize what a person want to write in a letter

This is also known as dictation. This is still quite hard but it is quite
constrained because given a topic of the letter and the type of letters
in that topic. For example, if you know you recognizer “Dear” in a
marketing letter, usually, it will always follow by “customer”. Usually,
the amount of words a person could use could be confined to less
60k words. That explain the success of a lot of commercial speech
recognizers.

Sphinx, by itself, does not forbid developers to build a dictation sys-
tem. However, building dictation system usually required a lot of
application tuning and training. This might be too hard to be de-
scribed in this manual. Just to collect data may take you months
to complete. This might not be suitable for this tutorial. As you
might know, there are already several sucessfull commercial recog-
nizers in the world. There are also several efforts tried to build an
open source speech recognizer using Sphinx. Unfortunately, most of
them are following incorrect approaches and using incorrect method.
We could only wish someday we would write another guide on how to
use Sphinx in dictation.

After this point, things will start to be more easily doable by you. (Of
course if you read this manual.)

5. Build a 3000 word dialogue system

This is already down and proved to be very sucessful. For example
CMU Communicator system is one good example. In the Communi-
cator system

http://www.speech.cs.cmu.edu/Communicator/

40

One could ask information for the itinery of flight. The destination
and arrival location can be obtained. This system is very sucessful
because the speech of this type is very constrained. 4

Flight information is just one type of information. What the user
might want to query could be things like weather information, TV
listing, product information, etc. Most of the time, this query is very
constrained. This will make your life easier.

6. Build a 1000-person person phone directory system with English
names

This is also known speech directory system and this is definitely doable
and useful. I give this example because it could actually be harder
than the task of building a 3000 word dialog system because it re-
flect the intrinsic difficulty of this problem, sometimes people name
sounds very similar. Even human being has problems with them, we
will talk about this more when discuss acoustic confusability. If there
are more names to be recognized, the chances of names being con-
fused will be higher. This is the nature of the problem. However, this
is a problem which is doable by Sphinx and could be done by people
who follow this manual.

7. Build a 100-command command and control system in English

This is obviously another easy task, Sphinx could definitely help
you. For example, take a look of the “Robosapien Dancing Machine”
project.

http://www.robodance.com/

Command and control system is very general term for many type of
application. You might want to use it for controlling your windows
applications or you might want to use it to control a character in a
game.

There are two notes we need to mentioned at this point. The first note
is that it is important for you to realize there are different difficulties of
building speech recognition system. Some of them is very hard to be tack-
led by a single person. You might need to form a team of people and try
to deal with them with expert guidance. This will set your expectation to a
correct level.

The second reason is that we want to show you size of vocabulary is not
the only reason why a task is hard. Whether the tasks are difficult partially

4Notice that CMU Communicator was only using Sphinx 2 , the Sphinx 3 system was

found to be 30% more accurate in later years.

41

depends on the perplexity of the language model, a quantity one would
describe more in Chapter 9. Another factor is whether words confused
with each other acoustically. This is briefly mentioned in the task “Build
a 1000-person person phone directory system with English names” Let us
go on with several other tasks in the next paragraph.

After you read this part, I urge you to test yourself this. Is recognition
of an unconstrained 16 digit string harder? Or is recognition of a credit
card (VISA or Mastercard) harder? 5

Acoustic Confusibility

Have you been to China? And use Chinese romanized name to call your
friends? If you have done it once, you will know that it is very hard. Let us
consider another task, “Build a 1000 romanized Chinese name directory
system”. This task could be extremely hard because romanized Chinese
names can be easily confusible with other. Consider my romanized Chi-
nese name:

Chan Yu Chung

and one my friend’s name

Cheng Yue Chun.

Try to read it aloud on the phone, you will know it might be quite
impossible even for human ear to recognize them.

The same situation happens in alphabet recognition. It is generally
very difficult to differentiate between some of them. For example, A, J and
K could hard to differentiate. B, C, D, E, G and V, Z could be hard to
differentiate. M and N is yet another pair.

Yet another example of acoustic confusability is so called phoneme
recognition. For example on the phone, many human misrecognized the
word “Arthur” to be “Althur”. This is a case where the system should con-
sider to reprompt the user for spelling or other means of confirmation.

Another possibility is even more subtle. For example, it might happened
that the two things you like to recognize have the same name. For example,
there are two people who has the same name. This is a natural situation
where name cannot be the unique identifier for them. Obviously, a speech
recognizer could not do too much about that.

Acoustic confusibility is one important concern to build a system. If

5The second case is easier because credit card number are usually generated by some

special algorithm and can check whether the 16 digits were valid or not.

42

you put in a lot of confusible words, it will end up to give you a very poor
recognition rate.

4.1.3 System Concern

Running a speech recognizer could take a lot of computation of your ma-
chine. The speed of the system mainly depends on the size of the vocab-
ulary of the task and the number of mixture component in the Gaussian
distribution (A model parameter, detail can be found in Chapter 6)

We will recommend you to have a PC which has comparable perfor-
mance with a Pentium 1GHz or more to use Sphinx 3 . The recommended
system is a Pentium 2GHz or more. This is a range where a lot of the
system (<= 10 K Vocabularies) can be run under 1 times real time. That
is to say, a 1 second of speech will be recognized using less than 1 second
of computation time. However, a task with only 10-100 words will have no
problem in running under 1 times real time if a 500MHz machine is used.

4.1.4 Our recommendation

We don’t recommend first-time user to build system more than 10k be-
cause at that limit expert choice is required to tune the system down to
1 times real time. This estimates is valid at Jun 2005. The member of
the Sphinx Developers alway continues to improve the speed of the per-
formance. May be when you read this manual later, the speed of the
recognizer will be fast enough for your system requirement.

A vocabulary which is too large has another problems, most of the time
such a system is not suitable for the user’s requirement. This recommen-
dation will hopefully make sure that the user will consider their require-
ment carefully.

4.1.5 Summary

Design your speech recognition system is very important. Not everything
is suitable to be input by speech. There are also some requirement of
vocabulary could be impossible to implement. Some of them might not be
possible even when human is a listener.

Speed is another concern that one might need to consider and they are
usually related to the size of vocabulary.

43

4.2 Step 2: Design the Vocabulary

4.2.1 The System for This Tutorial

In this tutorial we will just a recognition system that allow users to rec-
ognize 5 key phrases, “spread sheet”, “word processor”, “calculator”, “web
browser” and “movie player”. The user would can say these 5 words and
the system will control the system and start the corresponding applica-
tions. This is a very simple system but we could learn a lot of interesting
aspect of speech recognition design. We will continue to develop this sim-
ple system first. Later we will then expand this simple system.

4.2.2 Pronunciations of the Words

Let’s look at the words we chose again.

spread sheet

word processor

calculator

web browser

movie player

There are several interesting aspects for the choice, the first aspect is
that the words have at least 2 or more syllables. This is chosen because
speech recognizer could have hard time to recognizer keywords.

Another aspect is that the word is not easy to confuse with each others.
One simple common sense test is try to read pairs of word in pair. This is
not automatic method but it is a basic principle of how people will figure
out confusability of English words.

As you already learnt in Chapter 4, Sphinx is a phone-based speech
recognizer. Simply speaking, in the run time, the recognizer will create a
giant Hidden Markov Model (HMM) and the search will try to search the
best path given this HMM. Now we have the word list we want to recognize.
We obviously need the phone-based representation of these words. Some
people will just call this representation as “pronouciations”.

How do we come up with these pronunciations? This is actually quite
simple. What happened if need the pronunciation of a word? The obvious
answer is to look up this pronunciation from the dictionary.

44

Create the Phonemes Manually

So the first way to get this pronunciation is to lookup a dictionary to decide
this phone set. The caveat of doing this is that you need to make sure
phoneme symbols you were using is the same as the phoneme set used in
the open source acoustic model. 6

Another concern is that the dictionary you were using might not match
the dialect of English (same for other languages). For example, British
English, American English and Australian English are actually quite dif-
ferent. If you used a British English dictionary for American English, the
end result may not be the most ideal one.

In our case, let us simplify our discussion by using a simple choice of
dictionary. If you are using open source acoustic model that can be found,
the following method might be easier. You could use free dictionary such
as cmudict and you can download it at

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

CMUdict is the short term of Carnegie Mellon University Pronouncing
Dictionary. It is a machine-readable pronunciation dictionary for North
American English that contains over 125,000 words and their transcrip-
tions. Though the pronouciation is mainly for American English, it is ac-
tually a reasonable start.

The current version is CMUdict 0.6 and if you look inside this file (you
could use the command cat to do it).

,COMMA K AA M AH

-DASH D AE SH

-HYPHEN HH AY F AH N

...ELLIPSIS IH L IH P S IH S

.DECIMAL D EH S AH M AH L

.DOT D AA T

.FULL-STOP F UH L S T AA P

.PERIOD P IH R IY AH D

.POINT P OY N T

/SLASH S L AE SH

6If they were not matched, Sphinx 3 ’s decode and decode anytopo will inform the

user (you) that they couldn’t find the model. So the recognizer will be stopped in the

initialization.

45

MALEFACTORS M AE L AH F AE K T ER Z

:COLON K OW L AH N

;SEMI-COLON S EH M IY K OW L AH N

;SEMI-COLON(2) S EH M IH K OW L AH N

?QUESTION-MARK K W EH S CH AH N M AA R K

A AH

A’S EY Z

A(2) EY

A. EY

A.’S EY Z

A.S EY Z

A42128 EY F AO R T UW W AH N T UW EY T

AAA T R IH P AH L EY

AABERG AA B ER G

AACHEN AA K AH N

AAKER AA K ER

AALSETH AA L S EH TH

AAMODT AA M AH T

AANCOR AA N K AO R

AARDEMA AA R D EH M AH

AARDVARK AA R D V AA R K

AARON EH R AH N

AARON’S EH R AH N Z

The first column at every entries is the word, the rest is the phoneme
representation of the the word.

What does this phoneme means? The following is a table that shows
their usage.

We might talk more about the prounciation table. The phoneme exam-
ple table is useful when you start to change the pronunciations yourself.

46

Usage of automatic tools

After having cmudict, you can write a simple perl script to look up the the
prounciation for each word. This is actually pretty simple so we skip how
to do it at here. I will recommend you to try to do it because it is fun.

Many people has gone through this process and some of them are nice
enough to share these resources. For example, one of them, Prof Alex
Rudnicky and Mr. Kevin Lenzo from CMU have written a web page.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

(The same web page we used in downloading cmudict v0.6) You could
just look a pronounciations up by typing the word in the edit box “Look up
words or a sentence”.

You will soon get the prounounciation of each word

SPREADSHEET S P R EH D SH IY T

WORD PROCESSOR W ER D P R AA S EH S ER

CALCULATOR K AE L K Y AH L EY T ER

WEB BROWSER W EH B B R AW Z ER

MOVIE PLAYER M UW V IY P L EY ER

We will call this file simple.dict.

Yet another way to do it is to use the QUICK LM tool by Prof. Alex
Rudnicky.

http://www.speech.cs.cmu.edu/tools/lmtool.html

You could first create a file like this

SPREADHSEET

WORD PROCESSOR

CALCULATOR

WEB BROWSER

MOVIE PLAYER

And let us called the file to be simple.txt.

You could submit the file just by clicking “Compile Knowledge Base”
button. You would see the phone set will be slightly different. You need to
map AXR to ER, replaced AX to AH, replaced all TS by T and S, replaced
all PD by P, replaced all DX by either D or T. This could be easily done by
perl or sed.

47

Whether you use automatic pronunciation tools or manual way to cre-
ate the prounciation. Do remember that you could freely change the dic-
tionary yourself. Be careful though, the best pronuunciations are those
that best fit for your users but not the official pronunciation of a word.
The general phenomenon is that human display a very high varieties of
pronounciation. The so called “official” pronounciations may not fit into
your cases.

Here comes a question that you will always come up with. If we fid-
dle the system paratemers or settings, how could we know whether these
changes give a positive effect to they system? The key is to benchmark the
system every time a change is made. Testing the system by actually using
it is not a bad idea. However, as HMM-based speech recognition system is
statistical. A failure for once, or a failure out of ten times doesn’t tell you
too much about the performance of a system. They are just not statisti-
cally significant enough to tell you much. Therefore, it is important to do
some quantitative benchmarking.

One metric people usually used is word error rate (WER). If your change
improve the WER in a large test set usually means the performance of the
system really improves. We will discuss technique of benchmarking and
the definition of WER more later in Step 6 of this Chapter

48

4.3 Step 3: Design the Grammar for a Speech

Recognition System

Grammar play an important part of a speech recognition system. It gov-
erns how the recognizer will actually recognize in the hypothesis. In speech
recognition, there are two prominent way to represent grammar. One is n-
gram. The other is finite state machine. In this tutorial, we will use the
n-gram because currently Sphinx 3 only supports N-gram. 7. If you would
like to use finite state machine, you might consult the documentation for
Sphinx 2 and Sphinx 4

4.3.1 Coverage of a Grammar

Generally speaking, if the grammar is too constrained, it won’t cover the
words which would be said by the users. In another words, a lot of Out-of-

Vocabulary(OOV) words will be resulted. One trivial way to solve this prob-
lem is to add new words. However, blindly increase the coverage without
moderation can easily introduce unnecessary confusion to speech recogni-
tion. Therefore, careful decision and benchmarking must be made before
adding new words to the grammar.

4.3.2 Mismatch between the Dictionary and the Language

Model

One common confusion is how the speech recognizer behave when the vo-
cabulary of words and the grammar does not match. In Sphinx recogniz-
ers, both the unigram of the language model and the dictionary will decide
whether a word should exist in the search graph of speech recognition.
The recognizer will try to look up the pronounciation (or the phoneme rep-
resentation) of a word from the dictionary. If the recognizer failed to find a
the pronounciation of a word, the word will not be included in the search.

In other words, the search graph will include the set of words that is an
intersection of the vocabularies of dictionary and the unigram. 8

7This is very likely to change because the implementation existed in Sphinx 2 has

already been incorporated in Sphinx 3
8From this point of view, it is actually ok to include a dictionary with large amount

49

Table 4.1: Description of Phone Set in CMU Lex

Phoneme Example Translation

AA odd AA D

AE at AE T

AH hut HH AH T

AO ought AO T

AW cow K AW

AY hide HH AY D

B be B IY

CH cheese CH IY Z

D dee D IY

DH thee DH IY

EH Ed EH D

ER hurt HH ER T

EY ate EY T

F fee F IY

G green G R IY N

HH he HH IY

IH it IH T

IY eat IY T

JH gee JH IY

K key K IY

L lee L IY

M me M IY

N knee N IY

NG ping P IH NG

OW oat OW T

Y toy T OY

P pee P IY

R read R IY D

S sea S IY

50

4.3.3 Intepretation of ARPA N-gram format

The first thing if you used an n-gram based speech recognizer is the ARPA
n-gram format. Hence it is quite important to learn how to interprete the
format. The following is one example of it.

[Editor Notes: This example was not shown correctly.]

.... Comment Sections Skip here

data

ngram 1=2001

ngram 2=29445

ngram 3=75360

1-grams:

-2.0960 <UNK> -0.5198

-2.8716 ’BOUT -0.5978

-4.6672 ’CAUSE -0.3765

-5.1065 ’FRISCO -0.2588

-4.4781 ’HEAD -1.1010

-4.3863 ’KAY -0.1962

-4.5624 ’ROUND -0.5975

2-grams:

.

.

3-grams:

.

.

end

of words. Though, in the actual implementation, the dictionary is actually read into the

memory. Hencse the size of the dictionary will be constrained by the system memory the

user have.

51

The d̈atas̈ection

This section show the number of each n-grams. In Sphinx, up to trigram
is supported.

The Ẍ-gram:s̈ection

It specify the log probabilities and the back-off weights for the N-gram.

The end section

This ends the file.

4.3.4 Grammar for this tutorial

For this tutorial, we just create a very simple language model for our pur-
pose.

[Editor Notes: This file is not shown correctly]

data

ngram 1=107

ngram 2=1

1-grams:

-2.0253 </s> -99.0000

-99.0000 <s> 0.0000

-0.6990 SPREADSHEET 0.0000

-0.6990 WORD PROCESSOR 0.0000

-0.6990 CALCULATOR 0.0000

-0.6990 WEB BROWSER 0.0000

-0.6990 MOVIE PLAYER 0.0000

2-grams:

0.0000 <s> </s>

0.0000 SPREADSHEET SPREADSHEET 0.0000

0.0000 SPREADSHEET WORD PROCESSOR 0.0000

52

0.0000 SPREADSHEET CALCULATOR 0.0000

0.0000 SPREADSHEET WEB BROWSER 0.0000

0.0000 SPREADSHEET MOVIE PLAYER 0.0000

0.0000 WORD PROCESSOR SPREADSHEET 0.0000

0.0000 WORD PROCESSOR WORD PROCESSOR 0.0000

0.0000 WORD PROCESSOR CALCULATOR 0.0000

0.0000 WORD PROCESSOR WEB BROWSER 0.0000

0.0000 WORD PROCESSOR MOVIE PLAYER 0.0000

0.0000 CALCULATOR SPREADSHEET 0.0000

0.0000 CALCULATOR WORD PROCESSOR 0.0000

0.0000 CALCULATOR CALCULATOR 0.0000

0.0000 CALCULATOR WEB BROWSER 0.0000

0.0000 CALCULATOR MOVIE PLAYER 0.0000

0.0000 WEB BROWSER SPREADSHEET 0.0000

0.0000 WEB BROWSER WORD PROCESSOR 0.0000

0.0000 WEB BROWSER CALCULATOR 0.0000

0.0000 WEB BROWSER WEB BROWSER 0.0000

0.0000 WEB BROWSER MOVIE PLAYER 0.0000

0.0000 MOVIE PLAYER SPREADSHEET 0.0000

0.0000 MOVIE PLAYER WORD PROCESSOR 0.0000

0.0000 MOVIE PLAYER CALCULATOR 0.0000

0.0000 MOVIE PLAYER WEB BROWSER 0.0000

0.0000 MOVIE PLAYER MOVIE PLAYER 0.0000

end

At here we use a trick to use n-gram to simulate a grammar where each
of the keyword we chose will only be entered once. Because all the possible
bigrams are zeroed. The only possible path will the hypothesis which enter
a word only once. Let us call this file simple.arpa from now on.

53

4.3.5 Conversion of the language model to DMP file for-

mat

Sphinx 3 actually doesn’t support the text ARPA file format. If you want to
use your grammar in Sphinx 3 , you could use a tool called lm3g2dmp to
convert the text file to .DMP file format. You could download it in the share
directory in CVS from sourceforge using the software installation process
discussed in Chapter 4.

Then conversion of the LM could be run as

lm3g2dmp simple.arpa

A file named simple.arpa.DMP will be created. You will need it in Step
5.

54

4.4 Step 4: Obtain an Open Source Acoustic

Model

Enough for language model, it is time to gather resource such as acoustic
model. There are a couple of notes before we start.

The first thing one need to know about open source acoustic model is
that they are currently stills some rare and valuable resource in the world.
One would perhaps appreciate this fact more when they know how acous-
tic model training is actually done. One would hope that the availability
of open source speech recognizer would probably initiate more effort on
building open source acoustic models. Do give two thumbs up to any one
who build and open source the model. They actually do a good thing that
is similar to St. Teresa for speech recognition.

The second thing about open source acoustic model (as well as lan-
guage model) is that they might not be always suitable for different people
need. In general, using large amount of speech to train a model will make
an acoustic model to be generally very accurate. However, in specific do-
main, say in digit recognition, it might be true that just using utterance
with digits will be better in some cases. This explains why a lot of devel-
oper found that open source models they could obtain usually don’t satisfy
them. If you don’t think the open source models is the best, training is al-
ways an option for you. Sphinx also provides a trainer. So you have the
freedom to fine-tune the model.

In this section, we will discuss various things one need to do get and
use a model. Some basic knowledge on how to interprete the model will
also be discussed.

4.4.1 How to get a model?

The first place to try is the open source page.

http://www.speech.cs.cmu.edu/sphinx/models/

There is one model that many people used which is so called the broad-
cast news model or hub-4 models.

This is one important model you will always come up with. So let us
talk about this a little bit.

First of all, the model is trained by CMU and have been trained using
140 hours of 1996 and 1997 hub4 training data. This is probably the
largest amount of data which have been put into an open source models.

55

Another thing that you might notice is that this model is trained for
read-speech so this is not particularly good for conversational speech. In
general, conversational speech could be indeed quite hard to handle.

The phoneset for which models have been provided is that of the dictio-
nary cmudict 0.6d available through the CMU web pages. This matches
with the procedure we were using in Step 2.

The dictionary has been used without stress markers, resulting in 40
phones, including the silence phone, SIL. Adding stress markers degrades
perfromance by about 5within-word and cross-word triphone HMMs with
no skips permitted between states.

There are two sets of models this package, comprised of 4000 and 6000
senones respectively. They are placed in directories named 4000 senones
and 6000 senones respectively. The reasons why two sets of models are
there partially because the trainer has trained two sets of them such that
he/she could test the performance of the two settings. Also partially be-
cause we hope you could try which setting is more suitable for you.

There are also two settings you would see, one is 1s c d dd, one is
s3 1x39. These funny symbols means the type of dynamic coefficients one
would compute. The detail of what they mean could be found in Chapter 5.

The two models could be used in both sphinx 3 fast (decode and sphinx
3 slow decode anytopo. 9

9At 20050523, this is slightly different from the notes one could found.

56

4.4.2 Are there other models?

Actually, that are more, For example, the TIDIGITS could be found in

????,

the RM models could be found in

????.

You could also train a model pretty easily for AN4. Though, you could
observe those are much small models.

4.4.3 Why Acoustic Models are so Rare?

Acoustic model is actually pretty hard to come up. It takes weeks to pre-
pare and take days to train. Most academic or commercial institutes just
keep them because it means one valuable resource for them. Many peo-
ple appreciate the fact that Sphinx is open sourced. I personally hope
that more and more people will realize another thing, the HUB-4 models is
open sourced because probably this is the first model one could use it to
do large vocabulary speech recognition.

4.4.4 Interpretation of Model Formats

Sphinx’s HMM definition are spread in five different files. They are mean,
variance, mixture weight, transition matrices and model definition. It
is quite important to have some ideas on what it means before we go on
further.

A model definition file

So, let’s start from the model definition file. They are usually located in
the model architecture directory when SphinxTrain ’s standard procedure
is used to train the model.

Here is an example:

0.3

55 n base

118004 n tri

57

472236 n state map

2165 n tied state

165 n tied ci state

55 n tied tmat

#

Columns definitions

#base lft rt p attrib tmat ... state id’s ...

+BACKGROUND+ - - - filler 0 0 1 2 N

+BREATH+ - - - filler 1 3 4 5 N

+CLICKS+ - - - filler 2 6 7 8 N

+COUGH+ - - - filler 3 9 10 11 N

+FEED+ - - - filler 4 12 13 14 N

+LAUGH+ - - - filler 5 15 16 17 N

+NOISE+ - - - filler 6 18 19 20 N

+SMACK+ - - - filler 7 21 22 23 N

+UH+ - - - filler 8 24 25 26 N

+UHUH+ - - - filler 9 27 28 29 N

+UM+ - - - filler 10 30 31 32 N

AA - - - n/a 11 33 34 35 N

AE - - - n/a 12 36 37 38 N

AH - - - n/a 13 39 40 41 N

AO - - - n/a 14 42 43 44 N

AW - - - n/a 15 45 46 47 N

AX - - - n/a 16 48 49 50 N

AXR - - - n/a 17 51 52 53 N

AY - - - n/a 18 54 55 56 N

B - - - n/a 19 57 58 59 N

CH - - - n/a 20 60 61 62 N

D - - - n/a 21 63 64 65 N

DH - - - n/a 22 66 67 68 N

DX - - - n/a 23 69 70 71 N

58

EH - - - n/a 24 72 73 74 N

ER - - - n/a 25 75 76 77 N

EY - - - n/a 26 78 79 80 N

F - - - n/a 27 81 82 83 N

G - - - n/a 28 84 85 86 N

HH - - - n/a 29 87 88 89 N

. . .

The first few line describes the number of parameters in the whole sys-
tem

0.3

0.3 is the model format version.

55 n base

n base is the number of base phone including fillers in the system. In
this case, the number is 55.

118004 n tri

n tri is the number of triphone in the system. In this case, the number
is 118004.

472236 n state map

2165 n tied state

n tied state is the number of triphone in the system. In this case, the
number is 118004.

165 n tied ci state

n tied ci state is the number tied CI state in the system. In this case, the
number is 165

55 n tied tmat

n tied tmat is the number tied transition matrix in the system. In this
case, the number is 55.

Now let us try to interpret the following line.

#base lft rt p attrib tmat ... state id’s ...

+BACKGROUND+ - - - filler 0 0 1 2 N

From left to right, it reads the base phone is +BACKGROUND+, no left
context and no right context, so it is a CI phone. It is a filler. Its phone ID
is 0, its first state has senone ID 0, second state 1, third state 2.

59

It is quite useful to know how the hmm state would map into a senone.
(In HTK terminology, the tied-state.) In the above example, if you know
that the senone ID for first state is 0. You just need to look up the file
means and variances to get the value of them.

AA - - - n/a 11 33 34 35 N

Here is another entry in the model definition file. This time, we see
a typical CI phone entry. If you used the standard training procedure of
SphinxTrain (that you will also have a chance to play with in the second
half of this chapter), then all the CI phone HMM’s state will have their own
senone which is unique for it.

As opposed to that, if you look at a triphone definition.

AA AA AA s n/a 11 177 190 216 N

AA AA AE s n/a 11 177 190 216 N

AA AA AH s n/a 11 177 190 216 N

AA AA AO s n/a 11 177 190 216 N

AA AA AW s n/a 11 177 190 216 N

AA AA AX s n/a 11 177 190 216 N

AA AA AXR s n/a 11 177 196 216 N

AA AA AY s n/a 11 177 190 216 N

AA AA B b n/a 11 178 189 219 N

AA AA B s n/a 11 177 189 217 N

AA AA CH s n/a 11 177 189 216 N

AA AA D b n/a 11 178 198 219 N

AA AA D s n/a 11 177 198 214 N

You will see multiple phones states are actually mapped to the same
senone ID. Why does that happen? This is essentially the result of tying
happend in training the context-dependent model. What happen is there
are always not enough training data for triphone model. Therefore, it is
necessary to cluster the hmm-state to make data could be more efficiently
used. Most of the time, clustering are either done by decision tree-base
clustering or bottom-up agglomerative clustering.

The Means and Variances, Mixture Weights and Transition Matrics

Given the above, you could probably make more sense for the rest of the
four files. They are usually located in a directory called model parameter.

60

All of them are binary files. To read them, you could use a tool called
printp.

You could find the detail usage of printp in Appendix B. However, as
it is the first tool in , let us make a more detail look on it. Every tool in
SphinxTrain are designed in a consistent way such that user could use it
easily.

If you just type

printp

The following help information would be shown (as at 20050811)

-help no Shows the usage of the tool

-example no Shows example of how to use the tool

-tmatfn The transition matrix parameter file name

-mixwfn The mixture weight parameter file name

-mixws Start id of mixing weight subinterval

-mixwe End id of mixing weight subinterval

-gaufn A Gaussian parameter file name (either for means or vars)

-gaucntfn A Gaussian parameter weighted vector file

-regmatcntfn MLLR regression matrix count file

-moddeffn The model definition file

-lambdafn The interpolation weight file

-lambdamin 0 Print int. wt. >= this

-lambdamax 1 Print int. wt. <= this

-norm yes Print normalized parameters

-sigfig 4 Number of significant digits in ’e’ notation

If you type

printp -help yes,

help information would be displayed.

If you type

printp -example yes,

Several examples of the command would be shown.

Therefore, if you are familiar with these basic command usages, you
could probably have no need to reference the manual too much. All the

61

symnopsis and examples are all replicated again at the end of this book.
This will be a plus for people who like to have a book form of manual.

Let us get back to our example, one practical thing you may want to do
from time to time is to inspect whether the mean values make sense. For
example, acoustic model training could make some component of means
and variance vector to be abnormal.

printp will allow you to inspect these values by display them on the
screen. For means and variances, you could use

printp -gaufn mean,

or

printp -gaufn var,

to show the values. If you want to look at the mean for a particular
senone, what you need to do is just to look up the model definition file to
know the senone.

printp also allows you to load in a model definition so that you don’t
need to manually look up the model definition file all the time.

To read mixture weight and transition matices, you could use the -
mixwfn and -tmatfn in the option list. The rest is pretty trivial, you could
probably get it by just running the command once.

4.4.5 Summary

In this section, we retrieve a model and learnt how to interpret its param-
eters. The next section will really use all the resources from Step 1 to Step
4 to build a system.

62

4.5 Step 5: Develop a speech recognition sys-

tem

Now you got the acoustic model, language model and dictionary. It is time
to use it in the recognizer.

You could think of how people run a speech recognizer in two ways.
One is called batch mode, the waveform is recorded first, then decoding is
done for the whole waveform. One is called live mode, that is recognition
is done on the fly when some speech samples was captured by the audio
device.

The two modes are slightly different in practice because usually cepstral
mean normalization (CMN) is run before decoding. What CMN does is that
it would try to estimate the mean of all cepstrum and use it to normalize
all cepstral vectors. (For detail, please read Chapter 5.) In batch mode,
the estimation was usually carried out by computing the cepstral mean
using all frames. Most of the time, this is usually a very good estimate.
In live-mode though, since only part of the utterance is seen, one needs
to approximate the CMN process with other means. These approximations
usually introduce some degradations.

In this section, we will talk about how we could come up with a system
that could that batch mode decoding, live mode simulation and actual live
mode decoding. In terms of technical difficulty, you could say the three
are in ascending order. So, going through one after one will be a good idea
for novices.

4.5.1 About the Sphinx 3 ’s Package

Before we go on, let us take a look of what one could get from a Sphinx’s
package.

Assume you go to the install path as you have specified in Chapter 3,
then the following software will be show up in the directory. The following
executables are what you could find when you install Sphinx 3 .5.

align allphone dag livepretend

astar decode decode anytopo

In windows, you would also another executable called livedecode.

For many, it is not easy to understand what these executables are sup-
posed to do. So here is a simple description. decode, decode anytopo,

63

livepretend and livedecode are decoders. However, each of them slightly
different functions and should be used according to different situations.

• decode , also called “s3 fast”, it is a batch mode decoder using tree
lexicon, with optimization on both GMM computation and crossword
triphone tranversal. On accuracy, it is poorer than decode anytopo(as
described below.). On speed, it is around 5 times faster. From Sphinx
3 .6,decode also allows decoding using finite state grammar and dif-
ferent implementations of search. Therefore it is a well-balanced rec-
ognizer and might be the first choice of batch mode recognition.

• decode anytopo, also called “s3 slow”, it is a batch mode decoder
using flat lexicon, with optimization on trigram and cross-word tri-
phones. Its performance is very close to a full trigram, full cross-word
recognizer. Internal to CMU, it was used in several evaluation back
in 1994 to 2000 and it provides the best performance among all the
decoder.

Both decode and decode anytopo only works with cepstral file but
not waveforms. Waveforms need to be transformed by cepstral vec-
tors first using wave2feat.

• livepretend, is a live mode simulator using the engine of decode.
What happens is livepretend will segment a waveform and feed the
segments of speech to the search engine of decode. The segmentation
is currently done in an ad-hoc manner by choosing 25 frames to be
one segment. As we have explained before, segmentation of speech
will make the cepstral mean normalization. So usually, livepretend
works slightly poorer than decode.

• livedecode, is a live mode demonstration using the engine of decode.
livedecode allows the user to try to recognize speech in push-button
manner. It is by all means NOT a dictation machine. It is an example
to show how the live mode decoding API (as detailed in Chapter ??)
could be used to build a system.

After the four major decoding tools, we should look at other tools such
as align, allphone, astar, dag. They are search programs with specific
purpose.

• align Given the transcription of an utterance, align could give the
state, phone and word level of alignment to the user.

• allphone Carry out phoneme recognition for an utterance with full
triphone expansions.

64

• dag Both decode, decode anytopo could generate lattice for second-
stage rescoring. dag as one machine which could do this rescoring
could search for the best path within the lattice given a trigram lan-
guage model.

• astar astar could generate an N-best list given a lattice. It is very
useful for N-best rescoring.

When using all tools we mentioned, it is useful to bear in mind some
common design properties of tools within the Sphinx 3 .x package. All the
tools in Sphinx 3 .x has the following options.

-logfn.

This could allow one to record every messages of each program.

Applications of Sphinx 3 .x could have quite a lot of command line
arguments. If you just type the command itself, a fairly detailed command-
line usage description could be found.

If you don’t like to specify command line manually, you have couple of
options, the trivial one is store the command-line option and put in a Unix
script file and it will look like this:

decode

-opt1 <val1>

-opt2 <val2>

Another way is that you could put the option in one file and retreat it
as configuration file. So, you could create a file and look like this

-opt1 <val1>

-opt2 <val2>

and called it config

Then you just type

$ decode config

Then decode will automatically use the contents of config to initialize
decode. That seem to save a lot of tyings for me. Besides, as some tools
actually share the same command-line structure. This could give you a
more convenience.

65

4.5.2 A batch mode system using decode and decode anytopo:

What could go wrong?

Let us start with building a batch mode system using decode and de-
code anytopo. They are the first two decoders we will play with. To make
your work easy, you need to have a big concept how a recognizer works.
There are couple of resource a recognizer need to have before it could run.

• The dictionary In Sphinx 3 , that includes a lexical dictionary and a
filler dictionary.

• The language model In Sphinx 3 , this could be an n-gram as we
described or it could also be a finite state machine.

• The acoustic model As we mentioned, there are 5 components of it,
the means, the variances, the mixture weight, the transition matrices
and the model definition.

In batch mode, you also need to figure out a way to let the recognizer
to read in the cepstral files.

Let us think about why the recognizer needs them. Essentially, an
HMM-based speech recognizer just tries to compose a graph of states and
search the best path within the graph.

Therefore, for the first level, a word graph is required. That could be
either an N-gram and FSM.

For the second level, the recognizer needs to know how the word will
map to a phone sequence. That’s why a dictionary is necessary. As most
large vocabulary recognizer, Sphinx also uses concept of fillers. Major
reason is specifying fillers in language model is not feasible and most of
the time, special treatment is necessary on fillers. That’s why a separate
dictionary is required.

For the final level, the recognizer will need to know how each phone
could be represented as state sequences. That’s how the hmm set was
used.

The above concept is illustrated in Figure. 4.1.

66

Word Graph

Phone Graph

State Graph

Language Model

Dictionary

Acoustic Model

Means

Variances

Mixture Weights

Transition Matrices

Model Definition

Viterbi
Algorithm

Answer

WaveformsCepstrum

Figure 4.1: Resource used by the decoders

67

.

So, the four options are essentially what you need to have in the de-
coder. These are the four things you need to first identify. This sounds
pretty simple.

“If it is that simple, why it takes me so much time to setup the decoder?”
That happens to be many people’s questions. Therefore, it is worthwhile
to do some initial check of your resource. In general, you cannot put in
arbitrary dictionary, language model, acoustic model and features. Most
folks don’t understand that, that’s why most of the time the setup was
wrong. So here is a check list you may want to go through first.

LM/Dictionary Mismatch

The first situation occurs between inconsistency between language model
and dictionary. This is what happens, the language model will try to look
up the dictionary and see whether a word exists. If it does, the word will
be included in the word graph. If it doesn’t, the word will not be included.
This situation could be described as Language mode-Dictionary mismatch.
All sphinx 3 decoders will warn the users about this. However, it is a de-
sign decision not to stop the recognizer being used even the situation exists
because it is a very common situation in real life where the dictionary and
language model are usually prepared by two different persons.

If you found that happend to you, make sure you add words to the
dictionary, then things will be fine.

Dictionary/AM Mismatch

Then the next common thing that happens is mismatch between dictionary
and the acoustic models. This is what hpappens. When the phone set used
in the dictionary doesn’t match with the phone set used in the acoustic
model. The decoder will then stop. This happens a lot when the dictionary
are obtained from two sources.

If you see that happen, make sure you do a check of all the phones
of dictionary and compare it will what you have in the acoustic model.
For models that trained from the recipe of SphinxTrain , this should not
happen.

What if you have a model and a dictionary, you know that they have
mismatch but you still don’t want to use them together? That happens a
lot because most of the time you may not be the one who train the model.

68

Now what you could do is to map the phones you found in acoustic models
or the dictionary such that at the end the two sets are matched. Of course,
make sure you know what you are doing. Also, please remind yourself that
linguistic knowledege could be wrong in this particular situation. Valida-
tion of the model using data should be the final check.

AM/Feature mismatch

This problem might be the most subtle and could be the hardest to check.
However, this is also the number one killer of most decoding setup oc-
curred in Sphinx Forum. The idea is this unless you know what you are
doing, difference between the front-end setting of acoustic model and front
end could be detrimental to the recognition result. There are several pa-
rameters you will see in wave2feat and livedecode that could control the
front-end. Bear in mind, parameters such as -cmn, -agc and -varnorm
are also parameters that could control the frontend. If any of them are
different, it is not easy to predict what’s going on.

In general, when a model is released, to avoid model mismatch in fu-
ture. It is important for the trainer to also release information about the
feature parameters used in training.

Now, we could run it.

First convert the waveform to cepstral first, let us called, the input wave-
form to be a.wav.

[Editor Notes: We need to verify both the arguments of wave2feat and decode at here]

wave2feat

-alpha 0.97

-srate 16000.0

-frate -100

-wlen 0.0256

-nfft 512

-nfilt 40

-lowerf 133.33334

-upperf 6855.49756

-ncep 13

69

-dither yes

-mswav yes

-i a.wav

-o a.mfc

The setting follows exactly what one could find in the open source Hub-
4 model at

http://www.speech.cs.cmu.edu/sphinx/models/hub4opensrc jan2002/
INFO ABOUT MODELS

The setting may not be totally fitted into your situation. First of all, we
assume (-mswav yes), that is to say Microsoft wave format. wave2feat
could assume input file to be either nist (-nist yes), raw (-raw yes). If you
have a batch file, you could also use -c to specify a control file. Usage is
trivial.

We also recommend you to specify -dither yes, the reason is that some-
times if the wavefile contains a frame that is all zero. wave2feat could add
a small random number to the samples. Without doing so, the frontend
could give errorenous result. 10.

After that, you just need to run decode to run the results.

decode

-lm simple.arpa.DMP

-dict simple.txt

-fdict filler.dict

-mdef hub4opensrc.6000.mdef

-mean means

-var variances

-mixw mixture weights

-tmat transition matrices

-ctl simple.control

-cepdir <your cepstral directory>

-agc none

-varnorm no

-cmn current

Inside simple.control, add a into the control file like this

10Mainly because the log operation.

70

a

Make sure that a exists in the directory ¡your cepstral directory¿. The
result will then be displayed in the screen. You could also redirect the
result to a file. If you think it is too chatty. You can also specify -hyp
<your hypothesis file> which could give you just the answer. 11.

As we mentioned, you could also use decode anytopo instead of de-
code. Starting from 3.6, decode anytopo and decode have sychronized
command-line interface. Therefore, we recommend you to use it instead
of the older version. That is to say the usage will be the same for the two
executables.

4.5.3 A live mode simulator using live pretend

Now we make one further step, we now start to simulate a live mode recog-
nition. livepretend’s usage is a very similar to the use of a combined
wave2feat AND decode. So the usage is very similar to use the tools to-
gether. livepretend just like livedecode only usage of config file but disal-
low usage of command line arguments. They are the only two applications
that have this properties. 12

There are one interesting thing about using the Sphinx’s live-mode rec-
ognizer which is it allows the user to backtrack the answer before the
sentence is ended. In livepretend, you could turn on and off this function-
alities by specifying -phypdump 1/0 in your setting. By default, the code
will always give you the partial hypothesis.

What is the use of the partial hypothesis? You may ask. One use of it
could be, if you find that a particular keyword is already recognized, you
could just stop the recognition without going through.

4.5.4 A Live-mode System

So, now we come to the final part of actually using a recognizer. For many
of you, it might happen that using the batch mode recognizer already suf-
fices for your purpose. Most people who use Sphinx are either researchers
or developers. For researchers, just changing either part of the system and

11another trick you could use is that you could just grep the pattern FWDVIT from the

recognition output
12This might be something we will want to change it in future. However, backward

compatibility will also be maintained if that happened.

71

test the changes are usually the most important tasks in their lives. In that
case, they could either use decode or livepretend. decode is essentially
a batch mode decoder. Whereas livepretend could also simulate situa-
tion of live-mode decoder. The latter is slightly better for scenario where
techniques could possibly make use of all the frames of an utterance.

For developers, using decode with wave2feat, by themselves, already
form a very nice software collection to build some types of real-life ap-
plication. For example, in case your application could afford it. Push-
Button application could you to first record the waveform then recognize
the waveform. In that case, one could first record the waveform, process
it by wave2feat and then pass it by decode. The whole process could just
be a replication of the script we mentioned in Section 4.5.2.

For developers though, using the batch mode decoder in an application
may not be the best choice all the time. Major reason is delay. Consider
this, using the record-then-recognize approach, the response time of the
sytem will equal to the recording time plus the recognition time. If the user
speak for 10s, then, let’s say the recognizer also use 10s to recognize (or
1x RT scenario, explained later). Then, it might take 20s for the system to
respond. Not many users will be happy about it.

Therefore, for application developers, a more favorable scenario will be
while recording some frames in the users speech, start the recognizer to
recognize the recorded speech even though it might not be finished. This
is usually called live-mode recognition. Most commercial dictation engine
works in that way. This is what we want to discus in this subsection.

So how to do it? We would not cover this in detail in this chapter.
However, we will give you some ideas and point you to look at further
detail in Chapter ??

Let us just go through the process first. The first step is to do recording
and always put it to some kind of buffer of your program. To record the
program, you could try to use libs3audio routine, such as cont ad. If
you want to enjoy more flexibility, we would suggest you to use a library
called portaudio 13. The mentioned package could already give the desired
result.

The samples should put to a feature extraction routine and the routine
will convert the audio samples into cepstral coefficient. The coefficient
can then transfer to the recognition routine and recognition will then be
performed. Notice that this time only a segment of speech will be decoded
one time. What you need to do is just to continue this process until there

13Not a Sphinx software but it has a pretty liberal licence, you could find the detail in

www.portaudio.org

72

is no speech in the audio buffer.

The above description should give you some idea what you need to do.
In Chapter ??, you will also see detail program listing. We will also provide
discussion on issues of creating a live-mode applications.

4.5.5 Could it be Faster?

Assume you have finished the above exercise of the building a recognition
system, it is time to notice something wrong and try to improve it. The
first thing you might have notice is that the code might be too slow to be
useful. As the end of the whole section, we will provide you a look on how
this problem could be tackled.

Search of speech recognition is a very time-consuming process. In
Chapter ??, we see that Viterbi algorithm is usually used to efficiently
search for the best path in the HMM. In this chapter, we also learned that
the actual HMM that will be composed by different level of resource could
be huge.

This leaves us a difficult situation. Even with Viterbi algorithm, we
need to search in a huge graph with many possible hypotheses. So, it is
important know something fundamental on how to speed up the process.
In this tutorial, we will explain the concept of beam pruning.

Consider a searching process where multiple paths are being scored
in a time-sychronous manner. What one could do in this process is to
“prune” or removed paths which have very low score. How could we do
it? Here the idea of beam pruning comes to our excuse. We could use the
score of the best path as a reference and remove all paths that have scores
way lag behind the best path.

Usually, this process is controlled by a parameter called beam. If the
beam is wider, more paths will be preserved and the search will take longer
time. If the beam is narrower, the decoding will usually be faster.

In Sphinx 3 decoder set, including decode, decode anytopo and livepre-
tend. You could use the paramter -beam to control the number of paths
you want to preserve. By default, it is set to be 1e − 80, If the number be-
comes larger, the beam width will become smaller. For example, you could
consider using 1e − 60 to increase the speed.

Notice that it is a balance to control the size of beam and the accuracy
rate you could get. Usually a tuning set is first defined and experiments
are performed to determine the best beam-width for a task. Next section
will give you a better idea on how this could be done.

73

Beam pruning is not the only way where the Sphinx 3 decoder set allows
user to speed up the recognizer. There are several important features for
fast recognition in Sphinx, that includes

1. Fast GMM computation including techniques such frame down-sampling,
context-independent model-based GMM selection (CIGMMS) and Gaussian selection

2. Lexical tree implementation that compress the size of the search space
by organizing it using a tree-based structure. There are several inter-
esting issues could arise from this structure. Sphinx provides several
interesting and practical solution for these issues.

3. Different levels of pruning the beam we mentioned in this chapter is
only one type of beam we could use in practice. For example, in a lot
of experiments, one find that usage of phone-level and word-level of
beam could also be useful as well.

We will advise users to look at Chapter 9 for detail of these techniques.

74

4.6 Step 6: Evaluate your own system

It is not enough for just building a system. If you would like to know how
to make it even better, evaluation of the system is necessary.

One may separate the methods of evaluation of a speech recognition
system into two types, on-line and off-line.

In the on-line evaluation, a person will actually call the system and see
whether it performs well. Usually, the evaluator will use his subjective
judgment to decide whether the system is performing well enough. To
make the evaluation more objective, it is reasonable to ask the evaluator
to carry out multiple tasks to test different functionalities of the system.

In the off-line evaluation, a collection of recordings from the users will
first be obtained. These recordings will then be used to test whether how
they system performs. There are generally two accepted performance met-
rics for this type of evaluation. One is sentence error rate and one is word
error rate.

It is generally true that using off-line evaluation with large test set will
give you a more informative and objective results. However, we could not
ignore the usefulness of on-line evaluation in general. This is because
some system related issue could only be detected by actually using the
system.

We will have some discussions here on which mode of evaluation should
be used in your application at this section and generally how to.

4.6.1 On-line Evaluation

There are two distints issue in testing a real-life speech recognition sys-
tem. One is to test the speech recognizer’s performance and one is to test
the application-specific’s capability. In our opinion, for most of the time,
on-line evaluation could be very useful in the latter case but it might be
dangerous in the former case. This is the general reason why. Usually,
on-line evaluation rely on subjective judgment of the evaluator on whether
the recognizer is good or not. Chances are it could be the acoustic or
language models do cover most of the speakers of the target population
but the evaluator happens to be an outlier. The evalutor usually has no
idea whether this is happening in the evaluation. Therefore, his opinion of
the system could easily be biased to factors other than the strength of the
system.

Another side of the danger of on-line evaluation is that the evaluator

75

could be the system programmer. He will then tend to evaluate the system
using phrases which are easy to be recognized. This could result in over-
optimistism about the system.

Despite these problems, on-line evaluation is indispensible to get a
“feeling” of the system such as speed and system stability. Though, it is
sufficed to say both issue could also be affected by other programs which
are running in the background of the applications.

4.6.2 Off-line Evaluation

Off-line evaluation is perhaps a more objective way to carry out evaluation
of speech systems. Usually, a set of testing data is first recorded, then
the sentence error rate (SER) or word error rate (WER) are then found.
Sentence error rate are defined as the percentage of the number of mis-
recognized sentence out of all tested utterances. Whereas WER is usually
defined as

A =
H − S − I − D

H
× 100%, (4.1)

In order to take account of the insertion and deletion errors into com-
putation of accuracy, the word accuracy is defined as,

where

H is the total number of words in the reference,

S is the number of substitution errors,

I is the number of insertions errors and

D is the number of deletions errors.

Usually, a dynamic string matching algorithm is used to decide the
alignment between the transcription and the decoding output. One pro-
gram we recommend is sclite developed by NIST

ftp://jaguar.ncsl.nist.gov/pub/sctk-2.1-20050603-1454.tgz

Despite the soundness of the method, it could be possible that a partic-
ular collected test set is only biased to certain type of system. Therefore,
improvement of system should not be used to optimize on just one test set
but on variety of conditions.

76

4.7 Interlude

Now you have build your first system, you sweat to collect all resources
and incorporate them with the speech recognizer. You also evaluated it
and get a number as a performance metric. This is usually not the most
satisfactory result. As we explained, the model you used could be trained
in a totally different conditions and might not be useful in your situation.
For example, one common problem is that what one could get is only a
16K models but the actual scenario requires a 8k setup. What you could
do is probably to recalculate the position filter banks. However, it doesn’t
always give you the best result you could have.

This is the time you may want to train a new model. However, it is
important to realize that training could be harder than what you think.
There are seveal processes that could take you a long time. These are
unfortunately not fully understood by many novices of speech recognition
system. 14

In general, the actualy training procedure, compared to the preparation
process such as data collection and transcription, are usually the least
laborious. Therefore, instead of giving you any real technical advice first,
we will recommend you to be psychologically prepared before the process.
Because no matter how detail and careful our instruction are, the process
of training still takes quite an amount of time.

In the rest of this chapter, we will go through the basic process of train-
ing. We will not cover everything and will point you to some later chapters
for further details. We will consider alternatives of some laborous process
and you could decide which way to go.

4.8 Step 7: Collection and Processing of Data

From now, we start to train a model from scratch from collecting data to
create the final acoustic models. So, let us try to see the process from
the beginning. That is how data is collected in the first place in speech
recognition.

Essentially, what we need to do is just to collect some data and record
it as waveforms. The tricky part is that

• It is better to collect as much data as possible.

14Worst of all, when they have no one to blame. They blamed the recognizer.

77

• The waveforms have to be recorded which are similar to the condition
in the actualy decoding.

4.8.1 Determine the amount of data needed

How much recordings are needed? Most of the time, at least 1 hour of
speech is required to a basic model. If a model is supposed to be used for
speaker-independent speech recognition for a large population, perhaps
more hours of speech is required.

The amount of data needs to be collected also relates to the parameter
of the acoustic model.

Here is a real life example, if every Gaussian distribution requires 100
data points to train. With a system with 1000 senone, each senone is
represented by 8 Gaussian, then loosely speaking 15 In that case 800000
frames of speech will be required. In that case, assuming that 1000 frames
mean 10s of speech (This depends on the sampling rate and frame rate).
You will need have 800 utterance which solely composed of speech. Now,
let’s say we assume that the speech density is 50%. Then 1600 utter-
ances of waveforms will be needed. That if you do the calculation that will
approximately 1600×10

60∗60
≈ 6 hours of speech.

It is also important to make sure that the recordings are phonetically
balanced. What it means is it is better to make sure that the amount of
training data that will train each phone should be balanced. For example,
let’s follow the above examples and you did collect 1600 utterances but all
of them are “Hello”, then in this case, only 4 phones will be trained. (The
number of triphones are also pretty limited). Then, other phones in your
phone list will be totally empty in your acoustic models. That usually will
cause the training process behave abnormally one way or the other.

4.8.2 Record the data in appropiate condition: environ-

mental noise

To explain what it means by appropiate, lets consider the following very
simple example, model trained by data collected in an office room would
likely perform badly in a condition where there are construction noise

15it’s loose because Baum-Welch algorithm will give every states a fractional counts for

training.

78

around. (And so does a human audio system.) Vice versa. In general,
the environment usually change the speech characteristic.

In a signal processing term, there are usually two different types of
noise. One is additive noise and the other is convolutive noise.

Additive noises are usually caused by external sound sources such as
construction noise, babble noise, gun noise. The sound wave superimpose
the speech and causing the receiver machine record some speech which is
different from the original sound source.

Convolutive noise is also called channel noise. For example, when a
sound wave pass through a media such as air. Or recorded through a
microphone. Their characteristic will usually change simply because dif-
ferent frequency component of the sound wave response differently to the
channel. Or in another words, the channel forms a filter to the signal.

From the above discussion, it is easy for us to understand why most
dictation engine’s instruction will usually instruct the users to record the
speech in a quiet environment. 16 Some vendor will even provide users a
prepared microphones. Likely, this is not really because the microphone
is better than the other but because the type of microphone has been used
consistently in collection process.

For developers, this implies that data collection could be the first chal-
lenge one needs to deal with. For a desktop application, a quiet room and
consistently using same type of microphones would suffice. It is also im-
portant to instruct the users to speak to the microphone with constant
distance especially headset microphone.

16The algorithm could actually account for additive noise

79

4.9 Step 8: Transcription of data

After recording all the data, the next stage is to create a text description of
the waveforms.

So, how could we do it quickly? “Well, may be we could use a speech
recognizer to recognize what the data said.” You may say.

Of course, you might immediately see the chicken-and-egg property of
the problem. For most of the time, we usually don’t have a good recognizer
in the first place. Hence transcription is usually done by a human being.
In some sense, you can imagine this is a stage of our work where human
need to be involved the most.

Human transcription is a topic of its own so it is very difficult for us to
give it a complete exposition. Let us just start from several aspects of the
process.

4.9.1 Word-level and Phoneme-level Transcription

Transcription is essentially just try to give the most accurate description of
the waveforms. It is a relatively easy process in the word level, i.e. the final
transcription is a word sequence. Then, what you need is to find a person
who knows the language you are working on and create the transcription.

There are some situations where you need to create a phone-level of
transcription. For example, to research on accented speech for a particular
sets of populations. This is a situation you need an expert, for example, at
least a student in the field of phonetics or in general linguistic, to help on
your task.

4.9.2 Checking of Transcription

Unavoidably, transcription which is done by only one single transcriber
could have a inconsistencies and problems. One common way to deal with
this issue is to use another transcriber to double-check the transcription.

4.9.3 Software Tools for Transcription

Wavesurfer is great in analysing the waveforms.

[Editor Notes: We need a good recommendation of transcriber tools. I probably need to ask folks in sphinxmail]

80

4.9.4 Transcription for Acoustic Modeling and Language

Modeling

After you have finished the transcription, it is important to format it and
use it in different purposes. It is quite important to know that there are
some important difference between transcriptions for acoustic model train-
ing and langauge model training. For example, it is not common to add
filler words into langauge model training. Careful consideration should be
made in every situation or transcript preparation.

4.9.5 SphinxTrain ’s and align Transcription Formats

Generally, both the Sphinx 3 and SphinxTrain package accept transcrip-
tion in a similar format. Usually, it looks like this

<s> HELLO </s> (hublog.19990723.001.002)

<s> HELLO </s> (hublog.19990723.001.003)

<s> I’D LIKE TO FLY TO SEATTLE TOMORROW AFTERNOON </s> (hublog.19990723.001.004)

<s> HOW ’BOUT SOMETHING LATER </s> (hublog.19990723.001.005)

Notice two things here

• <s> and </s> are by default used as sentence begine and end mark-
ers of the utterance. Internal to the code, they are also counted as
silence.

• hublog.19990723.001.004.* is the utterance ID, this needs to match
what you have in the control file of processing. The control file will
generally look like this,

hublog.19990721.000.002

hublog.19990721.000.003

hublog.19990721.000.004

hublog.19990721.000.005

[Editor Notes: ARCHAN: How about the situation where the waveform is hugh?]

So you might need to write a simple script to convert the transcriptions
format to this if you want to use SphinxTrain for training.

Because of different purpose of different tools, the best transcriptions
for them are also different.

81

For all the tools in SphinxTrain, notably bw it is recommend to put the
most acoustically correct transcription into the transcripts. Say something
like

<s> I’D LIKE TO(3) FLY TO(3) SEATTLE TOMORROW AFTERNOON <s>

(hublog.19990723.001.004)

Major reason that the current bw required the best transcription is be-
cause it doesn’t automatically generate multiple pronunciations and skip
silences optionally. 17. To generate this “most correct” transcription, the
tool align is necessary. However, its use of transcription is different from
bw.

And it will look like:

[Editor Notes: ARCHAN: Am I correct?] [Editor Notes: Not very sure about the technical contents at here.]

For align though, one just need to give the simple format of transcripts
to it before the force alignment process. That is like

<s> I’D LIKE TO FLY TO SEATTLE TOMORROW AFTERNOON </s>

(hublog.19990723.001.004)

17This is likely to change in 2006

82

4.10 Step (7 & 8) Plan B : Buying Data

[If you don’t want to sweat]

Likely, after you have read the last two sections, you might be scared by
the amount of effort you need to put on data recording and transcription.
Fortunately, if you have money, this problem could be solved in an easier
way, which is to buy data.

The first place you could go to is Linguistic Data Consortium (LDC),
their web site is

http://www.ldc.upenn.edu/

At there, you could consider to buy some of the corpora and use it for
acoustic model training. There are usually two price tag on the corpora,
one for academic use, one for commercial use. Rightly, the price for aca-
demic use is much lower than the one for commercial use.

From what we know, LDC actually welcomed a lot the public to buy
and support the corpora. Most of the time, your site (assuming you are
working in a school) might have already been the member of LDC and
ordering corpora will be much cheaper in that way. Try to ask the local
expert on this issue.

Other sites, for example, universities such as Carnegie Mellon Unversity
(CMU), Oregon Graduate Institute (OGI) and Mississipi State University
also open source data on their own. For detail, you could look them up in
the individual web site.

There are couple of things you need to know about the bought data.
One is on the legal side, for example, there might be restriction on the
use of the data, usually18, you could use the data obtained from LDC to
train an acoustic model and distribute it for your purpose. However, it
might also happen that it is not the case. So again, checking with the legal
statement will give you the most.

The second issue is on the transcription, even though most of the data
are transcribed. It doesn’t mean the software you are using could handle
the format used in the corpus. Hence, a procedure that transform this raw
format transcription is usually necessary. This procedure is usually called
text normalization.

The text normalization procedure is actually one crucial process to get
a good acoustic model. For example, small issue in handling filler words
such as silence could have huge difference in resulting error rate. Unfor-

18Please check the legal statement package in each CD and the web page for individual

situation

83

tunately, the detail of these problems are usually specific to a task or a
particular corpus. Therefore, we could not discuss too much. However, we
still hope that the users are aware of these issues. 19

4.11 Training of Acoustic Model. A note before

we proceed

After data collection and transcription, it is probably the time to really
train a model. The first concept of training is that training is never an easy
task. Even though you might have put a lot of time to prepare, there are
still some small problems that you need to solve. It is a statement which is
independent of the tool you used. In the Sphinx system , there are indeed
more concerns you might need to be careful.

There are two ways to proceed in training. Both of them have their fans.
However, when used incorrectly, both of them could be difficult. We will
talk about both of them and you would have a choice to choose which way
to go. We will also discuss why people like or hate a particular approach.

4.11.1 SphinxTrain as a Set of Training Tools

The major tools you will use in training is a package called SphinxTrain .
You could download it by using CVS

$ cvs -d:pserver:anonymous@cvs.sf.net:/cvsroot/cmusphinx

co SphinxTrain

Then you just need to compile it through the standard dance.

$ configure

$ make

Like Sphinx 3 , SphinxTrain is not a single tool. As a matter of fact, it is
actually a package that is composed of 35 C-based tools and 9 perl scripts.
The 9 perl script is also called “standard recipe” of training because they
call the low-level C-based tool in the training process. If use it properly, the

19From what we know, poor text normalization could be the possible reason why several

open source dictation model builder fails in last couple of years.

84

“standard recipe” should guide you through the whole process and create
a new set of models.

So, it is really easy to see two paths to proceed in training.

• To use the recipe provided in SphinxTrain, (Using the perl script).

• To use C-application directly and build the whole process from scratch.

This book provides material on both paths. So it will be up to you to
decide which way to go. The next two sections, what you need to do in
both case.

4.11.2 Training follow a recipe

Training following the “recipe”, in essense, is similar to training using a
tool which is composed by both perl script and C-code. If you have run an
initialization script of linux, then you will have some ideas of what’s going
on with the Sphinx recipe script.

There are several reasons why people like to use a training script. First
of all, using the training script is indeed more convenient than building
everything from scratch. You just need to change the configuration file a
little bit to make sure things are correct. For many, this is usually very
nice.

Second, if you are trying to learn how to train a model, the training
script will teach you a lot of things about training.

What is the bad thing about using the training scripts then? Admit-
tedly, having training scripts is indeed much better than having no train-
ing scripts. However, it doesn’t mean the trainer (i.e. you) doesn’t need to
do anything to get the training process to complete. You still need to take
care of a lot of strange situation that could be caused by your own mistakes
or something that just merely gone wrong in the data or transcription.

A lot of people thought that the training script will solve all the problems
for them. This is, of course, a very naive point of view. Even though, the
script should be treated more as a reference on how things should be done.
As in reality, the trainer needs to decide what kinds of things he needs to
do. Most of the time, if they are not taken care correctly, the process will
just die prematurely.

However, we couldn’t blame the user too much because the existence
of the training script has already given an illusion to the users. That is
perhaps one major issue in using the training script. Or we should say to

85

use the training script as is without doing any changes. This will indeed
make people lazier.

4.11.3 Training from scratch

The next possibility is to train everything from scratch, this is something
we don’t always recommend to novice users. The idea is to start training
the acoustic model based on merely the C-commands provied by Sphinx-
Train.

Doing so usually require quite a level of skill in the platforms (say Unix
and Windows) and far much less amount of people were able to do it. How-
ever, most people who succeed could either find a job in speech recognition
or become very familar with the tools. Major reason is the SphinxTrain
commands developed in these few years have started to be fairly robust
and self-explanatory. Direct usage of them could allow the user to learn
much more about the process than just using the script. The difficulty is
obvious. However, the fact that building the own scripts usually means
the user can also control parameters such as beams and threshood. This
could be crucial in the training procedure. So most of the time, this is
major factor of improvement over standard recipe.

There is one caveat of building one’s own script which is seldom talked
about but it is quite worthwhile to be mentioned. That is, one should
treat the scripting process as a solid program. Most of the time, ad-hoc
script will lack of robustness of well-tested script such as SphinxTrain ’s
standard recipe. Because of the fact a working training script will always
be copied around from users to users, it happens that the initial training
script could become a bottlenect of a site. This is something one need to
be careful when starting to write a training script.

4.11.4 Our Recommendations

So which way to go, among Sphinx Developers , the general consenus
is we will generally recommend the users to use the standard recipe first
before they start to tweak the scripts. What we observed was that a lot of
users still have some miscellaneous troubles. Therefore, what we provided
on top of that is a the standard training script that can run through the
whole process given a specific task, or push-here Dummy (PhD) script in
general. In the next section, we will first describe one of the most common
training script and describe how to use it.

86

Given the PhD script, it doesn’t mean there is no need for the user
to inspect the system from stage to stage for potential problems. Or even
better, to customize some of the scripts appropiately to deal with individual
situations. This will be the topic of Section ??.

87

4.12 Step 9 and beyond

At this revision, we would ask the reader to take a look of the training
tutorial page in cmusphinx.org first. In later draft of this document, we
will add more detail in this part.

88

Part III

CMU SphinxSpeech Recognition

System

89

Chapter 5

Sphinx’s Front End

[Editor Notes: Need to update this chapter for latest work in Dave’s work in sphinxbase.]

Author: Evandro Gouvêa, Mike Seltzerand Arthur Chan, Editor: Arthur Chan

5.1 Introduction

This chapter describes the signal processing front end of the Sphinx 3
Speech recognition system. The front end transforms a speech waveforms
into a set of features to be used for recognition. The current implemen-
tation creates mel-frequency cepstral coefficient (MFCC). The chapter is
largely adapted from Dr. Mike Seltzer’s “Sphinx 3 Signal Processing Front
End specification” which first occured in the Sphinx 3 ’s software package.

91

5.2 Block Diagram

Below is a block diagram of feature extraction operations performed by the
Sphinx 3 front end.

Pre−emphasis

Framing

Windowing

Power

Spectrum

Mel Spectrum

Mel Cepstrum

Speech Waveform (16bits)

Frame−Based

Processing

Mel Frequency Cepstral Coefficients

(32−bit Floating Point Number)

Front End Processing Parameters

Figure 5.1: Block Diagram for the front-end processing

92

5.3 Front End Processing Parameters

There are several parameters which are controlling the front end. Here is
a description of all of them. We also give the option names on how to use
them in both wave2feat and the front-end of Sphinx 3 ’s decoders.

• Sampling rate: the sampling frequency of the input speech signal.

• Frame rate: the speed of how fast a window is moving. It is terms of
number of samples.

• Window length: The size of moving window in terms of number of
samples.

• Number of Cepstra: The number of coefficient including the energy
coefficient in the feature vector.

• Number of filters: The number of filters that would be used in the
filter banks.

• The size of fft: The number of points of FFT used.

• The “lower” filter frequency: It is actually the lower frequency of
the lowest filter in the filter bank.

• The “upper” filter frequency: It is actually the upper frequency of
the highest filter in the filter bank.

• The pre-emphasis coefficient: The value of α in the pre-emphasis
filter. See Section refssec:preemp

There are two occasions where specification of the above parameters
will be very important. One is when you need to use wave2feat. One is
when you need to use the front-end of Sphinx 3 . Here is a table that shows
the relationship. For further details, you could also consult the appendix
of the book.

5.4 Detail of Front End processing

5.4.1 Pre-emphasis

The following finite impulse response pre-emphasis filter is applied to in-
put waveforms:

93

Table 5.1: Command-line options for the front end parameters in

wave2feat and Sphinx 3 ’s decoders

Parameters Param. in

wave2feat

Sphinx 3 ’s

livepretend or

livedecode

Sampling rate -srate -srate1

Frame rate -frate -frate

Window length -wlen -wlen

Number of Cepstra -ncep -ncep

Size of FFT -nfft -nfft

Number of filters -nfilt -nfilt

Lower filter frequency -lowerf -lowerf

Upper filter frequency -upperf -upperf

The pre-emphasis coeffi-

cient

-alpha -alpha

94

y[n] = x[n] − αx[n − 1]

α is provided by the user or set to the default value. If α = 0, then this
step is skipped. In addition, the appropriate sample of the input is sorted
as a history value for use during the next round of processing.

5.4.2 Framing

Framing will depend on the windows length (in terms of second) and the
frame rate (in terms of frames/second).

[Editor Notes: Under construction]

5.4.3 Windowing

The frame is multiplied by the following Hamming window:

w[n] = 0.54 − 0.46 cos (2πn
N−1

)

N is the length of the frame.

5.4.4 Power Spectrum

The power spectrum of the frame is computed by performing a discrete
Fourier Transform of length specified by the user, and then computing its
magnitude squared.

S[k] = (Re(X[k])2 + (Im(X[k])2

5.4.5 Mel Spectrum

The mel spectrum of the power spectrum is computed by multiplying the
power spectrum by each of the triangular mel weighting filters and inte-
grating the results:

S̃[l] =
∑N/2

k=0 S[k]Ml[k] l=0,l,. . . ,L-1

where N is the length of the DFT and L is the total number of triangular
mel weighting filters.

95

5.4.6 Mel Cepstrum

A DCT is applied to the natural logarithm of the mel spectrum to obtain
the mel cepstrum:

c[n] =
∑L−1

i=0 ln(S̃[i])cos(πn
2L

(2i + 1)) c=0,l,. . . ,C-1

C is the number of cepstral coefficients.

96

5.5 Mel Filter Banks

The mel scale filterbank is a series of L triangular bandpass filters that
have been designed to simulate the bandpass filtering believed to occur in
the auditory system. This corresponds to a series of bandpass filters with
constant bandwidth and spacing on a mel frequency scale. On a linear
frequency scale, this filter spacing is approximately linear up to 1kHz and
logarithmic at higher frequencies. The following warping function trans-
form linear frequencies to mel frequencies:

mel(f) = 2595log(1 + f
700

)

A plot of the warping function is shown below.

[Editor Notes: Should include Mike’s diagram here]

A series of L triangular filters with 50% overlap are constructed such
that they are equally spaced on the mel scale spanning [mel(fmin),mel(fmax)]
where fmin and fmax can be set by the user. The triangles are all normalized
so that they have unit area.

5.6 The Default Front End Parameters

These are the default values for the current Sphinx 3 front end:

97

Table 5.2: Default Parameters for the front end in Sphinx 3

parameter default

Sampling Rate 16000.0Hz

Frame Rate 100 Frames/sec

Window Length 0.025625 sec

Filterbank Mel Filterbank

Number of Cepstra 13

Number of Mel Fitlers 40

DFT Size 512

Lower Filer Frequency 133.33334 Hz

Upper Filer Frequency 6855.4976 Hz

Pre-Emphasis Coefficient(α) 0.97

5.7 Computation of Dynamic Coefficients

Author: Arthur Chan, Editor: Arthur Chan

There are three major types of mechanism for generation of dynamic
coefficients. For space efficiency, the dynamic coefficients computation
are usually carried out at the routine which directly uses the feature, for
example, the decoders decode or decode anytopo.

There are two sets of notation to represent the mechanism of dynamic
coefficient generation, one for the decoder and one for the trainer. There
is actually a one to one mapping between the two notations. The following
table will be indispensable for one to understand the two notations.

The dynamic coefficient types s2 4x, s3 1x39, and 1s c d dd are com-
monly used in Sphinx 3 . Currently other coefficient types, 1s c, 1s c d,
1s c dd, are obsolete. They are currently safeguarded in various recogniz-
ers.

98

Table 5.3: Naming Convetion table for feature type s2 4x

Sphinx 2 s2 4x

SphinxTrain ,

simplified

4s 12c 24d 3p 12dd

SphinxTrain ,

generic

c/1..L-1/,d/1..L-

1/,c/0/d/0/dd/0/,dd/1..L-1/

vector length 4 in parallel, dimensions 12, 24, 3, and 12

feature layout 12 ceps, 12 short term ∆ ceps,

12 long term ∆ ceps, pow,

short term∆ pow, ∆∆ pow

12 ∆∆ ceps

Table 5.4: Naming Convetion table for feature type s3 1x39

Sphinx 3 s3 1x39

SphinxTrain ,

simplified

1s 12c 12d 3p 12dd

SphinxTrain ,

generic

c/1..L-1/d/1..L-

1/c/0/d/0/dd/0/dd/1..L-1/

vector length 39

feature layout 12 ceps, 12 ∆ ceps,

pow, ∆ pow, ∆∆ pow

12 ∆∆ ceps

99

Table 5.5: Naming Convetion table for feature type 1s c d dd

Sphinx 3 1s c d dd

SphinxTrain ,

simplified

1s c d dd

SphinxTrain ,

generic

c/0..L-1/d/0..L-1/dd/0..L-1/

vector length 39

feature layout 13 ceps (i.e. power + 12 cepstra), 13 ∆ ceps,

13 ∆∆ ceps

5.7.1 Generic and simpilified notations in SphinxTrain

Because of code legacy, SphinxTrain actually maintained two sets of no-
tations that are equivalent but written differntly. The following table will
allow one to inter-convert them.

5.7.2 Formulae for Dynamic Coefficient

Let x[i] be the incoming cepstra at time i, c[i], the cepstral vector, d[i],
the delta cepstral vector, i.e. the first derivative, and dd[i], the delta delta
cepstral vector, i.e. the second derivative, all at time i. The dynamic coef-
ficients for s3 1x39 and 1s c d dd are computed as:

c[i] = x[i]

d[i] = x[i + 2] − x[i − 2]

dd[i] = d[i + 1] − d[i − 1] = (x[i + 3] − x[i − 1]) − (x[i + 1] − x[i − 3)

5.7.3 Handling of Initial and Final Position of an Utter-

ance

The above formulae will require that, for every frame, the previous 3 frames
and the future 3 frames exist. So, special treatment is required to pad 3
frames at the beginning of an utterance and 3 frames at the end of an

100

Table 5.6: Generic and Simplified notations fro parameters in SphinxTrain

Simplified Generic sphinx3

c/1..L-1/,d/1..L-

1/,c/0/d/0/dd/0/,dd/1..L-1/

4s 12c 12d 3p 12dd s2 4x

c/1..L-1/d/1..L-

1/c/0/d/0/dd/0/dd/1..L-1/

1s 12c 12d 3p 12dd s3 1x39

c/0..L-1/d/0..L-1/dd/0..L-1/ 1s c d dd 1s c d dd

c/0..L-1/d/0..L-1/ 1s c d -

c/0..L-1/ 1s c -

c/0..L-1/dd/0..L-1/ 1s c d -

utterance. Sphinx 3 .x takes care of it by replicating the first three frames
of an utterance once. The sequence of features (i.e. c[i], d[i], dd[i]) will
be delayed relative to the incoming cepstra. Moreover, the first couple of
derivative coefficients are computed as if the sequence of frames had been
converted from:

x[0]x[1]x[2]x[3]x[4]x[5] . . .

to:

x[1]x[2]x[3]x[0]x[1]x[2]x[3]x[4]x[5] . . .

2

Therefore, when actually viewing the frames (say dumping the code by
printf), the first frame will have the delta and delta delta coefficients to be
zero, whereas the second frame will have the delta coefficients to be zero.

5.8 Cautions in Using the Front End

Several common pitfalls of using the front end.

2In older version of version of Sphinx 3 , (Sphinx 3 .5 and before), we used to follow

the convention x[0]x[0]x[0]x[1]x[2]x[3] . . . instead. We changed mainly for consistency and

experimentally the new convention gave us slightly better results.

101

• The user is advised to use dither (-dither) for waveform decoding. In
Sphinx 3 .X’s wave2feat, this process is completely repeatable and it
is controlled by the option -seed. The dither is useful because frames
filled with zeros could cause the front end to run into a divide by zero
condition.

• The user is strongly advised to match the front end parameters in
both decoding and training. 3

5.9 Compatibility of Front Ends in Different Ver-

sions

The cepstral generation source code is shared by Sphinx 2 , Sphinx 3 and
SphinxTrain . However, the dynamic coefficients routine in Sphinx 3 only
supports types s3 1x39 and 1s c d dd. Moreover, Sphinx 2 is hardwired
to use the type s2 4x. Therefore, if you are training models for Sphinx 2 ,
you will have to use this same type in SphinxTrain .

5.10 cepview

One useful tool for viewing the cepstral coefficient is cepview. It can be
found in Sphinx 3 .X (X > 5).

For example, the following command can be used to view the feature
file a.mfcc.

$ cepview -d 13 -describe 1 -header 1 -f a.mfcc

You will see

$ 329 frames

frame#: c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] ...

0: 5.916 -0.248 0.128 0.083 -0.143 0.254 -0.012 -0.327 ...

1: 5.668 -0.203 0.235 0.123 -0.184 0.145 0.031 -0.053 ...

3There are workarounds if the sampling frequency used in the training is higher than

in the decoding. However, the upper and lower frequency in the filter bank need to scale

for the decoding’s frequency in that case. Avoid this unless you know what you are doing..

102

2: 5.371 -0.159 0.271 0.001 -0.055 0.242 -0.011 -0.071 ...

3: 5.499 -0.182 0.301 0.071 0.093 -0.036 -0.263 -0.164 ...

4: 5.447 -0.307 0.241 -0.067 -0.071 0.177 -0.050 -0.070 ...

5: 5.515 -0.070 0.062 -0.113 -0.008 0.180 -0.079 -0.073 ...

6: 5.431 -0.107 -0.007 -0.133 -0.037 0.137 -0.145 -0.089 ...

7: 5.502 -0.094 0.162 -0.142 -0.047 0.077 -0.073 -0.086 ...

Note: because of legacy reason, mainly to allow all the parameters to fit
in a console which is 80 x60, the default number of parameters displayed
are 10. Please beware that it doesn’t mean that the cepstral vector only
has 10 parameters.

103

104

Chapter 6

General Software Description of

SphinxTrain

Author: Arthur Chan, Editor: Arthur Chan

The acoustic model training package, SphinxTrain , is a powerful set of
routines that could be used to train several types of hidden Markov model
for speech recognition.

As as Aug 2005, SphinxTrain consists of 35 C-based applications and
9 perl scripts. For many practitioners, its enormous size was the core
difficulty to learn it. This chapter provides an overview of them and it is
recommended for the users to read this chapter before reading Chapter 7:
“Acoustic Model Training”.

6.1 On-line Help of SphinxTrain

Tools of SphinxTrain have coherent design. They behave the same in the
application level and there are common commands which would help the
users to use them.

First of all, if the user just invoke the command without inputing any
command-line arguments. Then a list of help for the command-line op-
tions will be displayed.

For example, for the tool printp, we would have

$ printp

105

[Switch] [Default] [Description]

-help no Shows the usage of the tool

-example no Shows example of how to use the tool

-tmatfn The transition matrix parameter file name

-mixwfn The mixture weight parameter file name

-mixws Start id of mixing weight subinterval

-mixwe End id of mixing weight subinterval

-gaufn A Gaussian parameter file name

-gaucntfn A Gaussian parameter weighted vector file

-regmatcntfn MLLR regression matrix count file

-moddeffn The model definition file

-lambdafn The interpolation weight file

-lambdamin 0 Print int. wt. >= this

-lambdamax 1 Print int. wt. <= this

-norm yes Print normalized parameters

-sigfig 4 Number of significant digits in ’e’ notation

If the user needs further help, each routine provides two important
mechanism for the user. One is the option -help and one is the option -
example. The first one give a written description of each tool. For example,

printp -help yes

will produce the current description of the tool

./bin.i686-pc-linux-gnu/printp

-help yes

Description:

Display numerical values of resources generated by Sphinx

Current we supoort the following formats

-tmatfn : transition matrix

-mixwfn : mixture weight file

-gaufn : mean or variance

-gaucntn : sufficient statistics for mean and diagonal covariance

-lambdafn : interpolation weight

106

Currently, some parameters can be specified as intervals such as mixture

You can also specified -sigfig the number of significant digits by you

and normalize the parameters by -norm

whereas

$ printp -example yes

will produce

Example:

Print the mean of a Gaussian:

printp -gaufn mean

Print the variance of a Gaussian:

printp -gaufn var

Print the sufficient statistic:

printp -gaucntfn gaucnt:

Print the mixture weights:

printp -mixw mixw

Print the interpolation weight:

printp -lambdafn lambda

The help and example message of SphinxTrain ’s tools are also gener-
ated automatically and converted into instruction manual which one could
find in the appendix A.2 of this manual.

6.2 Software Architecture of SphinxTrain

Author: Arthur Chan, Editor: Arthur Chan

Based on them, a 9-step procedure usually called “SphinxTrain perl
script” was built. If one look at them, it looks like

6.2.1 General Description of the C-based Applications

As at Aug 2005, there are 35 tools in SphinxTrain , they are

agg seg init mixw mk model def mk s3tmat

107

bldtree kmeans init mk s2cb mk ts2cb

bw make quests mk s2hmm mllr solve tiestate

cp parm map adapt mk s2phone mllr transform wave2feat

delint mixw interp mk s2phonemap norm

dict2tri mk flat mk s2sendump param cnt

inc comp mk mdef gen mk s3gau printp

init gau mk mllr class mk s3mixw prunetree

1

It is perhaps very hard to describe them one by one without a proper
categorization. Here is one categorization that was widely used.

1. Model conversion routines

That includes mk s2cb, mk s2hmm, mk s2phone, mk s2phonemap,
mk s2sendump, they are for Sphinx 3 models format to Sphinx 2
model format.

Also mk s3gau, mk s3mixw, mk s3tmat, mk ts2cb, they are for
conversion of Sphinx 2 model format to Sphinx 3 model format.

2. Model manipulation routines

That includes printp, which could display acoustic model parameters
as well some important data structure.

cp parm which could copy model parameters.

inc comp which could increase the number of mixture components.

mk model def, mk mdef gen which could create the model defini-
tion file.

3. Model adaptation routines

mk mllr class which could create regression classes.

mllr transform which could transform a set of model based on a set
of regression classes.

map adapt which could adapt a set of model based on the maximum
a posterior (MAP) criterion.

mllr solve which could compute the regression matric based on suf-
ficient statistics of the adaptation data.

4. Feature extraction routine wave2feat which could transform a wave
file to cepstral coefficient.

1The tool QUICK COUNT also exists, but it is largely replaced by dict2tri

108

5. Desicion tree mainipulation routine

bldtree which could create a decision tree based on a set of questions.

tiestate which could tie the state based on the decision trees.

prunetree which could prune a decision tree to make it has a more
reasonable size.

make quests which could automatically generate a set of questions.

6. Model Initialization routines mk flat would could be used for flat initialization
init gau, init mixw which could be used for ?? agg seg, kmeans init
which could be used for mainipulation .

7. Model Estimation routines

bw which could be used to carry out Baum-Welch estimation and
generate the sufficient statistics..

norm which could collect the sufficient statistics and generate the
model.

delint which could carry out deleted interpolation.

mixw interp which could carry out mixture weight interpolation

8. Miscellaneous routines dict2tri which could convert the transcrip-
tion to triphone.

param cnt which could count the parameters out of several resources.

6.2.2 General Description of the Perl-based Tool

00.verify 06.prunetree

01.vector quantize 07.cd-schmm

02.ci schmm 08.deleted-interpolation

03.makeuntiedmdef 09.make s2 models

04.cd schmm untied

05.buildtrees

The current script in SphinxTrain could carry out both fully-continous
HMM training and semi-continous training. The user is advised to first fol-
low a recipe of training before they start from scratch. One well-maintained
tutorial could be found at

http://www.cs.cmu.edu/ robust/Tutorial/opensource.html

109

6.3 Basic Acoustic Models Format in Sphinx-

Train

In all Sphinx(en)(Sphinx 2 , Sphinx 3 and Sphinx 4), the basic acoustic
model unit is the HMM set. However, for efficieny purpose, the HMM
set is usually decomposed into several components as in representation.
This is quite different from other software package such as HTK and ISIP
recognizer.

For example, in Sphinx 3 , the models are represented by a set of
means, variances, mixture weights, transition matrices and the model .
definition. These method of decomposition allows researchers to just ma-
nipulate one type of quantity instead of all files.

You could find more information of the acoustic model format in the
next Section

6.4 Sphinx data and model formats

6.4.1 Sphinx 2 data formats

Note: The data format described here is obsolete

Feature set: This is a binary file with all the elements in each of the
vectors stored sequentially. The header is a 4 byte integer which tells us
how many floating point numbers there are in the file. This is followed by
the actual cepstral values (usually 13 cepstral values per frame, with 10ms
skip between adjacent frames. Framesize is usually fixed and is usually
25ms).

<4 byte integer header>

vec 1 element 1

vec 1 element 2

.

.

vec 1 element 13

vec 2 element 1

vec 2 element 2

110

.

.

vec 2 element 13

6.4.2 Sphinx 2 Model formats

Author: Rita Singh and Arthur Chan, Editor: Arthur Chan

Sphinx 2 semi-continuous HMM (SCHMM) formats:

The Sphinx 2 SCHMM format is rather complicated. It has the following
main components (each of which has sub-components):

1. A set of codebooks

2. A ”sendump” file that stores state (senone) distributions

3. A ”phone” and a ”map” file which map senones on to states of a tri-
phone

4. A set of ”.chmm” files that store transition matrices

Here is their description

Codebooks

There are 8 codebook files. The sphinx-2 uses a four stream feature set:

• cepstral feature: [c1-c12], (12 components)

• delta feature: [delta c1-delta c12,longterm delta c1-longterm delta c12],(24
components)

• power feature: [c0,delta c0,doubledelta c0], (3 components)

• doubledelta feature: [doubledelta c-doubledelta c12] (12 components)

The 8 codebooks files store the means and variances of all the gaussians
for each of these 4 features. The 8 codebooks are,

• cep.256.vec [this is the file of means for the cepstral feature]

• cep.256.var [this is the file of variacnes for the cepstral feature]

111

• d2cep.256.vec [this is the file of means for the delta cepstral feature]

• d2cep.256.var [this is the file of variances for the delta cepstral fea-
ture]

• p3cep.256.vec [this is the file of means for the power feature]

• p3cep.256.var [this is the file of variances for the power feature]

• xcep.256.vec [this is the file of means for the double delta feature]

• xcep.256.var [this is the file of variances for the double delta feature]

All files are binary and have the following format: [4 byte int][4 byte
float][4 byte float][4 byte float]...... The 4 byte integer header stores the
number of floating point values to follow in the file. For the cep.256.var,
cep.256.vec, xcep.256.var and xcep.256.vec this value should be 3328.
For d2cep.* it should be 6400, and for p3cep.* it should be 768. The
floating point numbers are the components of the mean vectors (or vari-
ance vectors) laid end to end. So cep.256.[vec,var] have 256 mean (or
variance) vectors, each 13 dimensions long, d2cep.256.[vec,var] have 256
mean/var vectors, each 25 dimensions long, p3cep.256.[vec,var] have 256
vectors, each of dimension 3, xcep.256.[vec,var] have 256 vectors of length
13 each.

The 0th component of the cep,d2cep and xcep distributions are not
used in likelihood computation and are part of the format for purely his-
torical reasons.

The “sendump” file

The ”sendump” file stores the mixture weights of the states associated
with each phone. (this file has a little ascii header, which might help you a
little). Except for the header, this is a binary file. The mixture weights have
all been transformed to 8 bit integer by the following operation intmixw =
(-log(float mixw) ¿¿ shift) The log base is 1.0003. The ”shift” is the number
of bits the smallest mixture weight has to be shifted right to fit in 8 bits.
The sendump file stores,

for each feature (4 features in all)

for each codeword (256 in all)

for each ci-phone (including noise phones)

for each tied state associated with ci phone,

probability of codeword in tied state

112

end

for each CI state associated with ci phone, (5 states)

probability of codeword in CI state

end

end

end

end

The sendump file has the following storage format (all data, except for
the header string are binary):

Length of header as 4 byte int (including terminating ’
0’)

HEADER string (including terminating ’0’)

0 (as 4 byte int, indicates end of header strings).

256 (codebooksize, 4 byte int)

Num senones (Total number of tied states, 4 byte int)

[lut[0], (4 byte integer, lut[i] = -(i"<<"shift))

prob of codeword[0] of feat[0] 1st CD sen of 1st ciphone (uchar)

prob of codeword[0] of feat[0] 2nd CD sen of 1st ciphone (uchar)

..

prob of codeword[0] of feat[0] 1st CI sen of 1st ciphone (uchar)

prob of codeword[0] of feat[0] 2nd CI sen of 1st ciphone (uchar)

..

prob of codeword[0] of feat[0] 1st CD sen of 2nd ciphone (uchar)

prob of codeword[0] of feat[0] 2nd CD sen of 2nd ciphone (uchar)

..

prob of codeword[0] of feat[0] 1st CI sen of 2st ciphone (uchar)

prob of codeword[0] of feat[0] 2nd CI sen of 2st ciphone (uchar)

..

]

[lut[1], (4 byte integer)

prob of codeword[1] of feat[0] 1st CD sen of 1st ciphone (uchar)

prob of codeword[1] of feat[0] 2nd CD sen of 1st ciphone (uchar)

113

..

prob of codeword[1] of feat[0] 1st CD sen of 2nd ciphone (uchar)

prob of codeword[1] of feat[0] 2nd CD sen of 2nd ciphone (uchar)

..

]

... 256 times ..

Above repeats for each of the 4 features

PHONE file

The phone file stores a list of phones and triphones used by the decoder.
This is an ascii file It has 2 sections. The first section lists the CI phones
in the models and consists of lines of the format For example:

AA 0 0 8 8

”AA” is the CI phone, the first ”0” indicates that it is a CI phone, the
first 8 is the index of the CI phone, and the last 8 is the line number in the
file. The second 0 is there for historical reasons.

The second section lists TRIPHONES and consists of lines of the format

A(B,C)P -1 0 num num2

”A” stands for the central phone, ”B” for the left context, and ”C” for
the right context phone. The ”P” stands for the position of the triphone
and can take 4 values ”s”,”b”,”i”, and ”e”, standing for single word, word
beginning, word internal, and word ending triphone. The -1 indicates that
it is a triphone and not a CI phone. num is the index of the CI phone ”A”,
and num2 is the position of the triphone (or ciphone) in the list, essentially
the number of the line in the file (beginning with 0).

The “map” file

The ”map” file stores a mapping table to show which senones each state
of each triphone are mapped to. This is also an ascii file with lines of the
form

AA(AA,AA)s<0> 4

AA(AA,AA)s<1> 27

AA(AA,AA)s<2> 69

114

AA(AA,AA)s<3> 78

AA(AA,AA)s<4> 100

The first line indicates that the 0th state of the triphone ”AA” in the
context of ”AA” and ”AA” is modelled by th 4th senone associated with the
CI phone AA. Note that the numbering is specific to the CI phone. So the
4th senone of ”AX” would also be numbered 4 (but this should not cause
confusion)

chmm FILES

There is one *.chmm file per ci phone. Each stores the transition matrix
associated with that partiular ci phone in following binary format. (Note
all triphones associated with a ci phone share its transition matrix) (all
numbers are 4 byte integers):

• -10 (a header to indicate this is a tmat file)

• 256 (no of codewords)

• 5 (no of emitting states)

• 6 (total no. of states, including non-emitting state)

• 1 (no. of initial states. In fbs8 a state sequence can only begin with
state[0]. So there is only 1 possible initial state)

• 0 (list of initial states. Here there is only one, namely state 0)

• 1 (no. of terminal states. There is only one non-emitting terminal
state)

• 5 (id of terminal state. This is 5 for a 5 state HMM)

• 14 (total no. of non-zero transitions allowed by topology)

And also

[0 0 (int)log(tmat[0][0]) 0] (source, dest, transition prob, source id)

[0 1 (int)log(tmat[0][1]) 0]

[1 1 (int)log(tmat[1][1]) 1]

[1 2 (int)log(tmat[1][2]) 1]

[2 2 (int)log(tmat[2][2]) 2]

[2 3 (int)log(tmat[2][3]) 2]

115

[3 3 (int)log(tmat[3][3]) 3]

[3 4 (int)log(tmat[3][4]) 3]

[4 4 (int)log(tmat[4][4]) 4]

[4 5 (int)log(tmat[4][5]) 4]

[0 2 (int)log(tmat[0][2]) 0]

[1 3 (int)log(tmat[1][3]) 1]

[2 4 (int)log(tmat[2][4]) 2]

[3 5 (int)log(tmat[3][5]) 3]

There are thus 65 integers in all, and so each *.chmm file should be
65*4 = 260 bytes in size.

6.4.3 Sphinx 3 model formats

Sphinx 3 models are composed of 5 parts

• Model Definition

• Means

• Variances

• Mixture Weights

• Transition Matrices

Headers of all binary formats

Model Definition

[Editor Notes: Plainly copied from the recipe chapter, need to rewrite] Here is an example:

0.3

55 n base

118004 n tri

472236 n state map

2165 n tied state

165 n tied ci state

116

55 n tied tmat

#

Columns definitions

#base lft rt p attrib tmat ... state id’s ...

+BACKGROUND+ - - - filler 0 0 1 2 N

+BREATH+ - - - filler 1 3 4 5 N

+CLICKS+ - - - filler 2 6 7 8 N

+COUGH+ - - - filler 3 9 10 11 N

+FEED+ - - - filler 4 12 13 14 N

+LAUGH+ - - - filler 5 15 16 17 N

+NOISE+ - - - filler 6 18 19 20 N

+SMACK+ - - - filler 7 21 22 23 N

+UH+ - - - filler 8 24 25 26 N

+UHUH+ - - - filler 9 27 28 29 N

+UM+ - - - filler 10 30 31 32 N

AA - - - n/a 11 33 34 35 N

AE - - - n/a 12 36 37 38 N

AH - - - n/a 13 39 40 41 N

AO - - - n/a 14 42 43 44 N

AW - - - n/a 15 45 46 47 N

AX - - - n/a 16 48 49 50 N

AXR - - - n/a 17 51 52 53 N

AY - - - n/a 18 54 55 56 N

B - - - n/a 19 57 58 59 N

CH - - - n/a 20 60 61 62 N

D - - - n/a 21 63 64 65 N

DH - - - n/a 22 66 67 68 N

DX - - - n/a 23 69 70 71 N

EH - - - n/a 24 72 73 74 N

ER - - - n/a 25 75 76 77 N

EY - - - n/a 26 78 79 80 N

117

F - - - n/a 27 81 82 83 N

G - - - n/a 28 84 85 86 N

HH - - - n/a 29 87 88 89 N

. . .

The first few line describes the number of parameters in the whole sys-
tem

0.3

0.3 is the model format version.

55 n base

n base is the number of base phone including fillers in the system. In
this case, the number is 55.

118004 n tri

n tri is the number of triphone in the system. In this case, the number
is 118004.

472236 n state map

2165 n tied state

n tied state is the number of triphone in the system. In this case, the
number is 118004.

165 n tied ci state

n tied ci state is the number tied CI state in the system. In this case, the
number is 165

55 n tied tmat

n tied tmat is the number tied transition matrix in the system. In this
case, the number is 55.

Now let us try to interpret the following line.

#base lft rt p attrib tmat ... state id’s ...

+BACKGROUND+ - - - filler 0 0 1 2 N

From left to right, it reads the base phone is +BACKGROUND+, no left
context and no right context, so it is a CI phone. It is a filler. Its phone ID
is 0, its first state has senone ID 0, second state 1, third state 2.

It is quite useful to know how the hmm state would map into a senone.
(In HTK terminology, the tied-state.) In the above example, if you know
that the senone ID for first state is 0. You just need to look up the file
means and variances to get the value of them.

118

AA - - - n/a 11 33 34 35 N

Here is another entry in the model definition file. This time, we see
a typical CI phone entry. If you used the standard training procedure of
SphinxTrain (that you will also have a chance to play with in the second
half of this chapter), then all the CI phone HMM’s state will have their own
senone which is unique for it.

As opposed to that, if you look at a triphone definition.

AA AA AA s n/a 11 177 190 216 N

AA AA AE s n/a 11 177 190 216 N

AA AA AH s n/a 11 177 190 216 N

AA AA AO s n/a 11 177 190 216 N

AA AA AW s n/a 11 177 190 216 N

AA AA AX s n/a 11 177 190 216 N

AA AA AXR s n/a 11 177 196 216 N

AA AA AY s n/a 11 177 190 216 N

AA AA B b n/a 11 178 189 219 N

AA AA B s n/a 11 177 189 217 N

AA AA CH s n/a 11 177 189 216 N

AA AA D b n/a 11 178 198 219 N

AA AA D s n/a 11 177 198 214 N

You will see multiple phones states are actually mapped to the same
senone ID. Why does that happen? This is essentially the result of tying
happend in training the context-dependent model. What happen is there
are always not enough training data for triphone model. Therefore, it is
necessary to cluster the hmm-state to make data could be more efficiently
used. Most of the time, clustering are either done by decision tree-base
clustering or bottom-up agglomerative clustering.

Means, Variances, Mixture Weights and Transition Matrices

[Editor Notes: Need to fill in more information here.] Please read the chapter on recipe for
further detail.

119

6.4.4 Sphinx 4 model formats

To create a Sphinx 4 model, a common way is generate a Sphinx 3 models
through SphinxTrain and convert it to Sphinx 4 format. One could find
detail information at

http://cmusphinx.sourceforge.net/sphinx4/doc/UsingSphinxTrainModels.html

120

Chapter 7

Acoustic Model Training

[Editor Notes: At this draft, this part is not yet finished. We would like the user to read the training page in cmusphinx.org first.]

121

122

Chapter 8

Language Model Training

Author: Roni Rosenfeld and Philip Clarkson, Editor: Arthur Chan

[Editor Notes: Plain copy from Philip’s web site. Pretty dangerous to just open source it.]

8.1 Installation of the Toolkit

For ”big-endian” machines (eg those running HP-UX, IRIX, SunOS, Solaris)
the installation procedure is simply to change into the src/ directory and
type

$ make install

The executables will then be copied into the bin/ directory, and the
library file SLM2.a will be copied into the lib/ directory. For ”little-endian”
machines (eg those running Ultrix, Linux) the variable BYTESWAP FLAG
will need to be set in the Makefile. This can be done by editing src/Makefile
directly, so that the line

#BYTESWAP FLAG = -DSLM SWAP BYTES

is changed to

BYTESWAP FLAG = -DSLM SWAP BYTES

Then the program can be installed as before.

If you are unsure of the ”endian-ness” of your machine, then the shell
script endian.sh should be able to provide some assistance.

123

In case of problems, then more information can be found by examining
src/Makefile.

Before building the executables, it might be worth adjusting the value of
STD MEM in the file src/toolkit.h. This value controls the default amount
of memory (in MB) that the programs will attempt to assign for the large
buffers used by some of the programs (this value can, of course, be over-
ridden at the command line). The result is that the final process sizes
will be a few MB bigger than this value. The more memory that can be
grabbed, the faster the programs will run. The default value is 100, but if
the machines which the tools will be run on contain less, or much more
memory than this, then this value should be adjusted to reflect this.

124

8.2 Terminology and File Formats

Text stream An ASCII file containing text. It may or may not
have markers to indicate context cues, and white
space can be used freely.

.text

Word fre-
quency
file

An ASCII file containing a list of words, and the
number of times that they occurred. This list is
not sorted; it will generally be used as the input
to wfreq2vocab, which does not require sorted in-
put.

.wfreq

Word n-
gram file

ASCII file containing an alphabetically sorted list
of n-tuples of words, along with the number of
occurrences

.w3gram,

.w4gram
etc.

Vocabulary
file

ASCII file containing a list of vocabulary words.
Comments may also be included - any line begin-
ning ## is considered a comment. The vocabulary
is limited in size to 65535 words.

.vocab.20K,

.vocab.60K
etc., de-
pending on
the size of
the vocabu-
lary.

Context
cues file

ASCII file containing the list of words which are
to be considered ”context cues”. These are words
which provide useful context information for the
n-grams, but which are not to be predicted by the
language model. Typical examples would be ¡s¿
and ¡p¿, the begin sentence, and begin paragraph
tags.

.ccs

Id n-gram
file

ASCII or binary (by default) file containing a
numerically sorted list of n-tuples of numbers,
corresponding to the mapping of the word n-
grams relative to the vocabulary. Out of vocab-
ulary (OOV) words are mapped to the number
0. .id3gram.bin, .id4gram.ascii etc. Binary lan-
guage model file Binary file containing all the n-
gram counts, together with discounting informa-
tion and back-off weights. Can be read by evallm
and used to generate word probabilities quickly.

.binlm

ARPA
language
model file

ASCII file containing the language model proba-
bilities in ARPA-standard format.

.arpa

Probability
stream

ASCII file containing a list of probabilities (one per
line). The probabilities correspond the the proba-
bility for each word in a specific text stream, with
context-cues and OOVs removed.

.fprobs

Forced
back-off file

ASCII file containing a list of vocabulary words
from which to enforce back-off, together with ei-
ther an ’i’ or an ’e’ to indicate inclusive or exclu-
sive forced back-off respectively.

.fblist
125

These files may all be written are read by all the tools in compressed
or uncompressed mode. Specifically, if a filename is given a .Z extension,
then it will be read from the specified file via a zcat pipe, or written via
a compress pipe. If a filename is given a .gz, it will be read from the
specified file via a gunzip pipe, or written via a gzip pipe. If either of these
compression schemes are to be used, then the relevant tools (ie zcat, and
compress or gzip) must be available on the system, and pointed to by the
path.

If a filename argument is given as - then it is assumed to represent
either the standard input, or standard output (according to context). Any
file read from the standard input is assumed to be uncompressed, and
therefore, all desired compression and decompression should take place
in a pipe:

$ zcat < abc.Z | abc2xyz | compress > xyz.Z

8.3 Typical Usage

Given a large corpus of text in a file a.text, but no specified vocabulary.

• Compute the word unigram counts

$ cat a.text | text2wfreq > a.wfreq

• Convert the word unigram counts into a vocabulary consisting of the
20,000 most common words

$ cat a.wfreq | wfreq2vocab -top 20000 > a.vocab

• Generate a binary id 3-gram of the training text, based on this vocab-
ulary

$ cat a.text | text2idngram -vocab a.vocab > a.idngram

• Convert the idngram into a binary format language model

$ idngram2lm -idngram a.idngram -vocab a.vocab -binary a.binlm

• Compute the perplexity of the language model, with respect to some
test text b.text

evallm -binary a.binlm

Reading in language model from file a.binlm

Done.

evallm : perplexity -text b.text

126

Computing perplexity of the language model with respect

to the text b.text

Perplexity = 128.15, Entropy = 7.00 bits

Computation based on 8842804 words.

Number of 3-grams hit = 6806674 (76.97%)

Number of 2-grams hit = 1766798 (19.98%)

Number of 1-grams hit = 269332 (3.05%)

1218322 OOVs (12.11%) and 576763 context cues were removed from the calculation.

evallm : quit

Alternatively, some of these processes can be piped together:

cat a.text | text2wfreq | wfreq2vocab -top 20000 > a.vocab

cat a.text | text2idngram -vocab a.vocab |

idngram2lm -vocab a.vocab -idngram -

-binary a.binlm -spec num 5000000 15000000

echo "perplexity -text b.text" | evallm -binary a.binlm

8.4 Discounting Strategies

Discounting is the process of replacing the original counts with modified
counts so as to redistribute the probability mass from the more commonly
observed events to the less frequent and unseen events. If the actual num-
ber of occurrences of an event E (such as a bigram or trigram occurrence)
is c(E), then the modified count is d(c(E))c(E), where d(c(E)) is known as
the discount ratio.

8.4.1 Good Turing discounting

Good Turing discounting defines d(r) = (r+1)n(r+1)
rn(r)

where n(r) is the number

of events which occur r times.

The discounting is only applied to counts which occur fewer than K
times, where typically K is chosen to be around 7. This is the ”discount-
ing range” which is specified using the -disc ranges parameter of the id-
ngram2lm program.

127

For further details see ”Estimation of Probabilities from Sparse Data for
the Language Model Component of a Speech Recognizer”, Slava M. Katz, in
”IEEE Transactions on Acoustics, Speech and Signal Processing”, volume
ASSP-35, pages 400-401, March 1987.

8.4.2 Witten Bell discounting

The discounting scheme which we refer to here as ”Witten Bell discount-
ing” is that which is referred to as type C in ”The Zero-Frequency Problem:
Estimating the Probabilities of Novel Events in Adaptive Text Compres-
sion”, Ian H. Witten and Timothy C. Bell, in ”IEEE Transactions on Infor-
mation Theory, Vol 37, No. 4, July 1991”.

The discounting ratio is not dependent on the event’s count, but on
t, the number of types which followed the particular context. It defines
d(r, t) = n

(n+t)
, where n is the size of the training set in words. This is

equivalent to setting P (w|h) = c
(n+t)

(where w is a word, h is the history and

c is the number of occurrences of w in the context h), for events that have
been seen, and P (w|h) = t

(n+t)
for unseen events. Absolute discounting

Absolute discounting defines d(r) = (r−b)
r

. Typically b = n(1)
(n(1)+2n(2))

. The

discounting is applied to all counts.

This is, of course, equivalent to simply subtracting the constant b from
each count.

8.4.3 Linear discounting

Linear discounting defines d(r) = 1 − (n(1)
/

C, where C is the total number of

events. The discounting is applied to all counts.

For further details of both linear and absolute discounting, see ”On
structuring probabilistic dependencies in stochastic language modeling”,
H. Ney, U. Essen and R. Kneser in ”Computer Speech and Language”,
volume 8(1), pages 1-28, 1994.

128

Chapter 9

Search structure and Speed-up of

the speech recognizer

9.1 Introduction

Author: Arthur Chan, Ravi Mosur, Editor: Arthur Chan

[Editor Notes: This is largely adapted from Ravi Mosur’s code-walk document file.]

In this chapter, we will describe the search structure of the recognizers
in Sphinx 3 . There are several recognizers in the standard Sphinx 3 ’s
distribution package. Each of them can be used for certain particular
purpose. It is very important to understand their differences and apply
each of them correctly. For example, s3.X decode anytopo in 2004 was
designed to be used as an offline batch mode recognizer. It is designed
to be accurate and also optimization was not applied on the recognizer.
These are all done by design. If you accidentally used this recognizer for
real-time application, I am sure you will lose you client. :-)

129

9.2 Sphinx 3 .X’s recognizer general architec-

ture

Conceptually, all recognizers in Sphinx 3 .X share the the same recognition
engine. One can always view Sphinx 3 ’s search as two separated but
interelated components.

1. GMM Computation module

2. Graph Search module

At every frame, GMM computation will compute all the active GMM that
marked by the graph search module. The graph search module will make
use of the GMM scores to do the graph searching. Since there is pruning
mechanim in the search. Only part of the GMM will be found to be active
in the next frame. The information on whether the GMM is active will be
used by GMM computation module.

In a first pass system, this separation of GMM computation and search
modules are found to be very useful. The major reason is that tech-
niques can be applied to individual modules and speed performance can
be benchmarked separately. This usually provides valuable insights for
further improvement of the system

The history of the speech recognizer’s development shows that there are
two major inter-related goals of speech recognizer design. One is to opti-
mize the accuracy of speech recognizer. One is to allow an known imperfect
speech recognizer to be used in a practical scenario. Usually, this practical
scenario impose constaints to the design of the recognizer such that the
recognizer has to run in a limited amount of computation resource (such
as amount of random access memory and the computation power). For
example, NIST evaluation, a kind of competition between research sites,
requires each site to provide the best performing recognition system. This
basically requires users to fullfill the first goal. Usually, these systems are
run-in around 20x-100xRT.

Sphinx 3 , follow this guide, were implemented under similar historical
trend, the Sphinx 3 .0 recognizer (or s3slow , s3 accurate) are designed to
be an accurate but perhaps slow recognizer. In 2004, running S3 on the
Wall Street Journal 5000 Words Task require 10-12xRT of computation.
1 This is the most accurate among the Sphinx 3 ’s family of recognizers.
Whereas, Sphinx 3.X (or s3fast) can run the task in 0.94xRT with around
5% relative degradation.

15000 senones, trigram

130

It is therefore understable that why two implementations of the speech
recognition engine were happened in the first place. s3slow is always
meant for research purpose and allow the most accurate results. s3fast
is alway meant to be designed as a fast and perhaps application specific
recognizer. Hence, one found only small amount of speed optimization
technique appears in s3slow. However, one can see s3fast accept employ
different techniques in general and allow the user to choose them.

There exists customized modifications of each of the recognizers. For
example, Arthur Chan has written a version of s3 which employ fast GMM
computation. This was unfortunately not suitable to be incorporated into
the main trunk of the s3slow. One can get this information from sphinx
developer’s web page

www.cs.cmu.edu/∼archan/

The conceptual model described about is not fixed and from time to
time, we will revise it and possibly incorporate more interesting features to
the recognizers.

9.3 Importance of tuning

It is wide spread misunderstanding that a single default generic speech
models can be used in all different situations. It is also incorrect to as-
sume that the default parameters used in speech recognition is the best
in general. First-class speech recognition system was tuned intensively for
both speed and accuracy. In this chapter, apart from just describing the
principle of search. We will also describe parameters that can affect the
operation of the parameters. Internal to CMU, this parameter was tuned
through exhaustively trial and error testing using a small test set.

So how about you? We recommend you to read the following description
before you start to do tuning. Usually, tuning is done by tuning one pa-
rameter at a time. It is also possible to device a kind of multi-dimensional
search is possible for this kind of problem.

9.4 Sphinx 3 .X’s decode anytopo (or s3slow)

In one sentence, decode anytopo is a generic tri-gram speech recognizer
which accept the use of multi-stream continuous HMM with tied mixture

131

and with any topologies of the HMM. At 2004 Sep, you can get this recog-
nizer at

$ cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/cmusphinx
co archive s3/

What it means is that one can use the standard fully continuous HMM
(1-stream. tied state) or semi-continuous HMM (4-stream, tied mixture) as
an input of the model. The user is allowed to specify the grammar as the
form N-gram, It is very generic and can be used in most of the situation.

We will describe several aspects of decode anytopo in this chapter. Note
that decode anytopo doesn’t contain too much optimization in the code as
we already mentioned its purpose is more on benchmarking.

9.4.1 GMM Computation

Gaussian Mixture Model (GMM or senone in CMU’s terminology) was com-
puted as it is, usually only active GMM is computed at every frame. One
special aspect of GMM computation is that its output is a scaled integer.
Back to 1995, this is the only way that log values can be efficiently com-
puted. Internally, the code is also optimized using loop-unrolling 2. Other
than these two techniques, that is no approximation at all.

9.4.2 Search structure

The data structure for including different words in search is arranged as
flat lexicons. This is the standard way to arrange the lexicon and will not
have bad effect on accuracy as the tree lexicon (as described in Section ?).
However, not able to tied the prefixes of different words together will double
the time of traversing lattice. This is part of the reason why decode anytopo
is at least 2 times slower than decode.

The score accumulation in the search is based on integer. Again, the
reason is that computing the log value of a number is best to be done
using lookup tables when the recognizer is first implemented. Even, till
now, computing log value using standard C library is still not as fast as
integer lookup table.

2Loop unrolling is a technique in C-programming that makes try to take advantage of

parrallel scheduling in modern day central processor. It is a common way to optimize

code in a for loop

132

9.4.3 Treatment of language model

decode anytopo can take care of trigram in a single-pass search. However,
exhaustive search for full-trigram is extremely expansive because it always
requires storing the two previous words at a particular time. It will actually
caused the storage require in search to become n2 instead of n. Instead of
doing so, Sphinx 3 used so called it poor man trigram in decoding. The idea
is that for a given word wn, only store one single previous word wn−1. For
wn−2, only used the most likely previous word that derived from the Viterbi
search. In early experiment back to the date of evaluation of Wall Street
Journal (WSJ) task (93-96). This assumption is found to be a very good
approximation (less than 5% degradation of accuracy). It was therefore
employed and used until nowadays.

9.4.4 Triphone representation

[Under construction]

9.4.5 Viteri Pruning

Although decode anytopo is designed to be used for evaluation, it also
implemented standard pruning feature in the search. Major reason is that
people long realized that fully exhaustive Viterbi search will search a lot of
very unlikely paths. Viterbi Pruning is the simplest and the most effective
way to reduce the number of paths search.

There are two beams used in decodeanytopo,

• -beam Main pruning beam applied to triphones in forward search

• -nwbeam Pruning beam applied in forward search upon word exit

9.4.6 Search Tuning

There are several important parameters in the search that can affect the
accuracy.

• -langwt Language weight: empirical exponent applied to LM probaby

133

• -ugwt LM unigram weight: unigram probs interpolated with unifodis-
tribution with this weight

• -inspen Word insertion penalty

• -silpen Language model ’probability’ of silence word

• -noisepen Language model ’probability’ of each non-silence filler d

• -fillpenfn Filler word probabilities input file (used in place of -pen
and -noisepen)

9.4.7 2-nd pass Search

One can used decode anytopo to become a building block of what so called
the multi-pass system. This is based on generating a word lattice of hy-
pothesis instead of generating a single hypothesis. Then rescoring is done
based on the lattice. The options that control this properties are,

• -bestpath Whether to run bestpath DAG search after forward Viterss

• -dagfudge (0..2); 1 or 2: add edge if endframe == startframe; 2:tart ==
end-1

• -bestpathlw Language weight for bestpath DAG search (default: same-
langwt)

• -inlatdir Input word-lattice directory with per-utt files for reting words
searched

• -inlatwin Input word-lattice words starting within +/- ¡this arg¿ of
current frame considered during search

• -outlatdir Directory for writing word lattices (one file/utterancptional
,NODES suffix to write only the nodes

• -latext Word-lattice filename extension (.gz or .Z extension fmpres-
sion)

• -bestscoredir Directory for writing best score/frame (used to set beth;
one file/utterance)

We will describe the behavior of 2-nd pass search in the Section ?.

134

9.4.8 Debugging

There are many situations you would like to get internal information of the
Sphinx 3 .0’s recognizer.

• -hmmdumpsf Starting frame for dumping all active HMMs (for de-
buggiagnosis/analysis)

• -worddumpsf Starting frame for dumping all active words (for debug-
diagnosis/analysis)

• -logfn Log file (default stdout/stderr)

• -backtrace Whether detailed backtrace information (word segmentat-
cores) shown in log

9.5 Sphinx 3 .X’s decode (aka s3 fast)

The so called Sphinx 3 .X’s decode or s3fast was implemented 4 years after
implementation of decode anytopo. The major motivation in those days
was to allow a recognizer can be ran in less than 10xRT for the Broadcast
News task. This target is fullfilled in those days and it is estimated that
with proper tuning, broadcast news may be able to performed under less
than 1xRT in within the next 5 years even using single-pass search. 3

At 2004, it will be safe to assume that the 1-pass search can be tuned
to speed less than 1xRT for system with less than 10000 words with LM
perplexity around 80.

The major reason why it can be much faster than decode anytopo is
because many techniques have been applied to speed-up the search. This
section will describe each of these techniques in detail.

9.6 Architecture of Search in decode

Author: Ravi Mosur and Arthur Chan, Editor: Arthur Chan

[Editor Notes: this part largely copied from Ravi’s sphinx 3.3 codewalk]

3Writing at 2004 Sep, at that time, a PC equipped with 3G Pentium can produce 3-

4xRT performance in s3.X

135

9.6.1 Initialization

The decoder is configured during the initialization step, and the configu-
ration holds for the entire run. This means, for example, that the decoder
does not dynamically reconfigure the acoustic models to adapt to the in-
put. To choose another example, there is no mechanism in this decoder to
switch language models from utterance to utterance, unlike in Sphinx 2 .
The main initialization steps are outlined below.

Log-Base Initialization. Sphinx 3 performs all likelihood computations
in the log-domain. Furthermore, for computational efficiency, the base
of the logarithm is chosen such that the likelihoods can be maintained
as 32-bit integer values. Thus, all the scores reported by the decoder
are log-likelihood values in this peculiar log-base. The default base is
typically 1.0003, and can be changed using the -logbase configuration
argument. The main reason for modifying the log-base would be to control
the length (duration) of an input utterance before the accumulated log-
likelihood values overflow the 32-bit representation, causing the decoder
to fail catastrophically. The log-base can be changed over a wide range
without affecting the recognition.

Models Initialization: The lexical, acoustic, and language models speci-
fied via the configuration arguments are loaded during initialization. This
set of models is used to decode all the utterances in the input. (The lan-
guage model is actually only partly loaded, since s3.X uses a disk-based
LM strategy. Though it is also possible to load the LM into memory by
setting -lminmemory to 1)

Effective Vocabulary: After the models are loaded, the effective vocab-
ulary is determined. It is the set of words that the decoder is capable
of recognizing. Recall that the decoder is initialized with three sources
of words: the main and filler lexicon files, and the language model. The
effective vocabulary is determined from them as follows:

• Find the intersection of the words in the LM and the main pronunci-
ation lexicon

• Include all the alternative pronunciations to the set derived above
(using the main lexicon

• Include all the filler words from the filler lexicon, but excluding the
distinguished beginning and end of sentence words: <s> and </s>.

The effective vocabulary remains in effect throughout the batch run.
Currently, it is not possible to add to or remove from this vocabulary dy-
namically, unlike in the Sphinx 3 system.

136

9.6.2 Lexicon representation

A pronunciation lexicon (or dictionary) file specifies word pronunciations.
In Sphinx 3 , pronunciations are specified as a linear sequence of phonemes.
Each line in the file contains one pronunciation specification, except that
any line that begins with a ”#” character in the first column is treated as a
comment and is ignored. Example dictionary for digits:

ZERO Z IH R OW

ONE W AH N

TWO T UW

THREE TH R IY

FOUR F AO R

FIVE F AY V

SIX S IH K S

SEVEN S EH V AX N

EIGHT EY TD

NINE N AY N

The lexicon is completely case-insensitive (unfortunately). For example,
it’s not possible to have two different entries Brown and brown in the
dictionary. Multiple Pronunciations

A word may have more than one pronunciation, each one on a separate
line. They are distinguished by a unique parenthesized suffix for the word
string. For example:

ACTUALLY AE K CH AX W AX L IY

ACTUALLY(2nd) AE K SH AX L IY

ACTUALLY(3rd) AE K SH L IY

If a word has more than one pronunciation, its first appearance must
be the unparenthesized form. For the rest, the parenthesized suffix may
be any string, as long as it is unique for that word. There is no other
significance to the order of the alternatives; each one is considered to be
equally likely. Compound Words

In Sphinx 3 , the lexicon may also contain compound words. A com-
pound word is usually a short phrase whose pronunciation happens to
differ significantly from the mere concatenation of the pronunciations of
its constituent words. Compound word tokens are formed by concatenat-
ing the component word strings with an underscore character; e.g.:

137

WANT TO W AA N AX

(The s3.X decoder, however, treats a compound word as just another
word in the language, and does not do anything special with it.)

Tree representation

The decoder constructs lexical trees from the effective vocabulary described
above. Separate trees are constructed for words in the main and filler
lexicons. Furthermore, several copies may be instantiated for the two,
depending on the -Nlextree configuration argument.

The lexical tree representation is motivated by the fact that Most active
HMMs are word-initial models, decaying rapidly subsequently. e.g. On
60K-word Hub-4 task, 55word-initial. But, no. of distinct word-initial
model types are much fewer:

START S-T-AA-R-TD

STARTING S-T-AA-R-DX-IX-NG

STARTED S-T-AA-R-DX-IX-DD

STARTUP S-T-AA-R-T-AX-PD

START-UP S-T-AA-R-T-AX-PD

Therefore, it makes sense to use so called the prefix-tree to represent
the lexicon and maximizing sharing among words

[Under construction] [Insert p.21 of Ravi’s slides at here]

Triphone representation

[Under construction] [Insert p.22 and p.23 of Ravi’s slides at here]

Integration with language model

[Under construction] [Insert p.24-32 of Ravi’s slides at here]

LM lookahead

One of the key of fast search is to make sure high level information can be
used as soon as possible. Here comes the idea of

138

Unigram LM probability is factored into the tree using technique [Need
to create. described in Spoken Language Dialogue

9.6.3 Language model

The main language model (LM) used by the Sphinx decoder is a conven-
tional bigram or trigram backoff language model. The CMU-Cambridge LM
Toolkit is capable of generating such a model from LM training data. Its
output is an ascii text file. But a large text LM file can be very slow to load
into memory. To speed up this process, the LM must be compiled into a
binary form. The code to convert from an ascii text file to the binary format
is available at SourceForge in the CVS tree, in a module named share.

Unigrams, Bigrams, Trigrams, LM Vocabulary

A trigram LM primarily consists of the following:

• Unigrams: The entire set of words in this LM, and their individual
probabilities of occurrence in the language. The unigrams must in-
clude the special beginning-of-sentence and end-of-sentence tokens:
<s>, and </s> respectively.

• Bigrams: A bigram is mathematically P(word2 — word1). That is, the
conditional probability that word2 immediately follows word1 in the
language. An LM typically contains this information for some subset
of the possible word pairs. That is, not all possible word1 word2 pairs
need be covered by the bigrams.

• Trigrams: Similar to a bigram, a trigram is P(word3 — word1, word2),
or the conditional probability that word3 immediately follows a word1
word2 sequence in the language. Not all possible 3-word combina-
tions need be covered by the trigrams.

The vocabulary of the LM is the set of words covered by the unigrams.

The LM probability of an entire sentence is the product of the individual
word probabilities. For example, the LM probability of the sentence ”HOW
ARE YOU” is:

P(HOW — <s>) *

P(ARE — <s>, HOW) *

P(YOU — HOW, ARE) *

139

P(</s> — ARE, YOU)

Pronunciation and Case Considerations

In Sphinx 3 , the LM cannot distinguish between different pronunciations
of the same word. For example, even though the lexicon might contain two
different pronunciation entries for the word READ (present and past tense
forms), the language model cannot distinguish between the two. Both pro-
nunciations would inherit the same probability from the language model.

Secondly, the LM is case-insensitive. For example, it cannot contain
two different tokens READ and read.

The reasons for the above restrictions are historical. Precise pronunci-
ation and case information has rarely been present in LM training data. It
would certainly be desirable to do away with the restrictions at some time
in the future.

Binary LM File

The binary LM file (also referred to as the LM dump file) is more or less
a disk image of the LM data structure constructed in memory. This data
structure was originally designed during the Sphinx 2 days, when efficient
memory usage was the focus. In Sphinx 3 , however, memory usage is
no longer an issue since the binary file enables the decoder to use a disk-
based LM strategy. That is, the LM binary file is no longer read entirely
into memory. Rather, the portions required during decoding are read in
on demand, and cached. For large vocabulary recognition, the memory
resident portion is typically about 10-20the bigrams, and 5-10

Since the decoder uses a disk-based LM, it is necessary to have efficient
access to the binary LM file. Thus, network access to an LM file at a remote
location is not recommended. It is desirable to have the LM file be resident
on the local machine.

The binary dump file can be created from the ascii form using the
lm3g2dmp utility, which is part of the Sphinx 2 distribution, and also
available as standalone code, as mentioned before. (The header of the
dump file itself contains a brief description of the file format.)

140

Silence and Filler Words

Language models typically do not cover acoustically significant events such
as silence, breath-noise, UM or UH sounds made by a person hunting for
the right phrase, etc. These are known generally as filler words, and are
excluded from the LM vocabulary. The reason is that a language model
training corpus, which is simply a lot of text, usually does not include
such information.

Since the main trigram LM ignores silence and filler words, their ”lan-
guage model probability” has to be specified in a separate file, called the
filler penalty file. The format of this file is very straightforward; each line
contains one word and its probability, as in the following example:

++UH++ 0.10792

++UM++ 0.00866

++BREATH++ 0.00147

The filler penalty file is not required. If it is present, it does not have to
contain entries for every filler word. The decoder allows a default value to
be specified for filler word probabilities (through the -fillprob configuration
argument), and a default silence word probability (through the -silprob
argument).

Like the main trigram LM, filler and silence word probabilities are ob-
tained from appropriate training data. However, training them is consid-
erably easier since they are merely unigram probabilities.

Filler words are invisible or transparent to the trigram language model.
For example, the LM probability of the sentence ”HAVE CAR <sil> WILL
TRAVEL” is:

P(HAVE — <s>) *

P(CAR — <s>, HAVE) *

P(<sil>) *

P(WILL — HAVE, CAR) *

P(TRAVEL — CAR, WILL) *

P(</s> — WILL, TRAVEL)

Language Weight and Word Insertion Penalty

During recognition the decoder combines both acoustic likelihoods and
language model probabilities into a single score in order to compare vari-

141

ous hypotheses. This combination of the two is not just a straightforward
product. In order to obtain optimal recognition accuracy, it is usually nec-
essary to exponentiate the language model probability using a language
weight before combining the result with the acoustic likelihood. (Since
likelihood computations are actually carried out in the log-domain in the
Sphinx decoder, the LM weight becomes a multiplicative factor applied to
LM log-probabilities.)

The language weight parameter is typically obtained through trial and
error. In the case of Sphinx, the optimum value for this parameter has
usually ranged between 6 and 13, depending on the task at hand.

Similarly, though with lesser impact, it has also been found useful to
include a word insertion penalty parameter which is a fixed penalty for
each new word hypothesized by the decoder. It is effectively another multi-
plicative factor in the language model probability computation (before the
application of the language weight). This parameter has usually ranged
between 0.2 and 0.7, depending on the task.

9.6.4 Pruning

Each entry in the control file, or utterance, is processed using the given
input models, and using the Viterbi search algorithm. In order to constrain
the active search space to computationally manageable limits, pruning is
employed, which means that the less promising hypotheses are continually
discarded during the recognition process. There are two kinds of pruning
in s3.X, beam pruning and absolute pruning.

Viterbi Pruning or Beam Pruning

Each utterance is processed in a time-synchronous manner, one frame
at a time. At each frame the decoder has a number of currently active
HMMs to match with the next frame of input speech. But it first discards
or deactivates those whose state likelihoods are below some threshold,
relative to the best HMM state likelihood at that time. The threshold value
is obtained by multiplying the best state likelihood by a fixed beamwidth.
The beamwidth is a value between 0 and 1, the former permitting all HMMs
to survive, and the latter permitting only the best scoring HMMs to survive.

Similar beam pruning is also used in a number of other situations in
the decoder, e.g., to determine the candidate words recognized at any time,
or to determine the component densities in a mixture Gaussian that are

142

closest to a given speech feature vector. The various beamwidths have to
be determined empirically and are set using configuration arguments.

Histogram Pruning or Absolute Pruning

Absolute Pruning. Even with beam pruning, the number of active entities
can sometimes become computationally overwhelming. If there are a large
number of HMMs that fall within the pruning threshold, the decoder will
keep all of them active. However, when the number of active HMMs grows
beyond certain limits, the chances of detecting the correct word among the
many candidates are considerably reduced. Such situations can occur, for
example, if the input speech is noisy or quite mismatched to the acoustic
models. In such cases, there is no point in allowing the active search space
to grow to arbitrary extents. It can be contained using pruning parameters
that limit the absolute number of active entities at any instant. These
parameters are also determined empirically, and set using configuration
arguments.

• -beam: Determines which HMMs remain active at any given point
(frame) during recognition. (Based on the best state score within each
HMM.)

• -pbeam: Determines which active HMM can transition to its succes-
sor in the lexical tree at any point. (Based on the exit state score of
the source HMM.)

• -wbeam: Determines which words are recognized at any frame during
decoding. (Based on the exit state scores of leaf HMMs in the lexical
trees.)

• -maxhmmpf: Determines the number of HMMs (approx.) that can
remain active at any frame.

• -maxwpf: Controls the number of distinct words recognized at any
given frame.

• -maxhistpf: Controls the number of distinct word histories recorded
in the backpointer table at any given frame.

• -subvqbeam: For each senone and its underlying acoustic model,
determines its active mixture components at any frame.

In order to determine the pruning parameter values empirically, it is
first necessary to obtain a test set, i.e., a collection of test sentences not

143

used in any training data. The test set should be sufficiently large to
ensure statistically reliable results. For example, a large-vocabulary task
might require a test set that includes a half-hour of speech, or more.

It is difficult to tune a handful of parameters simultaneously, especially
when the input models are completely new. The following steps may be
followed to deal with this complex problem.

1. To begin with, set the absolute pruning parameters to large values,
making them essentially ineffective. Set both -beam and -pbeam to
1e-60, and -wbeam to 1e-30. Set -subvqbeam to a small value (e.g.,
the same as -beam). Run the decoder on the chosen test set and
obtain accuracy results. (Use default values for the LM related pa-
rameters when tuning the pruning parameters for the first time.)

2. Repeat the decoder runs, varying -beam up and down, until the set-
ting for best accuracy is identified. (Keep -pbeam the same as -beam
every time.)

3. Now vary -wbeam up and down and identify its best possible set-
ting (keeping -beam and -pbeam fixed at their most recently obtained
value).

4. Repeat the above two steps, alternately optimizing -beam and -wbeam,
until convergence. Note that during these iterations -pbeam should
always be the same as -beam. (This step can be omitted if the accu-
racy attained after the first iteration is acceptable.)

5. Gradually increase -subvqbeam (i.e., towards 1.0 for a narrower set-
ting), stopping when recognition accuracy begins to drop noticeably.
Values near the default are reasonable. (This step is needed only if
a sub-vector quantized model is available for speeding up acoustic
model evaluation.)

6. Now gradually increase -pbeam (i.e., towards 1.0), stopping when
recognition accuracy begins to drop noticeably. (This step is optional;
it mainly optimizes the computational effort a little more.)

7. Reduce -maxhmmpf gradually until accuracy begins to be affected.
Repeat the process with -maxwpf, and then with -maxhistpf. (How-
ever, in some situations, especially when the vocabulary size is small,
it may not be necessary to tune these absolute pruning parameters.)

In practice, it may not always be possible to follow the above steps
strictly. For example, considerations of computational cost might dic-
tate that the absolute pruning parameters or the parameters of the GMM

144

computation first. Lets assume if we use Sub-vector quantization as the
GMM computation technique. The following is a practical way to tune the
paramters. 4

9.6.5 Phoneme look-ahead

[Add Jahanzeb’s idea of phoneme lookahead at here.]

9.7 Architecture of GMM Computation in de-

code

The technique described in this section can be found in “Four-Level Cate-
gorization Scheme of Fast GMM Computation Techniques in Large Vocab-
ulary Continuous Speech Recognition Systems” by Arthur Chan. One can
treat the computation of GMM as a 4-level process.

• Frame-level

• GMM-level

• Gaussian-level

• Component-level

Approximation can be done at every level such that accuracy will not
be sacrificed. Several techniques were implemented in Sphinx

9.7.1 Frame-level optimization

Algorithms that decide whether a frame’s GMM scores should be computed
or skipped are categorized as frame-layer algorithms. In our discussion, we
will assume the score of a skipped frame will be copied from the most re-
cently computed frame.5 The simplest example is to compute frame scores

420040927(Arthur): This section is copied from Ravi’s codewalk. it will later be ex-

panded such that -ci pbeam , -ds will also be employed and used for tuning.
5This implementation can preserve transition information.

145

only every other frame, which we call this simple down-sampling (SDS).
One can apply this technique in Sphinx 3 .X, by specifying -ds N.

Other than SDS, we also evaluate another scheme in which a VQ code-
book is trained from all means of GMMs of a set of trained acoustic mod-
els. Then, in decoding, every frame’s feature vector is quantized using that
codebook. A frame is skipped only if its feature vector was quantized to
a codeword which is the same as that of the previous frame. We call this
method VQ-based Down-Sampling (VQDS). This can be used by -cond ds,
if this flag is specified, flag -gs is necessary to be applied.

Comparatively speaking, SDS provide more gain in speed but cause
some degradation and it is very ideal for user who seek for speed.

9.7.2 GMM-level optimization

Algorithms that ignore some GMMs in the computation in each computed
frame are assigned to the GMM-layer. One representative technique is
context-independent (CI) GMM-based GMM selection (CIGMMS) experi-
mented by Lee et al. in Julius. Briefly the algorithm can be implemented
as follows.At every frame, CI GMMs’ scores are first computed and a beam
is applied to these scores. For all context-dependent (CD) GMMs, if the
corresponding CI GMM’s score is within the beam, compute the detail CD
GMM’s score. If not, the CD GMM’s score is backed-off by the correspond-
ing CI GMM’s score.

This scheme is highly effective in reducing GMM computation. However,
because some scores are backed-off, they become the same when they are
fed into the search module. As a consequence, beam pruning becomes
less effective.

This technique can be used by specified -ci pbeam. The range can be
specified is between 10−5 to 10−80.

9.7.3 Gaussian-level optimization : VQ-based Gaussian

Selection and SVQ-based Gaussian Selection

Usually only a few Gaussians will dominate the likelihood of a GMM and
different techniques are used to decide which Gaussian dominates the
likelihood computation. We categorize these techniques as part of the
Gaussian layer. Generally a rough model, either vector-quantizer (VQ)

146

sub-vector-quantizer(SVQ) or kd-tree is first used to decide which Gaus-
sian should be computed in the GMM. Hence, these techniques are also
called Gaussian selection.

The major issue in using any Gaussian selection techniques is the need
to trade-off between rough model computation (e.g. the VQ codebook)
and accuracy degradation. Usually, a more detailed model (e.g., a higher-
ordered VQ codebook) gives better accuracy, but results in more compu-
tation.

Usually, the neigborhood for a particular code word is computed by
thresholding the distance of Gaussian mean from the codeword. (cite
Bochierri’s paper). The consequence of using this scheme is that there
will be cases which a neigborhood contains no Gaussian at all. Hence, in
work by Gales et. al. , it is suggested that one could fix this problem by
setting a minimum number of Gaussian in a certain neigborhood. Note
that in work by Douglas (cite in Douglas’s work) suggested that instead
of using the code word as a reference point of deciding the neighborhood,
one could use the closest Gaussian’s mean as the reference point. In this
case, one can always use the closest point as one of the Gaussian in the
neighborhood.

One can use -gsfn to specify the gaussian selector map. The Gaussian
selector map can be generated by gselect.

In Sphinx 3 .X, we focused on two techniques which made use of sim-
ple VQ as a Gaussian selector (VQGS) and SVQ as a Gaussian selector
(SVQGS). We ignored tree-based techniques because of the practical diffi-
culty in then applying adaptation techniques such as Maximum Likelihood
Linear Regression (MLLR). One can use -svqfn to specify sub-VQ map. The
sub-vector quantization can be generated by gausubvq.

9.7.4 Gaussian/Component-level optimization : Sub-vector

quantization

As in the full-feature space, the distribution of features in a projection
of the full-space (or subspace) can be approximated as a GMM. The full-
space likelihood can thus be obtained by summing individual sub-spaces
likelihood. Similar to situation in the full-space, only few Gaussians will
dominate the subspace likelihood in a particular subspace. Therefore,
techniques can be used to choose the best Gaussians in individual sub-
spaces and combined them. We categorize algorithms which make use of
this fact to be component-layer algorithm. We will focus one representa-
tive technique in this layer, sub-vector quantization (SVQ) in which VQ

147

was used as a Gaussian selector in subspaces.

The sub-vector quantization can be generated by gausubvq,

$ gausubvq

-mean ./hub4 cd continuous 8gau 1s c d dd/means

-var ./hub4 cd continuous 8gau 1s c d dd/variances

-mixw ./hub4 cd continuous 8gau 1s c d dd/mixture weights

-svspec 0-38

-iter 20

-svqrows 16

-subvq svq.out

in a file called svq.out. This can be used in decode

9.7.5 Interaction between different level of optimization

Our categorization scheme results in a layered architecture for GMM com-
putation and many fast GMM techniques can be categorized into one of the
layers 6. The advantage of this scheme is that one can follow a conceptual
model when implementing different algorithms. It also simplifies the stud-
ies of interaction of different schemes. For example, once we understand
that two techniques are in the same-layer (such as VQGS and SVQGS), we
will probably not want to implement them in the same system, as that can
only result in higher overhead.

9.7.6 Related tools, gs select, gs view, gausubvq

[To be completed]

9.7.7 Interaction between GMM computation and search

routines in Sphinx 3 .X

The performance of fast GMM computation techniques is usually less ef-
fective when a tighter beam is used in search. From the perspective of our

6We also note that some techniques has the characteristics of multiple layers.

148

conceptual model, pruning can be regarded as a GMM-layer algorithm,
and as such, only affects the layers above, namely, the GMM and frame
layers.

We summarize the effect below.

Relationship with Frame-Layer: We assume skipped frames’ scores are
copied from previous frames’ scores. However, the search module will
decide whether a clustered-GMM is active or not based on pruning. There
will be problematic situations where some GMMs are active in the current
frame but deactivated in previous frame. Hence, recomputation of active
states is necessary. When the beam is tight, recomputation can be time-
consuming and can cancel out the computation gain obtained from down-
sampling.7

Relationship with GMM-Layer: As the GMM’s scores will feed into the
search module, one observation is that if CIGMMS applied, the search time
increases. If the CI scores’ beam (mentioned in Section [Editor Notes: Need to find the section this refers to]

is tight, CIGMMS will cause many CD-GMMs’ scores to be the same and
also narrows the range of scores. Hence, the search module will be more
computationally intensive. In practice, this problem can be solved by tight-
ening the Viterbi beam.

9.8 Overall search structure of decode

In the last two sections, we described the search and the GMM compu-
tation. The following algorithm provides a unified point of view of what’s
going on.

Initialize start state of <s> with path-score = 1;

[To be completed]

find final </s> BP table entry and back-trace through table to retrieve
result;

7One can also deactivate the state. However, in our preliminary experiment, we found

that deactivation can result in no valid paths at the final frame.

149

9.9 Multi-pass systems using Sphinx 3 .X

9.9.1 Word Lattice

During recognition the decoder maintains not just the single best hypoth-
esis, but also a number of alternatives or candidates. For example, REED
is a perfectly reasonable alternative to READ. The alternatives are useful
in many ways: for instance, in N-best list generation. To facilitate such
post-processing, the decoder can optionally produce a word lattice output
for each input utterance. This output records all the candidate words rec-
ognized by the decoder at any point in time, and their main attributes such
as time segmentation and acoustic likelihood scores.

The term ”lattice” is used somewhat loosely. The word-lattice is really a
directed acyclic graph or DAG. Each node of the DAG denotes a word in-
stance that begins at a particular frame within the utterance. That is, it is
a unique ¡word,start-time¿ pair. (However, there could be a number of end-
times for this word instance. One of the features of a time-synchronous
Viterbi search using beam pruning is that word candidates hypothesized
by the decoder have a well-defined start-time, but a fuzzy range of end-
times. This is because the start-time is primarily determined by Viterbi
pruning, while the possible end-times are determined by beam pruning.)

There is a directed edge between two nodes in the DAG if the start-time
of the destination node immediately follows one of the end times of the
source node. That is, the two nodes can be adjacent in time. Thus, the
edge determines one possible segmentation for the source node: beginning
at the source’s start-time and ending one frame before the destination’s
start-time. The edge also contains an acoustic likelihood for this particular
segmentation of the source node.

Note: The beginning and end of sentence tokens, <s> and </s>, are
not decoded as part of an utterance by the s3.X decoder. However, they
have to be included in the word lattice file, for compatibility with the older
Sphinx 3 decoder software. They are assigned 1-frame segmentations,
with log-likelihood scores of 0. To accommodate them, the segmentations
of adjacent nodes have to be ”fudged” by 1 frame.

Word Lattice File Format

A word lattice file essentially contains the above information regarding the
nodes and edges in the DAG. It is structured in several sections, as follows:

150

1. A comment section, listing important configuration arguments as
comments

2. Frames section, specifying the number of frames in utterance

3. Nodes section, listing the nodes in the DAG

4. Initial and Final nodes (for <s> and </s>, respectively)

5. BestSegAscr section, a historical remnant now essentially empty

6. Edges section, listing the edges in the DAG

The file is formatted as follows. Note that any line in the file that begins
with the # character in the first column is considered to be a comment.

getcwd: <current-working-directory>

-logbase <logbase-in-effect>

-dict <main lexicon>

-fdict <filler lexicon>

... (other arguments, written out as comment lines)

#

Frames <number-of-frames-in-utterance>

#

Nodes <number-of-nodes-in-DAG> (NODEID WORD STARTFRAME FIRST-
ENDFRAME LAST-ENDFRAME)

<Node-ID> <Word-String> <Start-Time> <Earliest-End-time> <Latest-
End-Time>

<Node-ID> <Word-String> <Start-Time> <Earliest-End-time> <Latest-
End-Time>

<Node-ID> <Word-String> <Start-Time> <Earliest-End-time> <Latest-
End-Time>

... (for all nodes in DAG)

#

Initial <Initial-Node-ID>

Final <Final-Node-ID>

#

BestSegAscr 0 (NODEID ENDFRAME ASCORE)

#

151

Edges (FROM-NODEID TO-NODEID ASCORE)

<Source-Node-ID> <Destination-Node-ID> <Acoustic Score>

<Source-Node-ID> <Destination-Node-ID> <Acoustic Score>

<Source-Node-ID> <Destination-Node-ID> <Acoustic Score>

... (for all edges in DAG) End

Note that the node-ID values for DAG nodes are assigned sequentially,
starting from 0. Furthermore, they are sorted in descending order of their
earliest-end-time attribute.

9.9.2 astar

Given a lattice, the program astar is able to generate the N-best results.

In the following example, a file name abc.lat is generated in a directory
./an4/ . The following command will rescore generate the N-Best list for
each of these lattice.

$ src/programs/astar

-mdeffn ./hub4 cd continuous 8gau 1s c d dd/hub4opensrc.6000.mdef

-fdict ./filler.dict

-dict ./an4.dict

-lm ./an4.ug.lm.DMP

-langwt 13.0

-inspen 0.2

-ctlfn ./an4.ctl

-inlatdir ./an4/

-logbase 1.0003

-backtrace 1

9.9.3 dag

Given a lattice, the program dag is able to get the best path through the
lattice.

$ src/programs/dag

-mdef hub4 cd continuous 8gau 1s c d dd/hub4opensrc.6000.mdef

152

-fdict filler.dict

-dict an4.dict

-lm an4.ug.lm.DMP

-lw 13.0

-wip 0.2

-ctl an4.ctl

-inlatdir an4/

-logbase 1.0003

-backtrace

The usage of dag is very similar to astar. Please consult the manual for
astar.

9.10 Other tools inside S3.X packages

9.10.1 align

This tool can create phone-level alignment given the transcription. The
tool will guess the timing information for each word in the transcription.

For example:

$ align

-logbase 1.0003

-mdef ./hub4opensrc.6000.mdef

-mean ./means

-var ./variances

-mixw ./mixture weights

-tmat ./transition matrices

-feat 1s c d dd

-topn 1000

-beam 1e-80

-senmgaufn .cont.

-fdict .//model/lm/an4/filler.dict

153

-dict .//model/lm/an4/an4.dict

-ctl .//model/lm/an4/an4.ctl

-cepdir .//model/lm/an4/

-insent .//model/lm/an4/align.correct

-outsent @.out

-wdsegdir ./

-phsegdir ./

9.10.2 allphone

This tool can do generate the best phoneme sequence that matches a wave
forms.

Example.

$ allphone

-logbase 1.0003

-mdeffn ./hub4opensrc.6000.mdef

-meanfn ./means

-varfn ./variances

-mixwfn ./mixture weights

-tmatfn ./transition matrices

-feat 1s c d dd

-topn 1000

-beam 1e-80

-senmgaufn .cont.

-ctlfn ./an4.ctl

-cepdir ./an4/

-phsegdir ./

154

9.11 Using the Sphinx 3 decoder with semi-continuous

and continuous models

There are two flags which are specific to the type of model being used,
the rest of the flags are independent of model type. The flags you need to
change to switch from continuous models to semi-continuous ones are:

• the -senmgaufn flag would change from ”.cont.” to ”.semi.”

• the -feat flag would change from the feature you are using with con-
tinuous models to the feature you are using with the semicontinuous
models (usually it is s3 1x39/1s c d dd for continuous models and
s2 4x for semi-continuous models)

Some of the other decoder flags and their usual settings are as follows:

-logbase 1.0001

-bestpath 0

-mdef $mdef

-senmgau .cont.

-mean ACMODDIR/means

-var ACMODDIR/variances

-mixw ACMODDIR/mixture weights

-tmat ACMODDIR/transition matrices

-langwt 10.5

-feat s3 1x39

-topn 32

-beam 1e-80

-nwbeam 1e-40

-dict dict

-fdict fdict

-fillpen fillpen

-lm lmfile

-inspen 0.2

-ctl ctl

155

-ctloffset ctloffset

-ctlcount ctlcount

-cepdir cepdir

-bptblsize 400000

-matchseg matchfile

-outlatdir outlatdir

-agc none

-varnorm yes

156

Chapter 10

Speaker Adaptation using Sphinx

3

[Editor Notes: Need more math.]

10.1 Speaker Adaptation

Author: David Huggins-Daines, Arthur Chan, Editor: Arthur Chan

In the previous chapters, various tools for creating acoustic model and
language model for a speech application were introduced. One problem of
the maximum likelihood framework used in SphinxTrain is that if there
are mismatch between the training and testing conditions, the recognition
rate will be significantly affected.

There are several sources of mismatch:

1. Environmental Mismatches The influence of additive and convolu-
tive noise can significantly change the characteristics of the acoustic
models.

2. Speaker Variabilities Inter-speaker variabilities of speech, e.g. Speaker
A and Speaker B will utter the same word with very different acoustic
characteristics.

157

3. Language Mismatches The difference of usage in the training and
testing corpora can reduce the power of the language model in decod-
ing.

In this chapter, we will discuss techniques of speaker adaptation pro-
vided by SphinxTrain and Sphinx 3 . This chapter currently discusses
only acoustic model adaptation, which can alleviate the first two problems
mentioned above, but not the third.

10.2 Different Principles of Speaker Adaptation

10.2.1 In terms of the mode of collecting adaptation data

Generally, speaker adaptation assumes that an acoustic model already
exists and a new set of adaptation data is available. This new set of adap-
tation can be collected by asking the users to speak following a predefined
transcription. This is called supervised adaptation. The process of col-
lecting data for adaptation is usually called “enrollment”.

The process of enrollment can be tedious and time-consuming and
many users dislike it. In some applications, it is also impossible to al-
low such a design. For example, for telephony applications, users may be
travelling while they make the calls. Asking the users to provide enroll-
ment data can be very annoying.

However, supervised adaptation has its advantages. The performance
of the adapted system is usually better because the transcription is known.
Therefore, a lot of systems such as dictation usually ask for users to give 5
minutes to 30 minutes of enrollment data (sometimes more). This usually
gives much better results.

As opposed to supervised adaptation, unsupervised adaptation at-
tempts to determine the transcription by using an automatic speech rec-
ognizer. This avoids the need for enrollment. However, the performance
of the resulting adaptation will usually be poorer because it is inevitable
that the speech recognizer will make some mistakes in determining the
transcription.

So which way to go? The choise of using supervised and unsupervised
adaptation depends on many human factors. Major one is whether the
user is patient enough to give enrollment data. In terms of performance, it
can be very hard to forsee how much gain one can get from speaker adap-
tation. Usually, the number is relatively 5-15unsupervised adaptation, the

158

accuracy can even end up worse than the original system. Therefore, the
use of each of these modes of adaptation should be a subject of serious
consideration.

10.2.2 In terms of technique of parameter estimation

There are two major ways to do speaker adaptations. One is the so called
“maximum a-posterior” (MAP) re-estimation of the parameters. One is
maximum likelihood linear regression (MLLR).

We will mainly discuss speaker adaptation using MLLR. The use of re-
gression analysis to find the best linear (or non-linear) relation between
two sets of data is well-known. Linear regression consists of trying to find
the terms A and b in the following set of equations:

y = Ax + b

The standard way of solving this problem is using the least minimum
square estimate (LMSE) method. Maximum likelihood linear regression
basically put linear regression into the Baum-Welch estimation framework.
The consequence of this technique is that the transform that is estimated
is optimal according to the maximum likelihood criterion. 1

The use of MLLR allows speaker adaptation of all phonemes even if
there is only few utterances of adaptation data. In such a case, all the
data will be used to estimate a single tranformation matrix. This also adds
some robustness to incorrect transcriptions, making MLLR suitable for
unsupervised adaptation even with fairly noisy data.

The problem of single-transformation MLLR is that each phone usually
has different acoustic characteristic and the transformations are usually
different. Therefore, in order to make more efficient use of the adaptation
data, it is necessary to allow different phones to have their own speaker
adaptation matrix, or to tie data from different phones together and create
the same transformation matrix for them. Usually, this technique is called
multiple regression classes.

In practice, how many regression classes should be used is usually
determined by validation using testing data.

1The term “regression” means “going back to the linear relation” when it first used by

Fisher. (Is that true?)

159

MAP adaptation is really a variant of the acoustic model training proce-
dure. The standard Baum-Welch algorithm results in a maximum like-
lihood estimate of the HMM model parameters given the training data
and an initial model, which serves only to fill in the “hidden” data in the
re-estimation formula (i.e. the state sequence and observation counts).
The MAP technique extends this to produce a maximum a-posteriori es-
timate, where re-estimation takes into account the prior distribution of
the model parameters, which in the case of speaker adaptation is (or
can be directly calculated from) the parameters of the baseline, speaker-
independent model.

In the case where only the means are adapted (which is sufficient for
continuous density HMMs), this can be simplified to an interpolation be-
tween the baseline acoustic mean and the ML estimate of the adaptation
data, weighted by the observation count of the adaptation data and the
variance of the baseline and adaptation data models. Intuitively, we move
the parameters for each senone observed in the adaptation data such that
we maximize the likelihood of the adaptation data, while at the same time
minimizing the variance.

10.3 MLLR with SphinxTrain

This section describes the use of the procedure of using speaker adapta-
tion facilities of Sphinx. Sphinx provides facilities for supervised adapta-
tion.

1. Given a previous acoustic model and new set of adaptation data. bw
(refer to Chapter ?) is first used to collect the sufficient statistics
count. For MLLR, what we need is just to have the mean vector. For
MAP, we need the mean, variance, and optionally also the mixture
weights and transition matrices.

2. Estimate the transformation matrix using the program mllr solve.

3. Apply the transformation to the mean vector

160

10.3.1 Using bw for adaptation

As it is described in Chapter, bw is the the program which carries out
forward-backward algorithm and collects the sufficient statistics 2 For a
particular set of sentences. MLLR can be thought as a regression matrix
estimator operated on these sufficient statistics. The actual command is:

$ bw

-moddeffn mdef

-mixwfn mixw

-meanfn mean

-varfn var

-tmatfn tmat

-dictfn dict

-fdictfn filler dict

-cepdir feat dir

-cepext .mfc

-lsnfn transcripts fn

-meanreest yes

-varreest yes

-2passvar yes

-feat 1s c d dd

-ceplen 13

-ctlfn adapt.ctl

-accumdir accumdir

-agc none

-cmn current

The command will use the adaptation data found in adapt.ctl to gather
the mean and variance statistics in the directory accumdir.

2you will fined many people called it posterior probablities. They are correct. But to

learn the reason, I need to explain the mathematics so I tried to avoid it . :-)

161

10.3.2 mllr solve

mllr solve is the program that actually computes the transformation ma-
trix.

$ mllr solve

-outmllrfn adapt.matrix

-accumdir accumdir

-meanfn mean

-varfn vars

-moddefn mdef

-cdonly yes

The command will make use of the mean accumulators in director ac-

cumdir and estimate the vector. You also see the mean and variances are
loaded in. The MLLR algorithm is basically an iterative algorithm so theo-
retically if you do the above process for more turns, the matrix you get will
give better performance. In practice, 1-2 iterations are usually enough.

Notice that we only apply the transformation on the CD-senones as we
specified -cdonly at here. Notice that when you specify option -cdonly, you
also need to specify a model definition because it provides the mapping to
determine which model is CI or CD.

In some cases, e.g. when you are using CI-based GMM selection, you
may consider to adapt also CI-senones. Notice that, though, the effect of
transformation-based adaptation (like MLLR) on the fast search is some-
times less studied. We have found that in general, it does not hurt to adapt
the CI senones as well, so it is reasonable to omit the -cdonly option.

10.3.3 Using mllr transform to do offline mean transfor-

mation

There are two ways to use the resulting matrix, one is to use it to transform
the mean vectors offline, which is shown in this subsection. One is to use it
to transform mean vectors on-line which we will show in next subsection.

$ mllr transform

-inmeanfn mean

-outmeanfn out.mean

162

-mllrmat adapt.matrix

-cdonly yes

In such as case a new set of means, out.mean will be formed and you
can just use them in speech recognition.

10.3.4 On-line adaptation using Sphinx 3 .0 and Sphinx

3 .X decoder

In Sphinx 3 .0 and Sphinx 3 .X decoders (decode anytopo and decode),
one can apply the adaptation matrix on-line by specifying a MLLR control
file. For example, if you want the n-sentence to use regression matrix abc

to adapt the mean on-line. Then you can create a file call ctl.mllr that
contains

$ abc

as the n-th line of the file. You can then apply this transformation
by specifying -ctl mllr in the command line of decode. Then when the
recognizer is decoding the n-th sentence, transformation matrix abc will
be used to transform the mean.

In addition, Sphinx 3 .6 will allow you to specify a default adaptation
matrix, using the -mllr option to specify the transformation matrix file.

10.4 MAP with SphinxTrain

The process of doing MAP adaptation is similar to that of MLLR. First,
you must collect statistics from the adaptation data using the bw tool, as
described above. It is important that you specify the -2passvar no option
to bw, because it is necessary to collect some statistics that are required
for adaptation of variances (if, that is, you wish to adapt your variances).
If you wish to do MAP adaptation of the mixture weights and transition
matrices, you should also pass -mixwreest and -tmatreest to bw.

Next, the map_adapt tool is used, in much the same way as norm is
during training, to create a MAP re-estimate of the model paramters:

$ map adapt

-accumdir accumdir

-meanfn means

163

-varfn variances

-mixwfn mixture weights

-tmatfn transition matrices

-mapmeanfn map means

-mapvarfn map variances

-mapmixwfn map mixture weights

-maptmatfn map transition matrices

As alluded to above, you may not wish to actually use all the re-estimated
paramters. In particular, it is possible for re-estimation of variances and
mixture weights to degrade the accuracy of the models. Re-estimation of
transition matrices generally has no effect on accuracy. Unfortunately the
optimal set of parameters must be determined experimentally. It is not
necessary to specify all of the input and output files on the command line
for map_adapt, only the ones which you wish to adapt, although in all
cases the means and variances are required.

There are two drawbacks and one great advantage to using MAP. First,
the bad news: MAP is not suitable for unsupervised adaptation. It is very
important that the transcriptions of the adaptation data be correct; you
may wish to consider force-aligning them, even. A somewhat lesser con-
cern is that since MAP requires re-estimation of the means, there is no
“on-line” adaptation and thus it is necessary to store a separate copy of
the mean parameter file for each speaker.

The good news is that MAP can make much more effective use of large
amounts of adaptation data. If you have more than 50 sentences of adap-
tation data, it is a good idea to use MAP in addition to MLLR. To do this,
the recommended procedure is to perform MLLR adaptation as described
above, using mllr_transform to generate a new means file, then re-run bw
on the adaptation data using the transformed means, and finally do MAP
adaptation as described here.

There are a few extra arguments to map_adapt that allow you to tune
the adaptation process. MAP adaptation relies on a prior distribution
which is estimated from the speaker-independent parameters in conjunc-
tion with an extra parameter τ , which controls the “speed” of adaptation,
i.e. the weight given to the adaptation data vs. the prior models. By default
this parameter is not used for means, and is estimated automatically for
all other parameters. To enable the use of τ for means re-estimation, you
can specify -bayesmean no on the command line. If you wish to manu-
ally set a uniform τ across all models, you should specify -fixedtau yes
and use the -tau parameter to specify a value. The smaller the value of
τ , the less weight is given to the prior models, and the faster the adap-

164

tation will be. In general, using a fixed τ = 10.0 works well, particularly
for semi-continuous models, where the estimation of τ is not particularly
robust.

165

166

Appendix A

Command Line Information

A.1 Sphinx 3 Decoders

A.1.1 decode

Tool Description

Example

167

Command-line Argument Description

Usage: [options]

• -agc (Default Value : max)
Description: tic gain control for c0 (’max’ or ’none’); (max: c0 -= max-
over-current-sentence(c0))

• -beam (Default Value : 1.0e-55)
Description: eam selecting active HMMs (relative to best) in each
frame [0(widest)..1(narrowest)]

• -bghist (Default Value : 0)
Description: m-mode: If TRUE only one BP entry/frame; else one per
LM state

• -bptbldir (Default Value : Direc)
Description: tory in which to dump word Viterbi back pointer table
(for debugging)

• -cepdir (Default Value : Input)
Description: cepstrum files directory (prefixed to filespecs in control
file)

• -ci pbeam (Default Value : 1e-80)
Description: CI phone beam for CI-based GMM Selection. [0(widest)
.. 1(narrowest)]

• -cmn (Default Value : current)
Description: pstral mean normalization scheme (default: Cep -= mean-
over-current-sentence(Cep))

• -cond ds (Default Value : 0)
Description: itional Down-sampling, override normal down sampling.

• -ctl (Default Value : Control)
Description: ile listing utterances to be processed

168

• -ctlcount (Default Value : 1000000)
Description: 000 No. of utterances to be processed (after skipping
-ctloffset entries)

• -ctloffset (Default Value : 0)
Description: of utterances at the beginning of -ctl file to be skipped

• -ctl lm (Default Value : Contr)
Description: ol file that list the corresponding LM for an utterance

• -ctl mllr (Default Value : Cont)
Description: rol file that list the corresponding MLLR matrix for an
utterance

• -dict (Default Value : Pronunci)
Description: ation dictionary input file

• -ds (Default Value : 1)
Description: Down-sampling the frame computation.

• -epl (Default Value : 3)
Description: Per Lextree; #successive entries into one lextree before
lextree-entries shifted to the next

• -fdict (Default Value : Filler)
Description: word pronunciation dictionary input file

• -feat (Default Value : 1s c d)
Description: dd Feature type: Must be s3 1x39 / 1s c d dd/ s2 4x .

• -fillpen (Default Value : Filler)
Description: word probabilities input file

• -fillprob (Default Value : 0.1)
Description: fault non-silence filler word probability

169

• -gs (Default Value : Gaussian)
Description: election Mapping.

• -gs4gs (Default Value : 1)
Description: that specified whether the input GS map will be used for
Gaussian Selection. If it is disabled, the map will only provide infor-
mation to other modules.

• -hmmdump (Default Value : 0)
Description: er to dump active HMM details to stderr (for debugging)

• -hmmhistbinsize (Default Value : 5)
Description: 000 Performance histogram: #frames vs #HMMs active;
#HMMs/bin in this histogram

• -hyp (Default Value : Recogniti)
Description: on result file, with only words

• -hypseg (Default Value : Recogn)
Description: ition result file, with word segmentations and scores

• -latext (Default Value : lat.gz)
Description: Filename extension for lattice files (gzip compressed, by
default)

• -lextreedump (Default Value : 0)
Description: hether to dump the lextree structure to stderr (for de-
bugging)

• -lm (Default Value : Word)
Description: am language model input file

• -lmctlfn (Default Value : Contro)
Description: l file for language model

• (Default Value : NO DEFAULT VALUE)
Description:

170

• -lmdumpdir (Default Value : The)
Description: directory for dumping the DMP file.

• -lminmemory (Default Value : 0)
Description: ad language model into memory (default: use disk cache
for lm

• -log3table (Default Value : 1)
Description: ermines whether to use the log3 table or to compute the
values at run time.

• -logbase (Default Value : 1.0003)
Description: Base in which all log-likelihoods calculated

• -lw (Default Value : 8.5)
Description: e weight

• -maxhistpf (Default Value : 100)
Description: ax no. of histories to maintain at each frame

• -maxhmmpf (Default Value : 20000)
Description: Max no. of active HMMs to maintain at each frame; ap-
prox.

• -maxwpf (Default Value : 20)
Description: no. of distinct word exits to maintain at each frame

• -mdef (Default Value : Model)
Description: finition input file

• -mean (Default Value : Mixture)
Description: gaussian means input file

• -mixw (Default Value : Senone)
Description: ixture weights input file

171

• -mixwfloor (Default Value : 0.0000)
Description: 001 Senone mixture weights floor (applied to data from
-mixw file)

• -Nlextree (Default Value : 3)
Description: of lextrees to be instantiated; entries into them staggered
in time

• -outlatdir (Default Value : Dire)
Description: ctory in which to dump word lattices

• -outlatoldfmt (Default Value : 1)
Description: Whether to dump lattices in old format

• -pbeam (Default Value : 1.0e-50)
Description: Beam selecting HMMs transitioning to successors in
each frame [0(widest)..1(narrowest)]

• -pheurtype (Default Value : 0)
Description: bypass, 1= sum of max, 2 = sum of avg, 3 = sum of 1st
senones only

• -pl beam (Default Value : 1.0e-80)
Description: Beam for phoneme look-ahead. [1 (narrowest)..10000000(very
wide)]

• -pl window (Default Value : 1)
Description: ndow size (actually window size-1) of phoneme look-
ahead.

• -ptranskip (Default Value : 0)
Description: wbeam for phone transitions every so many frames (if
>= 1)

• -senmgau (Default Value : .cont.)
Description: Senone to mixture-gaussian mapping file (or .semi. or
.cont.)

172

• -silprob (Default Value : 0.1)
Description: ault silence word probability

• -subvq (Default Value : Sub-vec)
Description: tor quantized form of acoustic model

• -subvqbeam (Default Value : 3.0e-3)
Description: Beam selecting best components within each mixture
Gaussian [0(widest)..1(narrowest)]

• -svq4svq (Default Value : 0)
Description: g that specified whether the input SVQ will be used as
approximate scores of the Gaussians

• -tmat (Default Value : HMM)
Description: e transition matrix input file

• -tmatfloor (Default Value : 0.0001)
Description: HMM state transition probability floor (applied to -tmat
file)

• -treeugprob (Default Value : 1)
Description: TRUE (non-0), Use unigram probs in lextree

• -utt (Default Value : Utterance)
Description: file to be processed (-ctlcount argument times)

• -uw (Default Value : 0.7)
Description: weight

• -var (Default Value : Mixture)
Description: aussian variances input file

• -varfloor (Default Value : 0.0001)
Description: Mixture gaussian variance floor (applied to data from -
var file)

173

• -varnorm (Default Value : no)
Description: ance normalize each utterance (yes/no; only applicable
if CMN is also performed)

• -vqeval (Default Value : 3)
Description: ue added which used only part of the cepstral vector to
do the estimation

• -wbeam (Default Value : 1.0e-35)
Description: Beam selecting word-final HMMs exiting in each frame
[0(widest)..1(narrowest)]

• -wend beam (Default Value : 1.0e-)
Description: 80 Beam selecting word-final HMMs exiting in each frame
[0(widest) .. 1(narrowest)]

• -wip (Default Value : 0.7)
Description: nsertion penalty

• (Default Value : NO DEFAULT VALUE)
Description:

174

A.1.2 livedecode

Tool Description

Example

175

Command-line Argument Description

Usage: [options]

• -agc (Default Value : max)
Description: tic gain control for c0 (’max’ or ’none’); (max: c0 -= max-
over-current-sentence(c0))

• -alpha (Default Value : 0.97)
Description: ha for pre-emphasis window

• -beam (Default Value : 1.0e-55)
Description: eam selecting active HMMs (relative to best) in each
frame [0(widest)..1(narrowest)]

• -bghist (Default Value : 0)
Description: m-mode: If TRUE only one BP entry/frame; else one per
LM state

• -bptbldir (Default Value : Direc)
Description: tory in which to dump word Viterbi back pointer table
(for debugging)

• -cepdir (Default Value : Input)
Description: cepstrum files directory (prefixed to filespecs in control
file)

• -ci pbeam (Default Value : 1e-80)
Description: CI phone beam for CI-based GMM Selection. Good num-
ber should be [0(widest) .. 1(narrowest)]

• -cmn (Default Value : current)
Description: pstral mean normalization scheme (default: Cep -= mean-
over-current-sentence(Cep))

• -cond ds (Default Value : 0)
Description: itional Down-sampling, override normal down sampling.

176

• -ctl (Default Value : Control)
Description: ile listing utterances to be processed

• -ctlcount (Default Value : 1000000)
Description: 000 No. of utterances to be processed (after skipping
-ctloffset entries)

• -ctloffset (Default Value : 0)
Description: of utterances at the beginning of -ctl file to be skipped

• -ctl lm (Default Value : Contr)
Description: ol file that list the corresponding LMs

• -dict (Default Value : Pronunci)
Description: ation dictionary input file

• -doublebw (Default Value : 0)
Description: her mel filter triangle will have double the bandwidth, 0
is false

• -ds (Default Value : 1)
Description: Down-sampling the frame computation.

• -epl (Default Value : 3)
Description: Per Lextree; #successive entries into one lextree before
lextree-entries shifted to the next

• -fdict (Default Value : Filler)
Description: word pronunciation dictionary input file

• -feat (Default Value : 1s c d)
Description: dd Feature type: Must be 1s c d dd / s3 1x39 / s2 4x /
cep dcep[,

• -fillpen (Default Value : Filler)
Description: word probabilities input file

177

• -fillprob (Default Value : 0.1)
Description: fault non-silence filler word probability

• -frate (Default Value : 100)
Description: e rate

• -gs (Default Value : Gaussian)
Description: election Mapping.

• -gs4gs (Default Value : 1)
Description: that specified whether the input GS map will be used for
Gaussian Selection. If it is disabled, the map will only provide infor-
mation to other modules.

• -hmmdump (Default Value : 0)
Description: er to dump active HMM details to stderr (for debugging)

• -hmmhistbinsize (Default Value : 5)
Description: 000 Performance histogram: #frames vs #HMMs active;
#HMMs/bin in this histogram

• -hyp (Default Value : Recogniti)
Description: on result file, with only words

• -hypseg (Default Value : Recogn)
Description: ition result file, with word segmentations and scores

• -input endian (Default Value : 0)
Description: the input data byte order, 0 is little, 1 is big endian

• -latext (Default Value : lat.gz)
Description: Filename extension for lattice files (gzip compressed, by
default)

• -lextreedump (Default Value : 0)
Description: hether to dump the lextree structure to stderr (for de-
bugging)

178

• -lm (Default Value : Word)
Description: am language model input file

• -lmctlfn (Default Value : Contro)
Description: l file for language model

• (Default Value : NO DEFAULT VALUE)
Description:

• -lmdumpdir (Default Value : The)
Description: directory for dumping the DMP file.

• -lminmemory (Default Value : 0)
Description: ad language model into memory (default: use disk cache
for lm

• -log3table (Default Value : 1)
Description: ermines whether to use the log3 table or to compute the
values at run time.

• -logbase (Default Value : 1.0003)
Description: Base in which all log-likelihoods calculated

• -lowerf (Default Value : 200)
Description: er edge of filters

• -lw (Default Value : 8.5)
Description: e weight

• -machine endian (Default Value : NO DEFAULT VALUE)
Description: 0 the machine’s endian, 0 is little, 1 is big endian

• -maxcepvecs (Default Value : 256)
Description: Maximum number of cepstral vectors that can be ob-
tained from a single sample buffer

179

• -maxhistpf (Default Value : 100)
Description: ax no. of histories to maintain at each frame

• -maxhmmpf (Default Value : 20000)
Description: Max no. of active HMMs to maintain at each frame; ap-
prox.

• -maxhyplen (Default Value : 1000)
Description: Maximum number of words in a partial hypothesis (for
block decoding)

• -maxwpf (Default Value : 20)
Description: no. of distinct word exits to maintain at each frame

• -mdef (Default Value : Model)
Description: finition input file

• -mean (Default Value : Mixture)
Description: gaussian means input file

• -mixw (Default Value : Senone)
Description: ixture weights input file

• -mixwfloor (Default Value : 0.0000)
Description: 001 Senone mixture weights floor (applied to data from
-mixw file)

• -nfft (Default Value : 256)
Description: ts for FFT

• -nfilt (Default Value : 31)
Description: r of mel filters

• -Nlextree (Default Value : 3)
Description: of lextrees to be instantiated; entries into them staggered
in time

180

• -outlatdir (Default Value : Dire)
Description: ctory in which to dump word lattices

• -outlatoldfmt (Default Value : 1)
Description: Whether to dump lattices in old format

• -pbeam (Default Value : 1.0e-50)
Description: Beam selecting HMMs transitioning to successors in
each frame [0(widest)..1(narrowest)]

• -pheurtype (Default Value : 0)
Description: bypass, 1= sum of max, 2 = sum of avg, 3 = sum of 1st
senones only

• -pl beam (Default Value : 1.0e-80)
Description: Beam for phoneme look-ahead. [0(widest) .. 1(narrow-
est)]

• -pl window (Default Value : 1)
Description: ndow size (actually window size-1) of phoneme look-
ahead.

• -ptranskip (Default Value : 0)
Description: wbeam for phone transitions every so many frames (if
>= 1)

• -samprate (Default Value : 8000)
Description: ampling rate (only 8K and 16K currently supported)

• -senmgau (Default Value : .cont.)
Description: Senone to mixture-gaussian mapping file (or .semi. or
.cont.)

• -silprob (Default Value : 0.1)
Description: ault silence word probability

181

• -subvq (Default Value : Sub-vec)
Description: tor quantized form of acoustic model

• -subvqbeam (Default Value : 3.0e-3)
Description: Beam selecting best components within each mixture
Gaussian [0(widest)..1(narrowest)]

• -svq4svq (Default Value : 0)
Description: g that specified whether the input SVQ will be used as
approximate scores of the Gaussians

• -tmat (Default Value : HMM)
Description: e transition matrix input file

• -tmatfloor (Default Value : 0.0001)
Description: HMM state transition probability floor (applied to -tmat
file)

• -treeugprob (Default Value : 1)
Description: TRUE (non-0), Use unigram probs in lextree

• -upperf (Default Value : 3500)
Description: per edge of filters

• -utt (Default Value : Utterance)
Description: file to be processed (-ctlcount argument times)

• -uw (Default Value : 0.7)
Description: weight

• -var (Default Value : Mixture)
Description: aussian variances input file

• -varfloor (Default Value : 0.0001)
Description: Mixture gaussian variance floor (applied to data from -
var file)

182

• -varnorm (Default Value : no)
Description: ance normalize each utterance (yes/no; only applicable
if CMN is also performed)

• -vqeval (Default Value : 3)
Description: any vectors should be analyzed by VQ when building the
shortlist. It speeds up the decoder, but at a cost.

• -wbeam (Default Value : 1.0e-35)
Description: Beam selecting word-final HMMs exiting in each frame
[0(widest)..1(narrowest)]

• -wend beam (Default Value : 1.0e-)
Description: 80 Beam selecting word-final HMMs exiting in each frame
[0(widest) .. 1(narrowest)]

• -wip (Default Value : 0.7)
Description: nsertion penalty

• -wlen (Default Value : 0.0256)
Description: ndow length

183

A.1.3 livepretend

Tool Description

Example

184

Command-line Argument Description

Usage: [options]

• -agc (Default Value : max)
Description: tic gain control for c0 (’max’ or ’none’); (max: c0 -= max-
over-current-sentence(c0))

• -alpha (Default Value : 0.97)
Description: ha for pre-emphasis window

• -beam (Default Value : 1.0e-55)
Description: eam selecting active HMMs (relative to best) in each
frame [0(widest)..1(narrowest)]

• -bghist (Default Value : 0)
Description: m-mode: If TRUE only one BP entry/frame; else one per
LM state

• -bptbldir (Default Value : Direc)
Description: tory in which to dump word Viterbi back pointer table
(for debugging)

• -cepdir (Default Value : Input)
Description: cepstrum files directory (prefixed to filespecs in control
file)

• -ci pbeam (Default Value : 1e-80)
Description: CI phone beam for CI-based GMM Selection. Good num-
ber should be [0(widest) .. 1(narrowest)]

• -cmn (Default Value : current)
Description: pstral mean normalization scheme (default: Cep -= mean-
over-current-sentence(Cep))

• -cond ds (Default Value : 0)
Description: itional Down-sampling, override normal down sampling.

185

• -ctl (Default Value : Control)
Description: ile listing utterances to be processed

• -ctlcount (Default Value : 1000000)
Description: 000 No. of utterances to be processed (after skipping
-ctloffset entries)

• -ctloffset (Default Value : 0)
Description: of utterances at the beginning of -ctl file to be skipped

• -ctl lm (Default Value : Contr)
Description: ol file that list the corresponding LMs

• -dict (Default Value : Pronunci)
Description: ation dictionary input file

• -doublebw (Default Value : 0)
Description: her mel filter triangle will have double the bandwidth, 0
is false

• -ds (Default Value : 1)
Description: Down-sampling the frame computation.

• -epl (Default Value : 3)
Description: Per Lextree; #successive entries into one lextree before
lextree-entries shifted to the next

• -fdict (Default Value : Filler)
Description: word pronunciation dictionary input file

• -feat (Default Value : 1s c d)
Description: dd Feature type: Must be 1s c d dd / s3 1x39 / s2 4x /
cep dcep[,

• -fillpen (Default Value : Filler)
Description: word probabilities input file

186

• -fillprob (Default Value : 0.1)
Description: fault non-silence filler word probability

• -frate (Default Value : 100)
Description: e rate

• -gs (Default Value : Gaussian)
Description: election Mapping.

• -gs4gs (Default Value : 1)
Description: that specified whether the input GS map will be used for
Gaussian Selection. If it is disabled, the map will only provide infor-
mation to other modules.

• -hmmdump (Default Value : 0)
Description: er to dump active HMM details to stderr (for debugging)

• -hmmhistbinsize (Default Value : 5)
Description: 000 Performance histogram: #frames vs #HMMs active;
#HMMs/bin in this histogram

• -hyp (Default Value : Recogniti)
Description: on result file, with only words

• -hypseg (Default Value : Recogn)
Description: ition result file, with word segmentations and scores

• -input endian (Default Value : 0)
Description: the input data byte order, 0 is little, 1 is big endian

• -latext (Default Value : lat.gz)
Description: Filename extension for lattice files (gzip compressed, by
default)

• -lextreedump (Default Value : 0)
Description: hether to dump the lextree structure to stderr (for de-
bugging)

187

• -lm (Default Value : Word)
Description: am language model input file

• -lmctlfn (Default Value : Contro)
Description: l file for language model

• (Default Value : NO DEFAULT VALUE)
Description:

• -lmdumpdir (Default Value : The)
Description: directory for dumping the DMP file.

• -lminmemory (Default Value : 0)
Description: ad language model into memory (default: use disk cache
for lm

• -log3table (Default Value : 1)
Description: ermines whether to use the log3 table or to compute the
values at run time.

• -logbase (Default Value : 1.0003)
Description: Base in which all log-likelihoods calculated

• -lowerf (Default Value : 200)
Description: er edge of filters

• -lw (Default Value : 8.5)
Description: e weight

• -machine endian (Default Value : NO DEFAULT VALUE)
Description: 0 the machine’s endian, 0 is little, 1 is big endian

• -maxcepvecs (Default Value : 256)
Description: Maximum number of cepstral vectors that can be ob-
tained from a single sample buffer

188

• -maxhistpf (Default Value : 100)
Description: ax no. of histories to maintain at each frame

• -maxhmmpf (Default Value : 20000)
Description: Max no. of active HMMs to maintain at each frame; ap-
prox.

• -maxhyplen (Default Value : 1000)
Description: Maximum number of words in a partial hypothesis (for
block decoding)

• -maxwpf (Default Value : 20)
Description: no. of distinct word exits to maintain at each frame

• -mdef (Default Value : Model)
Description: finition input file

• -mean (Default Value : Mixture)
Description: gaussian means input file

• -mixw (Default Value : Senone)
Description: ixture weights input file

• -mixwfloor (Default Value : 0.0000)
Description: 001 Senone mixture weights floor (applied to data from
-mixw file)

• -nfft (Default Value : 256)
Description: ts for FFT

• -nfilt (Default Value : 31)
Description: r of mel filters

• -Nlextree (Default Value : 3)
Description: of lextrees to be instantiated; entries into them staggered
in time

189

• -outlatdir (Default Value : Dire)
Description: ctory in which to dump word lattices

• -outlatoldfmt (Default Value : 1)
Description: Whether to dump lattices in old format

• -pbeam (Default Value : 1.0e-50)
Description: Beam selecting HMMs transitioning to successors in
each frame [0(widest)..1(narrowest)]

• -pheurtype (Default Value : 0)
Description: bypass, 1= sum of max, 2 = sum of avg, 3 = sum of 1st
senones only

• -pl beam (Default Value : 1.0e-80)
Description: Beam for phoneme look-ahead. [0(widest) .. 1(narrow-
est)]

• -pl window (Default Value : 1)
Description: ndow size (actually window size-1) of phoneme look-
ahead.

• -ptranskip (Default Value : 0)
Description: wbeam for phone transitions every so many frames (if
>= 1)

• -samprate (Default Value : 8000)
Description: ampling rate (only 8K and 16K currently supported)

• -senmgau (Default Value : .cont.)
Description: Senone to mixture-gaussian mapping file (or .semi. or
.cont.)

• -silprob (Default Value : 0.1)
Description: ault silence word probability

190

• -subvq (Default Value : Sub-vec)
Description: tor quantized form of acoustic model

• -subvqbeam (Default Value : 3.0e-3)
Description: Beam selecting best components within each mixture
Gaussian [0(widest)..1(narrowest)]

• -svq4svq (Default Value : 0)
Description: g that specified whether the input SVQ will be used as
approximate scores of the Gaussians

• -tmat (Default Value : HMM)
Description: e transition matrix input file

• -tmatfloor (Default Value : 0.0001)
Description: HMM state transition probability floor (applied to -tmat
file)

• -treeugprob (Default Value : 1)
Description: TRUE (non-0), Use unigram probs in lextree

• -upperf (Default Value : 3500)
Description: per edge of filters

• -utt (Default Value : Utterance)
Description: file to be processed (-ctlcount argument times)

• -uw (Default Value : 0.7)
Description: weight

• -var (Default Value : Mixture)
Description: aussian variances input file

• -varfloor (Default Value : 0.0001)
Description: Mixture gaussian variance floor (applied to data from -
var file)

191

• -varnorm (Default Value : no)
Description: ance normalize each utterance (yes/no; only applicable
if CMN is also performed)

• -vqeval (Default Value : 3)
Description: any vectors should be analyzed by VQ when building the
shortlist. It speeds up the decoder, but at a cost.

• -wbeam (Default Value : 1.0e-35)
Description: Beam selecting word-final HMMs exiting in each frame
[0(widest)..1(narrowest)]

• -wend beam (Default Value : 1.0e-)
Description: 80 Beam selecting word-final HMMs exiting in each frame
[0(widest) .. 1(narrowest)]

• -wip (Default Value : 0.7)
Description: nsertion penalty

• -wlen (Default Value : 0.0256)
Description: ndow length

• (Default Value : NO DEFAULT VALUE)
Description:

• (Default Value : NO DEFAULT VALUE)
Description:

192

A.1.4 gausubvq

Tool Description

Example

193

Command-line Argument Description

Usage: [options]

• -eps (Default Value : 0.0001)
Description: pping criterion: stop iterations if relative decrease in
sq(error) < eps

• -iter (Default Value : 100)
Description: o. of k-means iterations for clustering

• -log3table (Default Value : 1.0003)
Description: Determines whether to use the log3 table or to compute
the values at run time.

• -mean (Default Value : Means)
Description: le

• -mixw (Default Value : Mixture)
Description: weights file (needed, even though it’s not part of the com-
putation)

• -mixwfloor (Default Value : 0.0000)
Description: 001 Floor for non-zero mixture weight values in input
model

• -stdev (Default Value : 0)
Description: d.dev. (rather than var) in computing vector distances
during clustering

• -subvq (Default Value : Output)
Description: subvq file (stdout if not specified)

• -svqrows (Default Value : 4096)
Description: . of codewords in output subvector codebooks

194

• -svspec (Default Value : Subvec)
Description: tors specification (e.g., 24,0-11/25,12-23/26-38 or 0-
12/13-25/26-38)

• -var (Default Value : Variances)
Description: file

• -varfloor (Default Value : 0.0001)
Description: Floor for non-zero variance values in input model

195

A.1.5 align

A.1.6 allphone

A.1.7 dag

A.1.8 astar

A.1.9 cepview

Tool Description

cepview could view the cepstral coefficient create by wave2feat.

Command-line Argument Description

196

A.2 SphinxTrain : Executables

A.2.1 agg seg

Tool Description

Description:

agg seg sample accumulate feature vectors and used it for quantizing
the vector space. This functionality is very useful in S2 training initial-
ization. Not all features vectors are used. They are sampled using option
-stride.

There are many other options of this command is currently obsolete.
Please type -example yes to get a working argument list.

Example

Example:

agg seg -segdmpdirs segdmpdir -segdmpfn dumpfile -segtype all -ctlfn
ctl -cepdir cepdir -cepext .mfc -ceplen 13 -stride 10

197

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-segdmpdirs Segment dump directories (Default Value : NONE)

-segdmpfn Segment dump file (Default Value : NONE)

-segidxfn Segment index into the dump file. (Default Value : NONE)

-segtype Type of segments to dump. all,st,phn (Default Value : st)

-cntfn Per id count file (Default Value : NONE)

-ddcodeext Extension of the VQ 2nd difference cepstrum files (Default
Value : xcode)

-lsnfn Lexical transcript file (contains all utts in ctl file) (Default Value :
NONE)

-sentdir Root directory of sent (lexical transcript) files (Default Value :
NONE)

-sentext Extension of sent (lexical transcript) files (Default Value : NONE)

-ctlfn The control file name (enumerates utts in corpus) (Default Value :
NONE)

-mllrctlfn Lists the MLLR transforms for each utterance (Default Value :
NONE)

-mllrdir Directory for MLLR matrices (Default Value : NONE)

-nskip The number of utterances to skip in the control file (Default Value
: 0)

-runlen The number of utterances to process after skipping (Default Value
: -1)

-moddeffn Model definition file containing all the triphones in the cor-
pus. State/transition matrix definitions are ignored. (Default Value :
NONE)

-ts2cbfn Tied state to codebook mapping file (may be ’.semi.’ or ’.cont.’)
(Default Value : NONE)

198

-cb2mllrfn codebook to MLLR class mapping file (may be ’.1cls.’) (Default
Value : NONE)

-dictfn Lexicon containing all the words in the lexical transcripts. (Default
Value : NONE)

-fdictfn Lexicon containing all the filler words in the lexical transcripts.
(Default Value : NONE)

-segdir Root directory of the state segmentation files (Default Value : NONE)

-segext Extension of the state segmentation files (Default Value : v8 seg)

-ccodedir Root directory of the VQ cepstrum files (Default Value : NONE)

-ccodeext Extension of the VQ cepstrum files (Default Value : ccode)

-dcodedir Root directory of the VQ difference cepstrum files (Default Value
: NONE)

-dcodeext Extension of the VQ cepstrum files (Default Value : d2code)

-pcodedir Root directory of the VQ power files (Default Value : NONE)

-pcodeext Extension of the VQ power files (Default Value : p3code)

-ddcodedir Root directory of the VQ 2nd difference cepstrum files (Default
Value : NONE)

-ddcodeext Extension of the VQ 2nd difference cepstrum files (Default
Value : xcode)

-cepdir Root directory of the cepstrum files (Default Value : NONE)

-cepext Extension of the cepstrum files (Default Value : mfc)

-ceplen # of coefficients per cepstrum frame (Default Value : 13)

-agc The type of automatic gain control to do max—emax (Default Value :
max)

-cmn The do cepstral mean normalization based on current—prior utter-
ance(s) (Default Value : current)

-varnorm Normalize utterance by its variance (Default Value : no)

-silcomp Do silence compression based on current—prior utterance (De-
fault Value : none)

-feat Feature set to compute (Default Value : NONE)

199

d (Default Value : 4s 12c 24d 3p 12d)

d (Default Value : 1s 12c 12d 3p 12d)

-cachesz Feature cache size in Mb (Default Value : 200)

-stride Take every -stride’th frame when producing dmp (Default Value :
1)

200

A.2.2 bldtree

Tool Description

Description:

Given a set of questions. Build decision tree for a set of feature of a
particular phone. By default, decision tree are not built for filler phones
and the phone tagged with SIL. One very confusing parameters of this tool
is -stwt, if you are training a n-state HMM, you need to specify n values
after this flag.

Example

bld tree -treefn tree -moddeffn mdef -mixwfn mixw -meanfn mean -varfn
var -psetfn questions -stwt 1.0 0.05 0.01 -state 0 -ssplitmin 1 -ssplitmax
7 -ssplitthr 1e-10 -csplitmin 1 -csplitmax 2000 -csplitthr 1e-10 -cntthresh
10

201

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-treefn Name of output tree file to produce (Default Value : NONE)

-moddeffn Model definition file of the discrete models (Default Value :
NONE)

-ts2cbfn The type of models to build trees on (Default Value : .semi.)

-meanfn means file for tree building using continuous HMMs (Default
Value : NONE)

-varfn variances file for tree building using continuous HMMs (Default
Value : NONE)

-varfloor The minimum variance (Default Value : 0.00001)

-cntthresh Ignore all states with counts less than this (Default Value :
0.00001)

-mixwfn PDF’s for tree building using semicontinuous HMMs (Default
Value : NONE)

-psetfn phone set definitions for phonetic questions (Default Value : NONE)

-phone Build trees over n-phones having this base phone (Default Value :
NONE)

-state Build tree for this state position. E.g. For a three state HMM, this
value can be 0,1 or 2. For a 5 state HMM, this value can be 0,1,2,3
or 4, and so on (Default Value : NONE)

-mwfloor Mixing weight floor for tree building (Default Value : 1e-4)

-stwt Weights on neighboring states, This flag needs a string of numbers
equal to the number of HMM-states (Default Value : NONE)

-ssplitthr Simple node splitting threshold (Default Value : 8e-4)

-ssplitmin Minimum of simple tree splits to do. (Default Value : 1)

-ssplitmax The maximum number of bifurcations in the simple tree before
it is used to build complex questions. (Default Value : 5)

202

-csplitthr Compound node splitting threshold (Default Value : 8e-4)

-csplitmin Minimum # of compound tree splits to do (Default Value : 1)

-csplitmax Minimum # of compound tree splits to do (Default Value : 100)

203

A.2.3 bw

Tool Description

Description: Strictly speaking, bw only implements the first-part of the
Baum-Welch algorithm. That is it go through forward and backward algo-
rtihm and collect the necessary statistics for parameter estimation.

The advantage of this architecture is that researcher can easily write
programs to do parameter estimation and they have no need to tweak the
huge and usually difficult Baum-Welch algorithm.

In terms of functionality, one important thing you need to know is op-
tion -part and -npart. They can allow you to split the training into N equal
parts Say, if there are M utterances in your control file, then this will en-
able you to run the training separately on each (M/N)th part. This flag
may be set to specify which of these parts you want to currently train on.
As an example, if your total number of parts (-npart) is 3, -part can take
one of the values 1,2 or 3.

To control the speed of the training, -abeam (control alpha search) and
-bbeam (control beta search) can be used to control the searching time.
Notice that if the beams are too small, the path may not reach the end of
the search and results in estimation error Too many lost path may also
cause training set likelihood not unable to increase

Several options allow the user to control the behaviour of bw such that
silence or pauses can be taken care. For example. One could use -sildelfn
to specify periods of time which was assume to be silence. One could also
use -sildel and -siltag to specify a silence and allow them to be optionall
deleted.

Finally, one can use the viterbi training mode of the code. Notice
though, the code is not always tested by CMU’s researcher

I also included the following paragraph from Rita’s web page. I largely
adapted from here and I think it is a pretty good wrap-up of the conver-
gence issues ”bw is an iterative re-estimation process, so you have to run
many passes of the Baum-Welch re-estimation over your training data.
Each of these passes, or iterations, results in a slightly better set of mod-
els for the CI phones. However, since the objective function maximized
in each of theses passes is the likelihood, too many iterations would ul-
timately result in models which fit very closely to the training data. you
might not want this to happen for many reasons. Typically, 5-8 iterations
of Baum-Welch are sufficient for getting good estimates of the CI models.
You can automatically determine the number of iterations that you need
by looking at the total likelihood of the training data at the end of the

204

first iteration and deciding on a ”convergence ratio” of likelihoods. This
is simply the ratio of the total likelihood in the current iteration to that
of the previous iteration. As the models get more and more fitted to the
training data in each iteration, the training data likelihoods typically in-
crease monotonically. The convergence ratio is therefore a small positive
number. The convergence ratio becomes smaller and smaller as the itera-
tions progress, since each time the current models are a little less different
from the previous ones. Convergence ratios are data and task specific, but
typical values at which you may stop the Baum-Welch iterations for your
CI training may range from 0.1-0.001. When the models are variance-
normalized, the convergence ratios are much smaller.”

Example

Example: Command used to train continuous HMM (Beware, this only il-
lustrates how to use this command, for detail on how to tune it, please
consult the manual.) bw -moddeffn mdef -ts2cbfn .cont. -mixwfn mixw
-tmatfn tmatn -meanfn mean -varfn var -dictfn dict -fdictfn fillerdict -ctlfn
control files -part 1 -npart 1 -cepdir feature dir -cepext mfc -lsnfn tran-
scription -accumdir accumdir -abeam 1e-200 -bbeam 1e-200 -meanreest
yes -varreest yes -tmatreest yes -feat 1s 12c 12d 3p 12dd -ceplen 13

If yo want to do parallel training for N machines. Run N trainers with
-part 1 -npart N -part 2 -npart N . . -part N -npart N

205

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn The model definition file for the model inventory to train (De-
fault Value : NONE)

-tmatfn The transition matrix parameter file name (Default Value : NONE)

-mixwfn The mixture weight parameter file name (Default Value : NONE)

-meanfn The mean parameter file name (Default Value : NONE)

-varfn The var parameter file name (Default Value : NONE)

-mwfloor Mixing weight smoothing floor (Default Value : 0.00001)

-tpfloor Transition probability smoothing floor (Default Value : 0.0001)

-varfloor The minimum variance (Default Value : 0.00001)

-topn Compute output probabilities based this number of top scoring den-
sities. (Default Value : 4)

-dictfn The content word dictionary (Default Value : NONE)

-fdictfn The filler word dictionary (e.g. SIL, SILb, ++COUGH++) (Default
Value : NONE)

-ctlfn The training corpus control file (Default Value : NONE)

-nskip The number of utterances to skip at the beginning of a control file
(Default Value : NONE)

-runlen The number of utterances to process in the (skipped) control file
(Default Value : -1)

-part Identifies the corpus part number (range 1..NPART) (Default Value :
NONE)

-npart Partition the corpus into this many equal sized subsets (Default
Value : NONE)

-cepext The cepstrum file extension (Default Value : mfc)

-cepdir The cepstrum data root directory (Default Value : NONE)

206

-segext State segmentation file extension (Default Value : v8 seg)

-segdir State segmentation file root directory (Default Value : NONE)

-sentdir The sentence transcript file directory (Default Value : NONE)

-sentext The sentence transcript file extension (Default Value : sent)

-lsnfn The corpus word transcript file (Default Value : NONE)

-accumdir A path where accumulated counts are to be written. (Default
Value : NONE)

-ceplen The length of the input feature (e.g. MFCC) vectors (Default Value
: 13)

-agc The type of automatic gain control to do max—emax (Default Value :
max)

-cmn The do cepstral mean normalization based on current—prior utter-
ance(s) (Default Value : current)

-varnorm Variance Normalize? (Default Value : no)

-silcomp Do silence compression based on current—prior utterance (De-
fault Value : none)

-sildel Allow optional silence deletion in the Baum-Welch algorithm or the
Viterbi algorithm. (Default Value : no)

-siltag Specify the tag of silence, by default it is <sil>. (Default Value :
SIL)

-abeam Evaluate alpha values subject to this beam (Default Value : 1e-
100)

-bbeam Evaluate beta values (update reestimation sums) subject to this
beam (Default Value : 1e-100)

-varreest Reestimate variances (Default Value : yes)

-meanreest Reestimate means (Default Value : yes)

-mixwreest Reestimate mixing weights (Default Value : yes)

-tmatreest Reestimate transition probability matrices (Default Value : yes)

-spkrxfrm A speaker transform to use for SAT modelling (Default Value :
NONE)

207

-mllrmult Reestimate multiplicative term of MLLR adatpation of means
(Default Value : no)

-mllradd Reestimate shift term of MLLR adaptation of means (Default
Value : no)

-ts2cbfn Tied-state-to-codebook mapping file name (Default Value : NONE)

-feat This argument selects the derived feature computation to use. (De-
fault Value : NONE)

-timing Controls whether profiling information is displayed (Default Value
: yes)

-viterbi Controls whether Viterbi training is done (Default Value : no)

-2passvar Reestimate variances based on prior means (Default Value : no)

-sildelfn File which specifies frames of background ’silence’ to delete (De-
fault Value : NONE)

-cb2mllrfn Codebook-to-MLLR-class mapping file name (Default Value :
NONE)

-spthresh State posterior probability floor for reestimation. States below
this are not counted (Default Value : 0.0)

-maxuttlen Maximum # of frames for an utt (0 => no fixed limit) (Default
Value : 0)

-ckptintv Checkpoint the reestimation sums every -chkptintv utts (De-
fault Value : NONE)

208

A.2.4 cp parm

Tool Description

Description: Copy parameters such as means and variances from one
model to another model. You need to specify a ”copy operation file” which
each operation looks like this dest idx1 src idx1 dest idx2 src idx2 dest idx3
src idx3 . . . For example, the first line will instruct cp param copy src
model index 1 to destionation model index 1. This tool is still under heavy
development at 20040807

Example

Example: This example copy mean from a single file from the source file
to 5 mean vector in th destination file. First you need to prepare a file like
this 0 0 1 0 2 0 3 0 4 0

Lets call it cp op cp parm -cpopsfn cp op -igaufn globalmean -ncbout 5
-ogaufn out.means -feat [Your feature type]

209

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-cpopsfn Copy operation file name (Default Value : NONE)

-imixwfn Input mixing weight file (Default Value : NONE)

-omixwfn Output mixing weight file (Default Value : NONE)

-nmixwout # of mixing weight arrays in the output file (Default Value :
NONE)

-itmatfn Input transition matrix file (Default Value : NONE)

-otmatfn Output transition matrix file (Default Value : NONE)

-ntmatout # of transition matrices in the output file (Default Value : NONE)

-igaufn Input Gaussian density parameter file (Default Value : NONE)

-ogaufn Output Gaussian density parameter file (Default Value : NONE)

-ncbout # of codebooks in the output file (Default Value : NONE)

-feat Feature set to use (Default Value : c[1..L-1]d[1..L-1]c[0]d[0]dd[0]dd[1..L-
1])

210

A.2.5 delint

Tool Description

Description: (copied from Rita’s web page.)

Deleted interpolation is the final step in creating semi-continuous mod-
els. The output of deleted interpolation are semi-continuous models in
sphinx-3 format. These have to be further converted to sphinx-2 format, if
you want to use the SPHINX-II decoder.

Deleted interpolation is an iterative process to interpolate between CD
and CI mixture-weights to reduce the effects of overfitting. The data are
divided into two sets, and the data from one set are used to estimate the
optimal interpolation factor between CI and CD models trained from the
other set. Then the two data sets are switched and this procedure is re-
peated using the last estimated interpolation factor as an initialization for
the current step. The switching is continued until the interpolation factor
converges.

To do this, we need *two* balanced data sets. Instead of the actual
data, however, we use the Bauim-Welch buffers, since the related math is
convenient. we therefore need an *even* number of buffers that can be
grouped into two sets. DI cannot be performed if you train using only one
buffer. At least in the final iteration of the training, you must perform the
training in (at least) two parts. You could also do this serially as one final
iteration of training AFTER BW has converegd, on a non-lsf setup.

Note here that the norm executable used at the end of every Baum-
Welch iteration also computes models from the buffers, but it does not
require an even number of buffers. BW returns numerator terms and
denominator terms for the final estimation, and norm performs the actual
division. The number of buffers is not important, but you would need
to run norm at the end of EVERY iteration of BW, even if you did the
training in only one part. When you have multiple parts norm sums up
the numerator terms from the various buffers, and the denominator terms,
and then does the division.

Example

delint -accumdirs accumdir -moddeffn mdef -mixwfn mixw -cilambda 0.9
-feat c/1..L-1/,d/1..L-1/,c/0/d/0/dd/0/,dd/1..L-1/ -ceplen 13 -maxiter
4000

211

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn The model definition file name (Default Value : NONE)

-mixwfn The mixture weight parameter file name (Default Value : NONE)

-accumdirs A path where accumulated counts are to be read. (Default
Value : NONE)

-cilambda Weight of CI distributions with respect to uniform distribution
(Default Value : 0.9)

-maxiter max # of iterations if no lambda convergence (Default Value :
100)

-feat 2dd feature stream definition (Default Value : 4s 12c 24d 3p 1)

-ceplen Input feature vector length (e.g. MFCC) (Default Value : 13)

212

A.2.6 dict2tri

Tool Description

Description: find the triphone list from the dictionary

Example

Example : dict2tri -dictfn dict -basephnfn phonelist -btwtri yes

213

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-dictfn Dictionary file name (Default Value : NONE)

-basephnfn Base phone list file name (Default Value : NONE)

-btwtri Compute between-word triphone set (Default Value : yes)

214

A.2.7 inc comp

Tool Description

Description:

Increase the number of mixture of a continuous HMM. Notice that op-
tion -ninc actually means the finally number of mixture one wants to ob-
tain. Usually, it is the power of two. You are also recommended to split
the number of mixture from 1 -> 2 -> 4 -> 8 -> and so on.

Example

Example :

inc comp -ninc 16 -dcountfn mixture weights -inmixwfn mixture weights
-outmixwfn out mixture weights -inmeanfn means -outmeanfn out means
-invarfn variance -outvarfn out variance -ceplen 13

215

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-ninc The # of densities to split (Default Value : 1)

-inmixwfn The weight file for all N den/mix (Default Value : NONE)

-outmixwfn The output mixing weight file name w/ N+NINC density weights/mixture
(Default Value : NONE)

-inmeanfn The source mean file w/ N means (Default Value : NONE)

-outmeanfn The new mean file w/ N+NINC means (Default Value : NONE)

-invarfn The source variance file w/ N means (Default Value : NONE)

-outvarfn The new variance file w/ N+NINC means (Default Value : NONE)

-dcountfn The density counts for the N source den/mix (Default Value :
NONE)

-ceplen The length of the input feature (e.g. MFCC) vectors (Default Value
: 13)

-feat Defines the acoustic feature set. (Default Value : NONE)

216

A.2.8 init gau

Tool Description

Description: (Copy from Rita’s web manual) To initialize the means and
variances, global values of these parameters are first estimated and then
copied into appropriate positions in the parameter files. The global mean
is computed using all the vectors you have in your feature files. This is
usually a very large number, so the job is divided into many parts. At
this stage you tell the Sphinx how many parts you want it to divide this
operation into (depending on the computing facilities you have) and the
Sphinx ”accumulates” or gathers up the vectors for each part separately
and writes it into an intermediate buffer on your machine. The executable
init gau is used for this purpose.

Example

Example:

init gau -accumdir accumdir -ctlfn controlfn -part 1 -npart 1 -cepdir
cepdir -feat 1s 12c 12d 3p 12dd -ceplen 13

217

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn Model definition file for the single density HMM’s to initialize
(Default Value : NONE)

-ts2cbfn Tied-state-to-codebook mapping file (Default Value : NONE)

-accumdir Where to write mean/var counts (Default Value : NONE)

-meanfn Mean file for variance initialization (Default Value : NONE)

-ctlfn Control file of the training corpus (Default Value : NONE)

-nskip # of lines to skip in the control file (Default Value : NONE)

-runlen # of lines to process in the control file (after any skip) (Default
Value : NONE)

-part Identifies the corpus part number (range 1..NPART) (Default Value :
NONE)

-npart Partition the corpus into this many equal sized subsets (Default
Value : NONE)

-lsnfn All word transcripts for the training corpus (consistent order w/
-ctlfn!) (Default Value : NONE)

-dictfn Dictionary for the content words (Default Value : NONE)

-fdictfn Dictionary for the filler words (Default Value : NONE)

-segdir Root directory of the training corpus state segmentation files. (De-
fault Value : NONE)

-segext Extension of the training corpus state segmentation files. (Default
Value : v8 seg)

-scaleseg Scale existing segmentation to fit new parameter stream length.
(Default Value : no)

-cepdir Root directory of the training corpus cepstrum files. (Default Value
: NONE)

218

-cepext Extension of the training corpus cepstrum files. (Default Value :
mfc)

-silcomp Controls silence compression. (Default Value : none)

-cmn Controls cepstral mean normalization. (Default Value : current)

-varnorm Controls variance normalization. (Default Value : no)

-agc Controls automatic gain control. (Default Value : max)

-feat Controls which feature extraction algorithm is used. (Default Value
: NONE)

-ceplen # of components in cepstrum vector (Default Value : 13)

219

A.2.9 init mixw

Tool Description

Description: Initialization of mixture weight

Example

Example:

init mixw -src moddeffn src moddeffn -src ts2cbfn .semi. -src mixwfn
src mixwfn -src meanfn src meanfn -src varfn src varfn -src tmatfn src tmatfn
-dest moddeffn dest moddeffn -dest ts2cbfn .semi. -dest mixwfn dest mixwfn
-dest me anfn dest meanfn -dest varfn dest varfn -dest tmatfn dest tmatfn
-feat c/1..L-1/,d/1..L-1/,c/0/d/0/dd/0/,dd/1..L-1/ -ceplen 13

220

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-src moddeffn The source model definition file name (Default Value : NONE)

-src ts2cbfn The source state definition file name (Default Value : NONE)

-src mixwfn The source mixing weight file name (Default Value : NONE)

-src meanfn The source mean file name (Default Value : NONE)

-src varfn The source variance file name (Default Value : NONE)

-src tmatfn The source transition matrix file name (Default Value : NONE)

-dest moddeffn The destination model definition file name (Default Value
: NONE)

-dest ts2cbfn The destination state definition file name (Default Value :
NONE)

-dest mixwfn The destination mixing weight file name (Default Value :
NONE)

-dest meanfn The destination mean file name (Default Value : NONE)

-dest varfn The destination variance file name (Default Value : NONE)

-dest tmatfn The destination transition matrix file name (Default Value :
NONE)

-feat 2dd Derived feature computation to use (Default Value : 1s 12c 12d 3p 1)

-ceplen Size of the input feature vector length (Default Value : 13)

221

A.2.10 kmeans init

Tool Description

Description:

Using the segment dump file generated by external software such as
agg seg to initilaize the model. It performs k-mean clustering to create the
initial means and variances for s2 hmms. This is an important process of
initialization of s2 training.

Example

Example :

kmeans init -gthobj single -stride 1 -ntrial 1 -minratio 0.001 -ndensity
256 -meanfn outhmm/means−varfnouthmm/variances -reest no -segdmpdirs
segdmpdir − segdmpfndumpfile -ceplen 13

222

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-segdir Directory containing the state segmentations (Default Value : NONE)

-segext Extention of state segmentation files (Default Value : v8 seg)

-omoddeffn Model definition of output models (Default Value : NONE)

-dmoddeffn Model definition used for observation dump (Default Value :
NONE)

-ts2cbfn Tied-state-to-codebook mapping file (Default Value : NONE)

-lsnfn LSN file name (word transcripts) (Default Value : NONE)

-dictfn Dictionary file name (Default Value : NONE)

-fdictfn Filler word dictionary file name (Default Value : NONE)

-cbcntfn File containing # of times a codebook ID appears in the corpus
(Default Value : NONE)

-maxcbobs Cluster at most this many observations per codebook (Default
Value : NONE)

-maxtotobs Cluster at most approximately this many observations over
all codebooks (Default Value : NONE)

-featsel The feature stream (0, 1, ...) to select (Default Value : NONE)

-ctlfn The training corpus control file (Default Value : NONE)

-cepext The cepstrum file extension (Default Value : mfc)

-cepdir The cepstrum data root directory (Default Value : NONE)

-ceplen The length of the input feature (e.g. MFCC) vectors (Default Value
: 13)

-agc The type of automatic gain control to do max—emax (Default Value :
max)

-cmn The do cepstral mean normalization based on current—prior utter-
ance(s) (Default Value : current)

223

-varnorm Normalize utterance by its variance (Default Value : no)

-silcomp Do silence compression based on current—prior utterance (De-
fault Value : none)

-feat 2dd This argument selects the derived feature computation to use.
(Default Value : 1s 12c 12d 3p 1)

-segdmpdirs segment dmp directories (Default Value : NONE)

-segdmpfn segment dmp file (Default Value : NONE)

-segidxfn segment dmp index file (Default Value : NONE)

-fpcachesz # of file descriptors to cache for observation dmp files (Default
Value : 3000)

-obscachesz # of Mbytes cache to use for observations (Default Value : 92)

-ndensity # of densities to initialize per tied state per feature (Default
Value : NONE)

-ntrial random initialized K-means: # of trials of k-means w/ random ini-
tialization from within corpus (Default Value : 5)

-minratio K-means: minimum convergence ratio, (p squerr - squerr) /
p squerr (Default Value : 0.01)

-maxiter K-means: maximum # of iterations of updating to apply (Default
Value : 100)

-mixwfn Output file for mixing weights (Default Value : NONE)

-meanfn Output file for means (Default Value : NONE)

-varfn Output file for variances (Default Value : NONE)

-method Initialization method. Options: rkm — fnkm (Default Value :
rkm)

-reest Reestimate states according to usual definitions assuming vit seg.
(Default Value : yes)

-niter # of iterations of reestimation to perform per state (Default Value :
20)

-gthobj Gather what kind of obj state, phn, frame (Default Value : state)

-stride Gather every -stride’th frame (Default Value : 32)

-runlen # of utts to process from ctl file (Default Value : NONE)

224

-tsoff Begin tied state reestimation with this tied state (Default Value : 0)

-tscnt Reestimate this many tied states (if available) (Default Value : NONE)

-tsrngfn The range of tied states reestimated expressed as offset,count
(Default Value : NONE)

-vartiethr Tie variances if # of observations for state exceed this number
(Default Value : 0)

225

A.2.11 map adapt

Tool Description

Description:

Given a speaker-independent (or other baseline) model and a maximum-
likelihood estimate of model parameters from adaptation data, map adapt
will update (interpolate) the mean vectors to maximize the a posteriori
probability of the adaptation data.

The ML estimate is generated by running a single iteration of the forward-
backward algorithm on the adaptation data, using the baseline models as
the initial estimate. This can be accomplished using the programs ‘bw’ and
‘norm’. The -mlmeanfn and -mlvarfn arguments are the output parame-
ter files created by ‘norm’. The -mlcountfn argument is the file containing
observation counts, which is generated with the -dcountfn argument to
‘norm’.

Example

Example: map adapt -mapmeanfn map model/means -mlmeanfn ml model/means
-mlvarfn ml model/variances -simeanfn baseline/means -sivarfn base-
line/variances -mlcntfn bwaccumdir/gauden counts

226

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-mapmeanfn The output MAP mean file (Default Value : NONE)

-simeanfn The input speaker-independent (baseline) mean file (Default
Value : NONE)

-sivarfn The input speaker-independent (baseline) var file (Default Value :
NONE)

-mlmeanfn The input ML mean file (output of ‘norm’ on adaptation data)
(Default Value : NONE)

-mlvarfn The in ML var file (output of ‘norm’ on adaptation data) (Default
Value : NONE)

-mlcntfn The ML total observation count (output of ‘norm -dcountfn’) file
(Default Value : NONE)

-dnom weight The prior adaptation weight (Default Value : 1.0)

227

A.2.12 make quests

Tool Description

Description:

This is an implementation of Dr. Rita Singh’s automatic question gen-
eration. (Copied from Rita’s comment) The current algorithm clusters CI
distributions using a hybrid bottom-up top-down clustering algorithm to
build linguistic questions for decision trees. (From Arthur : I need to do
some tracing before understand it what’s the internal of the code)

Example

Example: make quest -moddeffn mdef -meanfn mean -varfn var -mixwfn
mixwfn -npermute 8 -niter 1 -qstperstt 20 -tempfn temp -questfn ques-
tions

228

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn Model definition file of the ci models (Default Value : NONE)

-meanfn means file for tree building using continuous HMMs (Default
Value : NONE)

-varfn variances file for tree building using continuous HMMs (Default
Value : NONE)

-varfloor The minimum variance (Default Value : 1.0e-08)

-mixwfn PDF’s for tree building using semicontinuous HMMs (Default
Value : NONE)

-npermute The minimum variance (Default Value : 6)

-niter Number of iterations (Default Value : 0)

-qstperstt something per state (Default Value : 8)

-tempfn File to write temprorary results to (important) (Default Value :
/tmp/TEMP.QUESTS)

-questfn File to write questions to (Default Value : NONE)

-type HMM type (Default Value : NONE)

229

A.2.13 mixw interp

Tool Description

Description:

A routine that provides and ad-hoc way of speaker adaptation by mix-
ture weight interpolation. SD and SI model’s mixture weight are first de-
termined and they act as an inputs of this program. The output is the
interpolated mixture weight.

The interpolation is controlled by the value lambda (-sillambda)

Example

Example:

mixw interp -SImixwfn si mixw -SDmixwfn sd mxiw -outmixwfn final mixw
-SIlambad 0.7

230

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-SImixwfn The SI mixture weight parameter file name (Default Value :
NONE)

-SDmixwfn The SD mixture weight parameter file name (Default Value :
NONE)

-outmixwfn The output interpolated mixture weight parameter file name
(Default Value : NONE)

-SIlambda Weight given to SI mixing weights (Default Value : 0.5)

231

A.2.14 mk flat

Tool Description

Description: (Copied from Rita’s web page) In flat-initialization, all mixture
weights are set to be equal for all states, and all state transition proba-
bilities are set to be equal. Unlike in continuous models, the means and
variances of the codebook Gaussians are not given global values, since
they are already estimated from the data in the vector quantization step.
To flat-initialize the mixture weights, each component of each mixture-
weight distribution of each feature stream is set to be a number equal
to 1/N, where N is the codebook size. The mixture weights and transi-
tion matrices are initialized using the executable mk flat

Example

Example:

mk flat -moddeffn CFS3.ci.mdef -topo CFS3.topology -mixwfn mixture weights
-tmatfn transition matrices -nstream 1 -ndensity 1

232

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn A SPHINX-III model definition file name (Default Value : NONE)

-mixwfn An output SPHINX-III mixing weight file name (Default Value :
NONE)

-topo A template model topology matrix file (Default Value : NONE)

-tmatfn An output SPHINX-III transition matrix file name (Default Value :
NONE)

-nstream Number of independent observation streams (Default Value : 4)

-ndensity Number of densities per mixture density (Default Value : 256)

233

A.2.15 mk mdef gen

Tool Description

Description:

(Copied from Rita’s comment and I think it is a pretty good descrip-
tion.) Multi-function routine to generate mdef for context-independent
training, untied training, and all-triphones mdef for state tying. Flow:
if (triphonelist) make CI phone list and CD phone list if alltriphones mdef
needed, make mdef if (rawphonelist) Make ci phone list, if cimdef needed,
make mdef Generate alltriphones list from dictionary if alltriphones mdef
needed, make mdef if neither triphonelist or rawphonelist quit Count tri-
phones and triphone types in transcript Adjust threshold according to
min-occ and maxtriphones Prune triphone list Make untied mdef

Example

Example: Create CI model definition file mk mdef gen -phnlstfn phonefile
-ocimdef ci mdeffile -n state pm 3

Create untied CD model definition file mk mdef gen -phnlstfn rawphone-
file -dictfn dict -fdictfn filler dict -lsnfn transcription -ountiedmdef un-
tie mdef -n state pm 3 -maxtriphones 10000 Create tied CD model def-
inition file mk mdef gen -phnlstfn rawphone -oalltphnmdef untie mdef -
dictfn dict -fdictfn filler dict -n state pm 3.

234

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-phnlstfn List of phones (Default Value : NONE)

-inCImdef Input CI model definition file. (Default Value : NONE)

nored (Default Value : If)

(Default Value : NONE)

-triphnlstfn A SPHINX-III triphone file name. (Default Value : NONE)

incimdef ignored (Default Value : If)

(Default Value : NONE)

-inCDmdef Input CD model definition file. (Default Value : NONE)

phnlstfn, -incimdef ignored (Default Value : If)

(Default Value : NONE)

-dictfn Dictionary (Default Value : NONE)

-fdictfn Filler dictionary (Default Value : NONE)

-lsnfn Transcripts file (Default Value : NONE)

-n state pm No. of states per HMM (Default Value : 3)

-ocountfn Output phone and triphone counts file (Default Value : NONE)

-ocimdef Output CI model definition file (Default Value : NONE)

-oalltphnmdef Output all triphone model definition file (Default Value :
NONE)

-ountiedmdef Output untied model definition file (Default Value : NONE)

-minocc Min occurances of a triphone must occur for inclusion in mdef
file (Default Value : 1)

-maxtriphones Max. number of triphones desired in mdef file (Default
Value : 100000)

235

A.2.16 mk mllr class

Tool Description

Description: Create the senone to mllr class mapping.

Example

Example: mk mllr class -nmap mapfile -nclass 4 -cb2mllrfn out.cb2mllr

236

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-nmap # of codebook -> MLLR class mappings (Default Value : NONE)

-nclass # of MLLR classes to map into (Default Value : NONE)

-cb2mllrfn Codebook-to-MLLR mapping file to create (Default Value : NONE)

237

A.2.17 mk model def

Tool Description

Description:

(Copied from Eric Thayers’ comment) Make SPHINX-III model definition
files from a variety input sources. One input source is a SPHINX-II senone
mapping file and triphone file. Another is a list of phones (in which case
the transition matrices are tied within base phone class and the states are
untied)

Example

Example: [Under construction]

238

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn A SPHINX-III model definition file name (Default Value : NONE)

-triphonefn A SPHINX-II triphone file name (Default Value : NONE)

-phonelstfn List of phones (first 4 columns of phone def’ns) (Default Value
: NONE)

-mapfn A SPHINX-II senone mapping file name (Default Value : NONE)

-n cdstate total # of CD senones/tied states (even though mapfn may ref-
erence fewer) (Default Value : NONE)

-n cistate # of CI senones/tied states (Default Value : NONE)

-n tmat # of tied transition matrices (Default Value : NONE)

-n state pm # of states/model (Default Value : 5)

239

A.2.18 mk s2cb

Tool Description

Description:

Convert s3 means and variances to s2 codebook format. cepstrum,
delta, delta-delta and power cepstrum basename could be changed by
uers.

Example

Example:

mk s2cb -meanfn s3mean -varfn s3var -cbdir s2dir -varfloor 0.00001

240

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-meanfn A SPHINX-III mean density parameter file name (Default Value :
NONE)

-varfn A SPHINX-III variance density parameter file name (Default Value :
NONE)

-cbdir A directory containing SPHINX-II 1PD codebooks (Default Value :
NONE)

-varfloor Minimum variance value (Default Value : NONE)

-cepcb Basename of the cepstrum codebook (Default Value : cep.256)

-dcepcb Basename of the difference cepstrum codebook (Default Value :
d2cep.256)

-powcb Basename of the power codebook (Default Value : p3cep.256)

-2dcepcb Basename of the 2nd order difference cepstrum codebook (De-
fault Value : xcep.256)

-meanext Mean codebook extension (Default Value : vec)

-varext Variance codebook extension (Default Value : var)

241

A.2.19 mk s2hmm

Tool Description

Description:

Convert s3 model definition file, mixture weight and transition matrices
to s2 hmm format.

Example

Example:

mk s2hmm -meanfn s3mdef -varfn s3mixw -tmat s3tmat -hmmdir s2dir

242

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn Model definition file for the S3 models (Default Value : NONE)

-tmatfn S3 transition matrix parameter file name (Default Value : NONE)

-tpfloor Transition probability smoothing floor (Default Value : 0.0001)

-mixwfn S3 mixing weight parameter file name (Default Value : NONE)

-hmmdir S2 model output directory (Default Value : NONE)

-hmmext Extension of a SPHINX-II model file. (Default Value : chmm)

-cepsenoext Extension of cepstrum senone weight file (Default Value :
ccode)

-dcepsenoext Extension of difference cepstrum senone weight file (Default
Value : d2code)

-powsenoext Extension of power senone weight file (Default Value : p3code)

-2dcepsenoext Extension of 2nd order difference cepstrum senone weight
file (Default Value : xcode)

-mtype Model type sdm,dhmm (Default Value : sdm)

243

A.2.20 mk s2phone

Tool Description

Description:

(Copied from Eric Thayer’s comment) * Make a SPHINX-II phone file
given a list of phones (in SPHINX-III * format). Ok, this sounds like a
bizarre fn, but I did need it * once.

Example

Example:

mk s2phone -s2phonefn s2.phone -phonelstfn s3.phone

244

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-s2phonefn A SPHINX-II phone file name (Default Value : NONE)

-phonelstfn List of phones (Default Value : NONE)

(Default Value : NONE)

245

A.2.21 mk s2phonemap

Tool Description

Description:

Convert s3 model definition file to s2 phone and map files.

Example

Example:

mk s2phonemap -moddeffn s3mean -phonefn s2/phone -mapfn s2/map

246

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn The model definition file for the model to be converted (Default
Value : NONE)

-phonefn Output phone file name (Default Value : NONE)

-mapfn Output map file name (Default Value : NONE)

247

A.2.22 mk s2sendump

Tool Description

Description: Convert s3 model definition file and s3 mixture weight file to
a s2 senddump file.

Example

Example:

mk s2sendump -moddeffn s3mdef -mixwfn s3mixw -tpfloor 0.0000001
-feattype s2 4x -sendumpfn s2dir/sendump

248

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn The model definition file for the model inventory to train (De-
fault Value : NONE)

-mixwfn The mixture weight parameter file name (Default Value : NONE)

-sendumpfn Output sendump file name (Default Value : NONE)

-feattype Feature type e.g. s2 4x (Default Value : NONE)

-tpfloor Transition probability smoothing floor (Default Value : 0.0001)

249

A.2.23 mk s3gau

Tool Description

Description: Conversion from sphinx 2 codebook to sphinx3 means and
variances

Example

Example: mk s3gau -meanfn s3mean -varfn s3var -cbdir s2dir -feat 4s 12c 24d 3p 12dd

250

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-meanfn A SPHINX-III mean density parameter file name (Default Value :
NONE)

-varfn A SPHINX-III variance density parameter file name (Default Value :
NONE)

-cbdir A directory containing SPHINX-II 1PD codebooks (Default Value :
NONE)

-varfloor Minimum variance value (Default Value : NONE)

-cepcb Basename of the cepstrum codebook (Default Value : cep.256)

-dcepcb Basename of the difference cepstrum codebook (Default Value :
d2cep.256)

-powcb Basename of the power codebook (Default Value : p3cep.256)

-2dcepcb Basename of the 2nd order difference cepstrum codebook (De-
fault Value : xcep.256)

-meanext Mean codebook extension (Default Value : vec)

-varext Variance codebook extension (Default Value : var)

-fixpowvar Fix the power variance to the SPHINX-II standards (Default
Value : false)

-feat 2dd Defines the feature set to use (Default Value : 4s 12c 24d 3p 1)

-ceplen Defines the input feature vector (e.g. MFCC) len (Default Value :
13)

251

A.2.24 mk s3mix

Tool Description

Description: Conversion from sphinx 2 hmms to sphinx3 mixture weights

Example

Example: (By Arthur: Not sure, may be obsolete) mk s3mixw -mixwfn
s3mixw -moddeffn s3mdef -hmmdir s2hmmdir

252

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-mixwfn A SPHINX-III mixture weight parameter file name (Default Value
: NONE)

-moddeffn A SPHINX-III model definition file name (Default Value : NONE)

-floor Floor weight value to apply before renormalization (Default Value :
NONE)

-ci2cd CD weights initialized to CI weights (-hmmdir is to a set of CI mod-
els) (Default Value : false)

-hmmdir A directory containing SPHINX-III models consistent with -moddeffn
(Default Value : NONE)

-cepsenoext Extension of cepstrum senone weight file (Default Value :
ccode)

-dcepsenoext Extension of difference cepstrum senone weight file (Default
Value : d2code)

-powsenoext Extension of power senone weight file (Default Value : p3code)

-2dcepsenoext Extension of 2nd order difference cepstrum senone weight
file (Default Value : xcode)

253

A.2.25 mk s3tmat

Tool Description

Example

254

Command line Argument Decription

255

A.2.26 mk ts2cb

Tool Description

Description: (copied from Eric’s comments) * Create a tied-state-to-codebook
mapping file for semi-continuous, * phone dependent or fully continuous
Gaussian density tying.

Example

Example: (By Arthur: Not sure, may be obsolete) mk ts2cb -moddeffn semi
-ts2cbfn ts2cb

256

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-ts2cbfn A SPHINX-III tied-state-to-cb file name (Default Value : NONE)

-moddeffn A SPHINX-III model definition file name (Default Value : NONE)

-tyingtype Output a state parameter def file for fully continuous models
(Default Value : semi)

-pclassfn A SPHINX-II phone class file name (Default Value : NONE)

257

A.2.27 mllr solve

Tool Description

Description:

Given a set of mean accumulator, mllr solve can compute the transform
matrix based on the maximum likelihood criteria.

The mean vand variance are required to be input in arguements -
meanfn and -varfn For linear regression equation y=Ax+b, If you specific
only -mllrmult, then only A will be estimated. If you specific only -mllradd,
then only b will be estimated.

Example

Example: The simplest case: mllr solve -outmllrfn output.matrix -accumdir
accumdir -meanfn mean -varfn var

Adapt based on only CD-senones mllr solve -outmllrfn output.matrix -
accumdir accumdir -meanfn mean -varfn var -cdonly yes -moddeffn mdef.

Only adapt on A : mllr solve -outmllrfn output.matrix -accumdir ac-
cumdir -meanfn mean -varfn var -mllrmult yes -mllradd no

help and example: mllr solve -help yes -example yes

258

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-outmllrfn Output MLLR regression matrices file (Default Value : NONE)

-accumdir Paths containing reestimation sums from bw (Default Value :
NONE)

-meanfn Baseline Gaussian density mean file (Default Value : NONE)

-varfn variance (baseline-var, or error-var) file (Default Value : NONE)

-cb2mllrfn Codebook to mllr class mapping index file (If it is given, ignore
-cdonly) (Default Value : .1cls.)

-cdonly Use only CD senones for MLLR (If yes, -moddeffn should be given.)
(Default Value : no)

-moddeffn Model Definition file (to get CD starting point for MLLR) (De-
fault Value : NONE)

-mllrmult Reestimate full multiplicative term of MLLR adatpation of means
(yes/no) (Default Value : yes)

-mllradd Reestimate shift term of MLLR adaptation of means (yes/no) (De-
fault Value : yes)

-varfloor var floor value (Default Value : 1e-3)

259

A.2.28 mllr transform

Tool Description

Description:

Given a set of MLLR transform, mllr transform can transform the mean
according to formulat y=Ax+b.

The output and input files are specified by -outmeanfn and -inmeanfn
respectively. You may also transform the context- dependent model using
the option -cdonly. In that case you need to specify a model definition
using -moddeffn.

Example

Example: The simplest case: mllr transform -inmeanfn inMeans -outmeanfn
outMeans -mllrmat matrix

Adapt only on CD phones: mllr transform -inmeanfn inMeans -outmeanfn
outMeans -mllrmat matrix -cdonly yes -moddeffn mdef

Help and example: nmllr transform -help yes -example yes

260

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-inmeanfn Input Gaussian mean file name (Default Value : NONE)

-outmeanfn Output Gaussian mean file name (Default Value : NONE)

-mllrmat The MLLR matrix file (Default Value : NONE)

-cb2mllrfn The codebook-to-MLLR class file. Override option -cdonly (De-
fault Value : .1cls.)

-cdonly Use CD senones only. -moddeffn must be given. (Default Value :
no)

-varfloor Value of the variance floor. Mainly for smoothing the mean. (De-
fault Value : 1e-2)

-moddeffn Model Definition file. (Default Value : NONE)

-varfn Gaussian variance file name. For smoothing. (Default Value :
NONE)

(Default Value : NONE)

261

A.2.29 norm

Tool Description

Description: compute the HMM’s parameter generated by bw.

Example

Example: norm -accumdir accumdir -mixwfn mixw -tmatfn tmat -meanfn
mean -varfn variances

262

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-accumdir Paths containing reestimation sums from bw (Default Value :
NONE)

-oaccumdir Path to contain the overall reestimation sums (Default Value
: NONE)

-tmatfn Transition prob. matrix file to produce (if any) (Default Value :
NONE)

-mixwfn Mixing weight file to produce (if any) (Default Value : NONE)

-meanfn Gaussian density mean file to produce (if any) (Default Value :
NONE)

-varfn Gaussian density variance file to produce (if any) (Default Value :
NONE)

-regmatfn MLLR regression matrices file to produce (if any) (Default Value
: NONE)

-dcountfn Gaussian density count file to produce (Default Value : NONE)

-inmixwfn Use mixing weights from this file if never observed (Default
Value : NONE)

-inmeanfn Use mean from this file if never observed (Default Value : NONE)

-invarfn Use var from this file if never observed (Default Value : NONE)

-feat The feature set to use. (Default Value : NONE)

-ceplen The vector length of the source features (e.g. MFCC) (Default
Value : NONE)

263

A.2.30 param cnt

Tool Description

Description:

Find the number of times each of the triphones listed

in a given model definition file (by -moddeffhn) occured in a set of tran-
scription, specified by -lsnfn

Example

Example : param cnt -moddeffn mdef -ts2cbfn .cont. -ctlfn controlfile -
lsnfn transcripts -dictfn dict -fdictfn fillerdict -paramtype phone

264

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn Model definition file for the single density HMM’s to initialize
(Default Value : NONE)

-ts2cbfn Tied-state-to-codebook mapping file (Default Value : NONE)

-ctlfn Control file of the training corpus (Default Value : NONE)

-part Identifies the corpus part number (range 1..NPART) (Default Value :
NONE)

-npart Partition the corpus into this many equal sized subsets (Default
Value : NONE)

-nskip # of lines to skip in the control file (Default Value : NONE)

-runlen # of lines to process in the control file (after any skip) (Default
Value : NONE)

-lsnfn All word transcripts for the training corpus (consistent order w/
-ctlfn!) (Default Value : NONE)

-dictfn Dictionary for the content words (Default Value : NONE)

-fdictfn Dictionary for the filler words (Default Value : NONE)

-segdir Root directory of the training corpus state segmentation files. (De-
fault Value : NONE)

-segext Extension of the training corpus state segmentation files. (Default
Value : v8 seg)

-paramtype Parameter type to count ’state’, ’cb’, ’phone’ (Default Value :
state)

265

A.2.31 printp

Tool Description

Description:

Display numerical values of resources generated by Sphinx Current we
supoort the following formats

-tmatfn : transition matrix

-mixwfn : mixture weight file

-gaufn : mean or variance

-gaucntn : sufficient statistics for mean and diagonal covariance

-lambdafn : interpolation weight

Currently, some parameters can be specified as intervals such as mix-
ture weight.

You can also specified -sigfig the number of significant digits by you
would like to see.

and normalize the parameters by -norm

Example

Example:

Print the mean of a Gaussian: printp -gaufn mean

Print the variance of a Gaussian: printp -gaufn var

Print the sufficient statistic: printp -gaucntfn gaucnt:

Print the mixture weights: printp -mixw mixw

Print the interpolation weight: printp -lambdafn lambda

266

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-tmatfn The transition matrix parameter file name (Default Value : NONE)

-mixwfn The mixture weight parameter file name (Default Value : NONE)

-mixws Start id of mixing weight subinterval (Default Value : NONE)

-mixwe End id of mixing weight subinterval (Default Value : NONE)

-gaufn A Gaussian parameter file name (either for means or vars) (Default
Value : NONE)

-gaucntfn A Gaussian parameter weighted vector file (Default Value : NONE)

-regmatcntfn MLLR regression matrix count file (Default Value : NONE)

-moddeffn The model definition file (Default Value : NONE)

-lambdafn The interpolation weight file (Default Value : NONE)

-lambdamin Print int. wt. >= this (Default Value : 0)

-lambdamax Print int. wt. <= this (Default Value : 1)

-norm Print normalized parameters (Default Value : yes)

-sigfig Number of significant digits in ’e’ notation (Default Value : 4)

267

A.2.32 prunetree

Tool Description

Description: Using prunetree, the bifurcations in the decision trees which
resulted in the minimum increase in likelihood are progressively removed
and replaced by the parent node. The selection of the branches to be
pruned out is done across the entire collection of decision trees globally.

Example

Example:

prunetree -itreedir input tree dir -nseno 5000 -otreedir output tree dir
-moddefn mdef -psetfn questions -minocc 100

268

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-moddeffn CI model definition file (Default Value : NONE)

-psetfn Phone set definition file (Default Value : NONE)

-itreedir Input tree directory (Default Value : NONE)

-otreedir Output tree directory (Default Value : NONE)

-nseno # of senones defined by the output trees (Default Value : NONE)

-minocc Prune nodes w/ fewer than this # of observations (Default Value
: 0.0)

269

A.2.33 tiestate

Tool Description

Description : Create a model definition file with tied state from model
definition file without tied states.

Example

Example: tiestate -imoddeffn imdef -omoddeffn omdef -treedir trees -psetfn
questions

This is an example of the input and output format, I copied from Rita’s
web page,

This is an hypothetical input of tiestate # triphone: (null) # seno map:
(null) # 0.3 5 n base 34 n tri 156 n state map 117 n tied state 15 n tied ci state
5 n tied tmat # # Columns definitions #base lft rt p attrib tmat ... state
id’s ... SIL - - - filler 0 0 1 2 N AE - - - n/a 1 3 4 5 N AX - - - n/a 2 6 7 8 N
B - - - n/a 3 9 10 11 N T - - - n/a 4 12 13 14 N AE B T i n/a 1 15 16 17 N
AE T B i n/a 1 18 19 20 N AX AX AX s n/a 2 21 22 23 N AX AX B s n/a 2
24 25 26 N AX AX SIL s n/a 2 27 28 29 N AX AX T s n/a 2 30 31 32 N AX
B AX s n/a 2 33 34 35 N AX B B s n/a 2 36 37 38 N AX B SIL s n/a 2 39
40 41 N AX B T s n/a 2 42 43 44 N AX SIL AX s n/a 2 45 46 47 N AX SIL
B s n/a 2 48 49 50 N AX SIL SIL s n/a 2 51 52 53 N AX SIL T s n/a 2 54
55 56 N AX T AX s n/a 2 57 58 59 N AX T B s n/a 2 60 61 62 N AX T SIL
s n/a 2 63 64 65 N AX T T s n/a 2 66 67 68 N B AE AX e n/a 3 69 70 71
N B AE B e n/a 3 72 73 74 N B AE SIL e n/a 3 75 76 77 N B AE T e n/a 3
78 79 80 N B AX AE b n/a 3 81 82 83 N B B AE b n/a 3 84 85 86 N B SIL
AE b n/a 3 87 88 89 N B T AE b n/a 3 90 91 92 N T AE AX e n/a 4 93 94
95 N T AE B e n/a 4 96 97 98 N T AE SIL e n/a 4 99 100 101 N T AE T e
n/a 4 102 103 104 N T AX AE b n/a 4 105 106 107 N T B AE b n/a 4 108
109 110 N T SIL AE b n/a 4 111 112 113 N T T AE b n/a 4 114 115 116 N

is used as the base to give the following CD-tied model definition file
with 39 tied states (senones):

triphone: (null) # seno map: (null) # 0.3 5 n base 34 n tri 156
n state map 54 n tied state 15 n tied ci state 5 n tied tmat # # Columns
definitions #base lft rt p attrib tmat ... state id’s ... SIL - - - filler 0 0 1 2 N
AE - - - n/a 1 3 4 5 N AX - - - n/a 2 6 7 8 N B - - - n/a 3 9 10 11 N T - - -
n/a 4 12 13 14 N AE B T i n/a 1 15 16 17 N AE T B i n/a 1 18 16 19 N AX
AX AX s n/a 2 20 21 22 N AX AX B s n/a 2 23 21 22 N AX AX SIL s n/a 2
24 21 22 N AX AX T s n/a 2 25 21 22 N AX B AX s n/a 2 26 21 27 N AX B

270

B s n/a 2 23 21 27 N AX B SIL s n/a 2 24 21 27 N AX B T s n/a 2 25 21
27 N AX SIL AX s n/a 2 26 21 28 N AX SIL B s n/a 2 23 21 28 N AX SIL
SIL s n/a 2 24 21 28 N AX SIL T s n/a 2 25 21 28 N AX T AX s n/a 2 26
21 29 N AX T B s n/a 2 23 21 29 N AX T SIL s n/a 2 24 21 29 N AX T T s
n/a 2 25 21 29 N B AE AX e n/a 3 30 31 32 N B AE B e n/a 3 33 31 32 N
B AE SIL e n/a 3 34 31 32 N B AE T e n/a 3 35 31 32 N B AX AE b n/a 3
36 37 38 N B B AE b n/a 3 36 37 39 N B SIL AE b n/a 3 36 37 40 N B T
AE b n/a 3 36 37 41 N T AE AX e n/a 4 42 43 44 N T AE B e n/a 4 45 43
44 N T AE SIL e n/a 4 46 43 44 N T AE T e n/a 4 47 43 44 N T AX AE b
n/a 4 48 49 50 N T B AE b n/a 4 48 49 51 N T SIL AE b n/a 4 48 49 52 N
T T AE b n/a 4 48 49 53 N

271

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-imoddeffn Untied-state model definition file (Default Value : NONE)

-omoddeffn Tied-state model definition file (Default Value : NONE)

-treedir SPHINX-III tree directory containing pruned trees (Default Value
: NONE)

-psetfn Phone set definiton file (Default Value : NONE)

272

A.2.34 wave2feat

Tool Description

Description:

Create cepstra from audio file.

The main parameters that affect the final output are srate, lowerf, up-
perf, nfilt, and nfft. Typical values for nfft are 256 and 512. The input
format can be raw audio (pcm, two byte signed integer), NIST Sphere (.sph)
or MS Wav (.wav).

Typical values are shown on table A.2.34.

Table A.1: Typical paramater values for common sampling rates

srate 8000 11025 16000

lowerf 200 130 130

upperf 3700 5200 16000

nfilt 31 37 40

Example

Example:

This example creates a cepstral file named ”output.mfc” from an input
audio file named ”input.raw”, which is a raw audio file (no header infor-
mation), which was originally sampled at 16kHz.

wave2feat

-i input.raw

-o output.mfc

-raw no

-input_endian little

-samprate 16000

-lowerf 130

273

-upperf 6800

-nfilt 40

-nfft 512

274

Command-line Argument Description

Usage: [options]

• -help (Default Value : no)
Description: Shows the usage of the tool

• -example (Default Value : no)
Description: Shows example of how to use the tool

• -i (Default Value : NO DEFAULT VALUE)
Description: Single audio input file

• -o (Default Value : NO DEFAULT VALUE)
Description: Single cepstral output file

• -c (Default Value : NO DEFAULT VALUE)
Description: Control file for batch processing

• -di (Default Value : NO DEFAULT VALUE)
Description: Input directory, input file names are relative to this, if
defined

• -ei (Default Value : NO DEFAULT VALUE)
Description: Input extension to be applied to all input files

• -do (Default Value : NO DEFAULT VALUE)
Description: Output directory, output files are relative to this

• -eo (Default Value : NO DEFAULT VALUE)
Description: Output extension to be applied to all output files

• -nist (Default Value : no)
Description: Defines input format as NIST sphere

• -raw (Default Value : no)
Description: Defines input format as raw binary data

275

• -mswav (Default Value : no)
Description: Defines input format as Microsoft Wav (RIFF)

• -input endian (Default Value : little)
Description: Endianness of input data, big or little, ignored if NIST or
MS Wav

• -nchans (Default Value : 1)
Description: Number of channels of data (interlaced samples assumed)

• -whichchan (Default Value : 1)
Description: Channel to process

• -logspec (Default Value : no)
Description: Write out logspectral files instead of cepstra

• -feat (Default Value : sphinx)
Description: SPHINX format - big endian

• -mach endian (Default Value : little)
Description: Endianness of machine, big or little

• -alpha (Default Value : 0.97)
Description: Preemphasis parameter

• -srate (Default Value : 16000.0)
Description: Sampling rate

• -frate (Default Value : 100)
Description: Frame rate

• -wlen (Default Value : 0.025625)
Description: Hamming window length

• -nfft (Default Value : 512)
Description: Size of FFT

276

• -nfilt (Default Value : 40)
Description: Number of filter banks

• -lowerf (Default Value : 133.33334)
Description: Lower edge of filters

• -upperf (Default Value : 6855.4976)
Description: Upper edge of filters

• -ncep (Default Value : 13)
Description: Number of cep coefficients

• -doublebw (Default Value : no)
Description: Use double bandwidth filters (same center freq)

• -blocksize (Default Value : 200000)
Description: Block size, used to limit the number of samples used at
a time when reading very large audio files

• -dither (Default Value : no)
Description: Add 1/2-bit noise

• -verbose (Default Value : no)
Description: Show input filenames

277

A.2.35 QUICK COUNT

Tool Description

Description:

Generate a set of context-dependent phones list (usually triphones)
given a dictionary.

A phone list is first created in the following format:

phone1 0 0 0 0 phone2 0 0 0 0 phone3 0 0 0 0

The phone list of CI model training must be used to generate this.

Next a temporary dictionary is generated, which has all words except
the filler word (word enclosed in ++()++). The entry. SIL SIL must be added
to the temporary dictionary and the dictionary must be sort in alphabetic
order.

-q: a mandatory flag that tell QUICK COUNT to consider all word pairs
while constructing the phone list -p: the formatted phone list -b: a tempo-
rary dictionary file -o: output triphone list

Example

Example :

QUICK COUNT -q yes -p phonelist -b dictionary -o outputlist

278

Command-line Argument Description

Usage: [options]

-help Shows the usage of the tool (Default Value : no)

-example Shows example of how to use the tool (Default Value : no)

-v Verbose (Default Value : no)

-q Flag to consider all word pairs (Default Value : yes)

-b Base file or the dictionary file (Default Value : NONE)

-p Phone list file (Default Value : NONE)

-P Another argument for phone list file. Equivalent to -p. (keep it for
backward compatibility purpose.) (Default Value : NONE)

-o Output triphone list (Default Value : NONE)

-i Input control file (Default Value : NONE)

-I Another argument for input control file. Equivalent to -i. (Keep it for
backward compatibility purpose) (Default Value : NONE)

-f Find examples (?) (Default Value : no)

-S Use single path to make triphones (Default Value : no)

-s Directory of sentences (Default Value : NONE)

279

A.3 SphinxTrain: Perl Training Scripts

A.3.1 00.verify/verify all.pl

A.3.2 01.vector quantize/slave.VQ.pl

A.3.3 02.ci schmm/slave convg.pl

A.3.4 03.makeuntiedmdef/make untied mdef.pl

A.3.5 04.cd schmm untied/slave convg.pl

A.3.6 05.buildtrees/slave.treebuilder.pl

A.3.7 06.prunetree/prunetree.pl

A.3.8 07.cd-schmm/slave convg.pl

A.3.9 08.deleted-interpolation/deleted interpolation.pl

A.3.10 Summary of Configuration Parameter in script level

A.3.11 Notes on parallelization

280

A.4 CMU-Cambridge LM Toolkit

A.4.1 binlm2arpa

Description

binlm2arpa : Convert a binary format language model to ARPA format.

Input : A binary format language model, as generated by idngram2lm.

Output : An ARPA format language model.

Command Line Syntax:

binlm2arpa -binary .binlm -arpa .arpa [-verbosity 2]

281

A.4.2 evallm

Input : A binary or ARPA format language model, as generated by id-
ngram2lm. In addition, one may also specify a text stream to be used to
compute the perplexity of the language model. The ARPA format language
model does not contain information as to which words are context cues, so
if an ARPA format lanaguage model is used, then a context cues file may
be specified as well.

Output : The program can run in one of two modes.

• compute-PP Output is the perplexity of the language model with re-
spect to the input text stream.

• validate Output is confirmation or denial that the sum of the proba-
bilities of each of the words in the context supplied by the user sums
to one.

Command Line Syntax:

evallm [-binary .binlm — -arpa .arpa [-context .ccs]]

Notes: evallm can receive and process commands interactively. When
it is run, it loads the language model specified at the command line, and
waits for instructions from the user. The user may specify one of the
following commands:

• perplexity

Computes the perplexity of a given text. May optionally specify words
from which to force back-off.

Syntax:

perplexity -text .text [-probs .fprobs] [-oovs .oov file] [-annotate
.annotation file] [-backoff from unk inc — -backoff from unk exc]
[-backoff from ccs inc — -backoff from ccs exc] [-backoff from list
.fblist] [-include unks]

If the -probs parameter is specified, then each individual word prob-
ability will be written out to the specified probability stream file.

If the -oovs parameter is specified, then any out-of-vocabulary (OOV)
words which are encountered in the test set will be written out to the
specified file.

If the -annotate parameter is used, then an annotation file will be
created, containing information on the probability of each word in the
test set according to the language model, as well as the back-off class

282

for each event. The back-off classes can be interpreted as follows:
Assume we have a trigram language model, and are trying to predict
P(C — A B). Then back-off class ”3” means that the trigram ”A B C”
is contained in the model, and the probability was predicted based
on that trigram. ”3-2” and ”3x2” mean that the model backed-off and
predicted the probability based on the bigram ”B C”; ”3-2” means that
the context ”A B” was found (so a back-off weight was applied), ”3x2”
means that the context ”A B” was not found.

To force back-off from all unknown words, use the -backoff from unk inc
or -backoff from unk exc flag (the difference being the difference be-
tween inclusive or exclusive forced back-off). To force back-off from
all context-cues, use the -backoff from ccs inc or -backoff from ccs inc
flag. One can also specify a list of words from which to back-off, by
storing this list in a forced back-off list file and using the -backoff from list
switch.

-include unks results in a perplexity calculation in which the proba-
bility estimates for the unkown word are included.

• validate

Calculate the sum of the probabilities of all the words in the vocabu-
lary given the context specified by the user.

Syntax:

validate [-backoff from unk inc — -backoff from unk exc] [-backoff from ccs inc
— -backoff from ccs exc] [-backoff from list .fblist] word1 word2 ...
word (n-1)

Where n is the n in n-gram.

• help Displays a help message.

Syntax: help

• quit Exits the program.

Syntax:

quit

Since the commands are read from standard input, a command file can
be piped into it directly, thus removing the need for the program to run
interactively:

$ echo "perplexity -text b.text" | evallm -binary a.binlm

283

A.4.3 idngram2lm

Input : An id n-gram file (in either binary (by default) or ASCII (if specified)
mode).

Output : A list of the frequency-of-frequencies for each of the 2-grams,
... , n-grams, which can enable the user to choose appropriate cut-offs,
and to specify appropriate memory requirements with the -spec num op-
tion in idngram2lm.

Command Line Syntax:

idngram2lm -idngram .idngram -vocab .vocab -arpa .arpa — -binary
.binlm [-context .ccs] [-calc mem — -buffer 100 — -spec num y ... z]
[-vocab type 1] [-oov fraction 0.5] [-two byte bo weights [-min bo weight
nnnnn] [-max bo weight nnnnn] [-out of range bo weights]] [-four byte counts
] [-linear — -absolute — -good turing — -witten bell] [-disc ranges 1 7 7
] [-cutoffs 0 ... 0] [-min unicount 0] [-zeroton fraction] [-ascii input —
-bin input] [-n 3] [-verbosity 2]

Usage:

The -context parameter allows the user to specify a file containing a list
of words within the vocabulary which will serve as context cues (for exam-
ple, markers which indicate the beginnings of sentences and paragraphs).

-calc mem, -buffer and -spec num x y ... z are options to dictate how it
is decided how much memory should be allocated for the n-gram counts
data structure. -calc mem demands that the id n-gram file should be read
twice, so that we can accurately calculate the amount of memory required.
-buffer allows the user to specify an amount of memory to grab, and divides
this memory equally between the 2,3, ..., n-gram tables. -spec num allows
the user to specify exactly how many 2-grams, 3-grams, ... , and n-grams
will need to be stored. The default is -buffer STD MEM.

The toolkit provides for three types of vocabulary, which each handle
out-of-vocabulary (OOV) words in different ways, and which are specified
using the -vocab type flag.

A closed vocabulary (-vocab type 0) model does not make any provi-
sion for OOVs. Any such words which appear in either the training or
test data will cause an error. This type of model might be used in a
command/control environment where the vocabulary is restricted to the
number of commands that the system understands, and we can therefore
guarantee that no OOVs will occur in the training or test data.

An open vocabulary model allows for OOVs to occur; out of vocabulary
words are all mapped to the same symbol. Two types of open vocabulary
model are implemented in the toolkit. The first type (-vocab type 1) treats

284

this symbol the same way as any other word in the vocabulary. The second
type (-vocab type 2) of open vocabulary model is to cover situations where
no OOVs occurred in the training data, but we wish to allow for the situ-
ation where they could occur in the test data. This situation could occur,
for example, if we have a limited amount of training data, and we choose a
vocabulary which provides 100proportion of the discount probability mass
(specified by the -oov fraction option) is reserved for OOV words.

The discounting strategy and its parameters are specified by the -linear,
-absolute, -good turing and -witten bell options. With Good Turing dis-
counting, one can also specify the range over which discounting occurs,
using the -disc ranges option.

The user can specify the cutoffs for the 2-grams, 3-grams, ..., n-grams
by using the -cutoffs parameter. A cutoff of K means that ¿ n-grams oc-
curring K or fewer times are discarded. If the parameter is omitted, then
all the cutoffs are set to zero. The -zeroton fraction option specifies that
P(zeroton) (the unigram probability assigned to a vocabulary word that did
not occurred at all in the training data) will be at least that fraction of
P(singleton) (the probability assigned to a vocabulary word that occurred
exactly once in the training data).

By default, the n-gram counts are stored in two bytes by use of a
count table (this allows the counts to exceed 65535, while keeping the
data structures used to store the model compact). However, if more than
65535 distinct counts need to be stored (very unlikely, unless construct-
ing 4-gram or higher language models using Good-Turing discounting), the
-four byte counts option will need to be used.

The floating point values of the back-off weights may be stored as two-
byte integers, by using the -two byte alphas switch. This will introduce
slight rounding errors, and so should only be used if memory is short.
The -min alpha, -max alpha and -out of range alphas are parameters used
by the functions for using two-byte alphas. Their values should only be
altered if the program instructs it. For further details, see the comments
in the source file src/two byte alphas

285

A.4.4 idngram2stats

indngram2stats : Report statistics for an id n-gram file.

Input : An id n-gram file (in either binary (by default) or ASCII (if spec-
ified) mode).

Output : A list of the frequency-of-frequencies for each of the 2-grams,
... , n-grams, which can enable the user to choose appropriate cut-offs,
and to specify appropriate memory requirements with the -spec num op-
tion in idngram2lm.

Command Line Syntax:

idngram2stats [-n 3] [-fof size 50] [-verbosity 2] [-ascii input] <
.idngram > .stats

286

A.4.5 interpolate

Input : Files containing probability streams, as generated by the -probs
option of the perplexity command of evallm. Alternatively these proba-
bilities could be generated from a seperate piece of code, which assigns
word probabilities according to some other language model, for example a
cache-based LM. This probability stream can then be linearly interpolated
with one from a standard n-gram model using this tool.

Output : An optimal set of interpolation weights for these probability
streams, and (optionally) a probability stream corresponding to the linear
combination of all the input streams, according to the optimal weights.
The optimal weights are calculated using the expectation maximisation
(EM) algorithm.

Command Line Syntax :

interpolate +[-] model1.fprobs +[-] model2.fprobs ... [-test all — -test first
n — -test last n — -cv] [-tag .tags] [-captions .captions] [-in lambdas
.lambdas] [-out lambdas .lambdas] [-stop ratio 0.999] [-probs .fprobs]
[-max probs 6000000]

The probability stream filenames are prefaced with a + (or a +- to indi-
cate that the weighting of that model should be fixed).

There are a range of options to determine which part of the data is used
to calculate the weights, and which is used to test them. One can test
the perplexity of the interpolated model based on all the data, using the
-test all option, in which case a set of lambdas must also be specified with
the -lambda option (ie the lambdas are pre-specified, and not calculated
by the program). One can specify that the first or last n items are the test
set by use of the -test first n or -test last n options. Or one can perform
two-way cross validation using the -cv option. If none of these are specified
then the whole of the data is used for weight estimation.

By default, the initial interpolation weights are fixed as 1/number of models,
but alternative values can be stored in a file and used via the -in lambdas
option.

The -probs switch allows the user to specify a filename in which to store
the combined probability stream. The optimal lambdas can also be stored
in a file by use of the -out lambdas command.

The program stops when the ratio of the test-set perplexity between two
successive iterations is above the value specified in the -stop ratio option.

The data can be partitioned into different classes (with optimisation
being performed seperately on each class) using the -tags parameter. The
tags file will contain an integer for each item in the probability streams

287

corresponding to the class that the item belongs to. A file specified using
the -captions option will allow the user to attach names to each of the
classes. There should be one line in the captions file for each tag, with
each line corresponding to the name of the tag.

The amount of memory allocated to store the probability streams is
dictated by the -max probs option, which indicates the maximum number
of probabilities allowed in one stream.

288

A.4.6 mergeidngram

Input : A set of id n-gram files (in either binary (by default) or ASCII
(if specified) format - note that they should all be in the same format,
however).

Output : One id n-gram file (in either binary (by default) or ASCII (if
specified) format), containing the merged id n-grams from the input files.

Notes : This utility can also be used to convert id n-gram files between
ascii and binary formats.

Command Line Syntax:

mergeidngram [-n 3] [-ascii input] [-ascii output] .idngram 1 .id-
ngram 2idngram N ¿ .idngram

A.4.7 ngram2mgram

Input : Either a word n-gram file, or an id n-gram file.

Output : Either a word m-gram file, or an id m-gram file, where m ¡ n.

Command Line Syntax:

ngram2mgram -n N -m M [-binary — -ascii — -words] < .ngram >
.mgram

The -binary, -ascii, -words correspond to the format of the input and
output (Note that the output file will be in the same format as the input
file). -ascii and -binary denote id n-gram files, in ASCII and binary formats
respectively, and -words denotes a word n-gram file.

289

A.4.8 text2idngram

Input : Text stream, plus a vocabulary file.

Output : List of every id n-gram which occurred in the text, along with
its number of occurrences.

Notes : Maps each word in the text stream to a short integer as soon
as it has been read, thus enabling more n-grams to be stored and sorted
in memory.

Command Line Syntax:

text2idngram -vocab .vocab [-buffer 100] [-temp /usr/tmp/] [-files
20] [-gzip — -compress] [-n 3] [-write ascii] [-fof size 10] [-verbosity
2] < .text > .idngram

By default, the id n-gram file is written out as binary file, unless the
-write ascii switch is used.

The size of the buffer which is used to store the n-grams can be specified
using the -buffer parameter. This value is in megabytes, and the default
value can be changed from 100 by changing the value of STD MEM in the
file src/toolkit.h before compiling the toolkit.

The program will also report the frequency of frequency of n-grams, and
the corresponding recommended value for the -spec num parameters of
idngram2lm. The -fof size parameter allows the user to specify the length
of this list. A value of 0 will result in no list being displayed.

The -temp option allows the user to specify where the program should
store its temporary files.

In the case of really huge quantities of data, it may be the case that
more temporary files are generated than can be opened at one time by the
filing system. In this case, the temporary files will be merged in chunks,
and the -files parameter can be used to specify how many files are allowed
to be open at one time.

290

A.4.9 text2wfreq

Input : Text stream

Output : List of every word which occurred in the text, along with its
number of occurrences.

Notes : Uses a hash-table to provide an efficient method of counting
word occurrences. Output list is not sorted (due to ”randomness” of the
hash-table), but can be easily sorted into the user’s desired order by the
UNIX sort command. In any case, the output does not need to be sorted
in order to serve as input for wfreq2vocab.

Usage: text2wfreq [-hash 1000000] [-verbosity 2] < .text > .wfreq

Higher values for the -hash parameter require more memory, but can
reduce computation time.

291

A.4.10 text2wngram

Input : Text stream

Output : List of every word n-gram which occurred in the text, along
with its number of occurrences.

The maximum numbers of charactors and words that can be stored in
the buffer are given by the -chars and -words options. The default number
of characters and words are chosen so that the memory requirement of the
program is approximately that of STD MEM, and the number of charactors
is seven times greater than the number of words.

The -temp option allows the user to specify where the program should
store its temporary files.

Usage : text2wngram [-n 3] [-temp /usr/tmp/] [-chars 63636363] [
-words 9090909] [-gzip — -compress] [-verbosity 2] < .text > .wngram

292

A.4.11 wfreq2vocab

Example

wfreq2vocab : Generate a vocabulary file from a word frequency file.

Input : A word unigram file, as produced by text2wfreq

Output : A vocabulary file.

The -top parameter allows the user to specify the size of the vocabulary;
if the program is called with the command -top 20000, then the vocabulary
will consist of the most common 20,000 words.

The -gt parameter allows the user to specify the number of times that a
word must occur to be included in the vocabulary; if the program is called
with the command -gt 10, then the vocabulary will consist of all the words
which occurred more than 10 times.

If neither the -gt, nor the -top parameters are specified, then the pro-
gram runs with the default setting of taking the top 20,000 words.

The -records parameter allows the user to specify how many of the word
and count records to allocate memory for. If the number of words in the
input exceeds this number, then the program will fail, but a high number
will obviously result in a higher memory requirement.

Usage : wfreq2vocab [-top 20000 — -gt 10] [-records 3000000] [-
verbosity 2] < .wfreq > .vocab

293

A.4.12 wngram2idngram

Input : Word n-gram file, plus a vocabulary file.

Output : List of every id n-gram which occurred in the text, along with
its number of occurrences, in either ASCII or binary format.

Note : For this program to be successful, it is important that the vocab-
ulary file is in alphabetical order. If you are using vocabularies generated
by the wfreq2vocab tool then this should not be an issue, as they will
already be alphabetically sorted.

Command Line Syntax:

wngram2idngram -vocab .vocab [-buffer 100] [-hash 200000] [-temp
/usr/tmp/] [-files 20] [-gzip — -compress] [-verbosity 2] [-n 3] [
-write ascii] < .wngram > .idngram

The size of the buffer which is used to store the n-grams can be specified
using the -buffer parameter. This value is in megabytes, and the default
value can be changed from 100 by changing the value of STD MEM in the
file src/toolkit.h before compiling the toolkit.

The program will also report the frequency of frequency of n-grams, and
the corresponding recommended value for the -spec num parameters of
idngram2lm. The -fof size parameter allows the user to specify the length
of this list. A value of 0 will result in no list being displayed.

Higher values for the -hash parameter require more memory, but can
reduce computation time.

The -temp option allows the user to specify where the program should
store its temporary files.

The -files parameter is used to specify the number of files which can be
open at one time.

294

Bibliography

[1] R. Bellman, Dynamic programming, 1957.

295

Index

SphinxTrain
Decision Tree Manipulation Rou-

tines, 109
Feature Extraction Routines, 108
Miscellaneous Routines, 109
Model Adaptation Routines, 108
Model Conversion Routines, 108
Model Estimation Routines, 109
Model Initialization Routines, 109
Model Manipulation Routines, 108
Software Architecture, 107

sclite, 76
1s 12c 12d 3p 12dd, 98
1s c d dd, 98
4s 12c 24d 3p 12dd, 98

c/0..L-1/d/0..L-1/dd/0..L-1/ , 98
c/1..L-1/,d/1..L-1/,c/0/d/0/dd/0/,dd/1..L-

1/, 98
c/1..L-1/d/1..L-1/c/0/d/0/dd/0/dd/1..L-

1/, 98
cepview, 102
CMU Communicator Toolkit, 27
CMU lex, 27
CMUdict, 27
cmudict, 27

Data collection, 77
Dynamic Coefficient:Formulae, 100
Dynamic coefficients, 98

Naming conventions, 98

Festival, 26
flat initialization, 109
Front-end

Block Diagram, 92
filter banks, 97
Framing, 95

Mel Cepstrum, 96
Mel Spectrum, 95
Parameters, 93

FFT Size, 93
frame rate, 93
Lower Filter frequency, 93
Number of cepstra, 93
Pre-emphasis coefficient, 93
Pre-emphasis filter, 93
Sampling rate, 93
Upper Filter frequency, 93
Window length, 93

Power Spectrum, 95
Pre-emphasis, 93
Windowing, 95

Hephaestus, 26
Hieroglyph

Origin, xviii
writing process, xix

Hieroglyphs, 22

License, 3
CMU-Cambridge LM Toolkit, 6
Sphinx 2, 4
Sphinx 3, 4
Sphinx 4, 5
SphinxTrain, 4

Linguistic Data Consortium (LDC),
83

Mike Seltzer, 91
Mississipi State University, 83

Off-line evaluation, 76
OGI, 83
On-line evaluation, 75
OpenSALT, 28

296

OpenVXML, 28

PhD, 86
Push-here Dummy (PhD) script, 86

s2 4x, 98
s3 1x39, 98
Sentence Error Rate (SER), 76

definition, 76
Sphinx 2

Sphinx 2.4, 8
Sphinx 2.5, 7

Sphinx 3
Sphinx 3.4, 16
Sphinx 3.5, 15
Sphinx 3.6, 10
Sphinx 3.6.1, 10
Sphinx 3.6.2, 9
Sphinx 3.6.3, 8

Sphinx Developers, xvii

text normalization, 83
Transcription, 82

Word Error Rate (WER), 76
definition, 76

297

