
10-701/15-781 Machine Learning, Fall 2005

Homework 3

Out: 10/20/05 Due: beginning of the class 11/01/05

Instructions. Contact questions-10701@autonlab.org for question

Problem 1. Regression and Cross-validation [40 points]

Part 1: Multiple regression [15 points]

The multiple regression model is Y = Xβ + ε where
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Assume Y ∼ N(Xβ, σ2I) and ε ∼ N(0, σ2I) where I is the n× n identity matrix.

From the class we know that the least square estimator β̂ = SY where S = (XT X)−1XT .

(a) prove that β̂ is unbiased, i.e., E(β̂) = β.

(b) find the covariance matrix of β̂: V(β̂) (hint: V(Cx) = CV(x)CT if C is a constant
matrix.)

The estimator Ŷ = Xβ̂ = HY where H = X(XT X)−1XT (H is called the hat matrix).

(c) prove H is symmetric (H = HT ) and idempotent (H2 = H).

(d) prove the trace of H equals the rank of X, i.e., tr(H) = n + 1 (hint: what is the
relationship between tr(AB) and tr(BA) if AB and BA are defined?)

Part 2: Leave-one-out cross-validation [25 points] The least square estimator mini-
mizes the sums of squared errors:

SSE =
r∑

i=1

(Yi − Ŷi)
2
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Recall the definition of leave-one-out cross-validation score

LOOCV =
r∑

i=1

(Yi − Ŷ
(−i)
i )2

where Ŷ (−i) is the estimator of Y after removing i-th observation (i.e., it minimizes
∑

j 6=i(Yj−
Ŷ

(−i)
j )2). In particular, Ŷ

(−i)
i is the estimated value of Yi after removing i-th observation.

(a) write Ŷi in terms of H and Y .

(b) prove that Ŷ (−i) is also the estimator that minimizes SSE for Z where Zj =

{
Yj, j 6= i

Ŷ
(−i)
i , j = i

(c) prove that Ŷ
(−i)
i = Ŷi −HiiYi + HiiŶ

(−i)
i

(d) prove that

LOOCV =
r∑

i=1

(
Yi − Ŷi

1−Hii

)2
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Problem 2. Kernelization [40 points]

In the lecture on SVM, we learned a trick called kernelization for classification. The idea is
to map a feature vector in low dimensional space X into a higher dimensional space Z. This
can yield a more flexible classifier while retaining computational simplicity. In other words:
a linear classifier in a higher dimensional space corresponds to a non-linear classifier in the
original space.

In general, kernelization involves finding a mapping φ : X → Z such that

1. Z has a higher dimension than X ;

2. the computation in Z only uses inner product;

3. there is a function K called kernel such that the inner product of φ(xi) and φ(xj) is
K(xi, xj)

1.

The standard logistic regression has the following form:

P (Y = 1|X) = g(ω0 +
n∑

i=1

ωiXi)

P (Y = 0|X) = 1− P (Y = 1|X)

where g(a) = 1/(1 + e−a).

(a) Consider a function φ maps X from a low dimensional space X (dimensionality=n)
into a high dimensional space Z (dimensonality is m, m > n). The logistic regression
becomes

P (Y = 1|φ(X)) = g(ω0 +
m∑

i=1

ωiφ(X)i)

where m is the dimension of Z2.

Assume the weight vector ω is the linear combination of all input feature vector φ(Xi);
more formally, (ω1, . . . , ωm)T =

∑R
i=1 αiφ(X(i)) and ω0 = α0 where R is the number of

data points and X(i) is the i-th data point.

Use kernelization trick to compute P (Y = 1|φ(X)) (i.e., to avoid explicitly computing
in Z )

(b) Write down the gradient descent update rule for kernel logistic regression.

1And K has to be positive definite, e.g. gaussian kernel is one of such kernel. And you don’t have to
worry it for this question.

2X is a n-dimensional feature vector; φ(X) is the corresponding m-dimensional vector; φ(X)i is the i-th
element of φ(X).
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(c) Implement the kernel logistic regression using the gaussian kernel Kσ(x, x′) = exp
(
−‖x−x′‖2

2σ2

)
.

And run your program on ds2.txt (first two columns are X, last column is Y) with σ = 1.
Report the training error. Set stepsize to be 0.01 and maximum number of iterations
100 (Please use this setting and don’t try alternative settings). The scatterplot of the
ds2.txt is the follows:
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(d) Use the 10-folds cross-validation to find the best σ and plot the total number of mistakes
for σ = {0.5, 1, 2, 3, 4, 5, 6}.
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Problem 3. Computational Learning Theory [20 points]

Part1:VC-dimension [12 points]

Consider the space of instances X corresponding to all points in the 2D plane. Give the
VC-dimension of the following hypothesis spaces:

(a) Hr: the set of all axis-parallel rectangles in the 2D plane. Points inside the rectangle
are positive examples.

(b) Hc: circles in the 2D plane. Points inside the circle are classified as positive examples.

(c) How many training examples suffice to assure with probability .9 that a consistent
learner using Hc will learn the target function with accuracy of at least 0.95?

(d) What exactly does it mean in part (c) when we say the learner will succeed with
probability 0.9? Answer this question by describing a simple experiment which you
could run repeatedly, for which the success rate is expected to be at least 0.9.

Part2: Mistake bounds [8 points]

Consider learning a boolean valued function f : X → Y , where X = 〈X1 . . . XN〉, where Y
and the Xi are all boolean valued variables. You decide to consider a hypothesis space H
where each hypothesis is of the form

if [(Xi = a) ∧ (Xj = b)] then Y = 1 else Y = 0.

where i 6= j, and where a and b can be either 0 or 1. Notice each hypothesis constrains
exactly two of the features of X.

Please answer the following questions:

(a) How many distinct hypotheses are there in H?

(b) Consider the following Weighted Majority algorithm, applied to the entire space of
hypotheses H: You begin with all hypotheses in H assigned an initial weight equal to
1. Every time you see a new example, you predict based on a weighted majority vote
of the hypotheses in H. After each prediction, any hypothesis that made an incorrect
prediction has its weight divided by two. How many mistakes will this Weighted
Majority algorithm make when shown a sequence of training examples, as a function
of the number of mistakes made by the most accurate hypothesis in H?

(c) Suppose X has N=1024 features, the training sequence contains 1000 examples, and
the best hypothesis in H has a true error of 0.05. What bound can you given on the
expected number of mistakes made by the Weighted Majority algorithm in this case?
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