Graphical Models and Bayesian Networks

Required reading:

• Ghahramani, section 2, "Learning Dynamic Bayesian Networks" (just 3.5 pages :-)

Optional reading:

• Mitchell, chapter 6.11 Bayesian Belief Networks

Machine Learning 10-701

Tom M. Mitchell
Center for Automated Learning and Discovery
Carnegie Mellon University

November 1, 2005

Graphical Models

- · Key Idea:
 - Conditional independence assumptions useful
 - but Naïve Bayes is extreme!
 - Graphical models express sets of conditional independence assumptions via graph structure
 - Graph structure plus associated parameters define joint probability distribution over set of variables/nodes
- Two types of graphical models:

today

- Directed graphs (aka Bayesian Networks)
- Undirected graphs (aka Markov Random Fields)

Graphical Models – Why Care?

- Among most important ML developments of the decade
- · Graphical models allow combining:
 - Prior knowledge in form of dependencies/independencies
 - Observed data to estimate parameters
- Principled and ~general methods for
 - Probabilistic inference
 - Learning
- Useful in practice
 - Diagnosis, help systems, text analysis, time series models, ...

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

$$\frac{P(x,y) = P(x)P(y|x) = P(y)P(x|y)}{P(x,y) = P(x)P(y)}$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Conditional Independence

Definition: X is <u>conditionally independent</u> of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write P(X|Y,Z) = P(X|Z)

E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Bayesian Network

<u>Bayes network</u>: a directed acyclic graph defining a joint probability distribution over a set of variables

Each node denotes a random variable

Each node is conditionally independent of its non-descendents, given its immediate parents.

A conditional probability distribution (CPD) is associated with each node N, defining $P(N \mid Parents(N))$

P(W/LR)

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Bayesian Networks

- · Each node denotes a variable
- Edges denote dependencies
- CPD for each node X_i describes $P(X_i \mid Pa(X_i))$
- · Joint distribution given by

$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

 Node X_i is conditionally independent of its non-descendents, given its immediate parents

Parents = Pa(X) = immediate parents

Antecedents = parents, parents of parents, ...

Children = immediate children

Descendents = children, children of children, ...

Bayesian Networks

 CPD for each node X_i describes P(X_i / Pa(X_i))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1
	w)

- × cond indep of non-descends given Pa(x)
- Chain rule of probability:

$$P(S, L, R, T, W) = P(S)P(L|S)P(R|S, D)P(T|S, L, R)P(W|S, L, R, T)$$

$$= P(S)P(L|S)P(R|S)P(T|L)P(W|L|R)$$

But in Bayes net:

Algorithm for Constructing Bayes Network

- Choose an ordering over variables, e.g., X₁, X₂, ... X_n
- For i=1 to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1 \dots X_{i-1}$ such that

$$P(X_i|Pa(X_i)) = P(X_i|X_1,\ldots,X_{i-1})$$

Notice this choice of parents assures

$$P(X_1 \dots X_n) = \prod_i P(X_i | X_1 \dots X_{i-1})$$
 (by chain rule)
$$= \prod_i P(X_i | Pa(X_i)$$
 (by construction)

Example

- Bird flu and Allegies both cause Nasal problems
- Nasal problems cause Speezes and Headaches

Assume the future is conditionally independent of the past, given the present

$$\begin{split} P(S_{t-2}, O_{t-2}, S_{t-1}, \dots, O_{t+2}) &= & P(S_{t-2}) P(O_{t-2} | S_{t-2}) \\ P(S_{t-1} | S_{t-2}) & \dots \end{split}$$

Conditional Independence, Revisited

- · We said:
 - Each node is conditionally independent of its non-descendents, given its immediate parents.
- Does this rule give us all of the conditional independence relations implied by the Bayes network?
 - No!
 - E.g., X1 and X4 are conditionally indep given {X2, X3}
 - But X1 and X4 not conditionally indep given X3
 - For this, we need to understand D-separation

Explaining Away

Visited Farm

Bird Flu Allersy

Sneeze

Note BirdFlu L Allersy (Marsinally indep)
and BirdFlu L Allersy given Visited Farm
but NOT true that BirdFlu L Allersy given Sneeze

X and Y are conditionally independent given Z, iff X and Y are D-separated by Z.

D-connection:

If G is a directed graph in which X, Y and Z are disjoint sets of vertices, then X and Y are d-connected by Z in G if and only if there exists an undirected path U between some vertex in X and some vertex in Y such that (1) for every collider C on U, either C or a descendent of C is in Z, and (2) no non-collider on U is in Z.

X and Y are <u>D-separated</u> by Z in G if and only if they are not D-connected by Z in G.

Allersy

Sneezing

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - · Belief propagation
- For multiply connected graphs (no directed loops)
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate a sample according to known distribution
- Variational methods for tractable approximate solutions

Learning in Bayes Nets

- Four categories of learning problems
 - Graph structure may be known/unknown
 - Variables may be observed/unobserved
- Easy case: learn parameters for known graph structure, using fully observed data
- Gruesome case: learn graph and parameters, from partly unobserved data
- More on these in next lectures

Java Bayes Net Applet

http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/applet.html

What You Should Know

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- BN = Graph plus parameters of CPD's
 - Defines joint distribution over variables
 - Can calculate everything else from that
 - Though inference may be intractable
- Reading conditional independence relations from the graph
 - N cond indep of non-descendents, given parents
 - D-separation
 - 'Explaining away'