Expectation Maximization, and Learning from Partly Unobserved Data

Recommended readings:

• Mitchell, Chapter 6.12

• "Text Classification from Labeled and Unlabeled Documents using EM", K.Nigam, et al., 2000. *Machine Learning,* 39. http://www.cs.cmu.edu/%7Eknigam/papers/emcat-mlj99.ps

> Machine Learning 10-701 November 11, 2005

Tom M. Mitchell Carnegie Mellon University

Outline

- EM₁: Learning Bayes network CPT's from partly unobserved data
- EM₂: Mixture of Gaussians clustering
- EM: the general story
- Text application: learning Naïve Bayes classifier from labeled and unlabeled data

1. Learning Bayes net parameters from partly unobserved data

Learning CPTs from Fully Observed Data

• Example: Consider learning the parameter

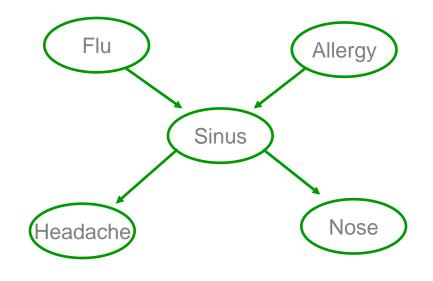
 $\theta_{s|ij} \equiv P(S = 1|F = i, A = j)$

 MLE (Max Likelihood Estimate) is

$$\theta_{s|ij} = \underbrace{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}_{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

kth training example

• Remember why?



MLE estimate of $\theta_{s|ij}$ from fully observed data

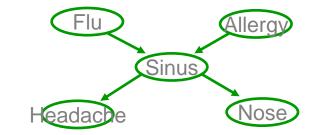
- Maximum likelihood estimate $\theta \leftarrow \arg \max_{\alpha} \log P(data|\theta)$
- Our case:

$$P(data|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$
$$P(data|\theta) = \prod_{k=1}^{K} P(f_k) P(a_k) P(s_k|f_k a_k) P(h_k|s_k) P(n_k|s_k)$$

 $\log P(data|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$

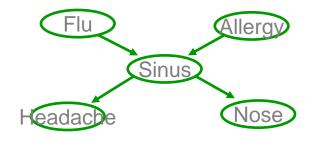
$$\frac{\partial \log P(data|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_k a_k)}{\partial \theta_{s|ij}}$$

$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$



Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can't calculate MLE $\theta \leftarrow \arg\max_{\theta} \log \prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$



- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values
- Can't calculate MLE:

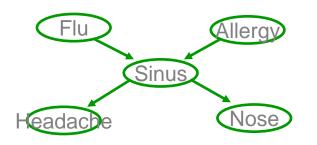
 $\theta \leftarrow \arg \max_{\theta} \log P(X, Z | \theta)$

• EM seeks estimate:

$$heta \leftarrow \arg \max_{ heta} E_{Z|X, heta}[\log P(X, Z| heta)]$$

• EM seeks estimate:

$$\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)]$$



here, observed X={F,A,H,N}, unobserved Z={S}

 $\log P(X, Z|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_k a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$

 $E_{X|Z,\theta}[logP(X, Z|\theta)] = \sum_{k=1}^{K} \sum_{i=0}^{1} P(s_k = i|f_k, a_k, h_k, n_k)$ $[logP(f_k) + \log P(a_k) + \log P(s_k|f_k a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)]$

EM Algorithm

EM is a general procedure for solving such problems

Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$

Iterate until convergence:

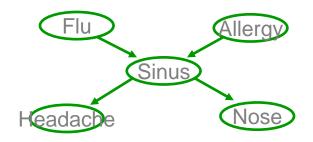
• E Step: Use X and current θ to estimate P(Z|X, θ)

• M Step: Replace current $\boldsymbol{\theta}$ by

 $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

Guaranteed to find local maximum. Each iteration increases $E_{Z|X,\theta}[\log P(X,Z|\theta)]$

E Step: Use X, θ , to Calculate P(Z|X, θ)



• How? Bayes net inference problem.

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) =$$

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

M step: modify this to achieve $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

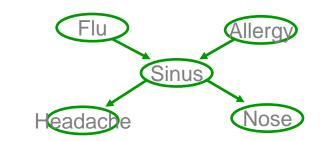
- Maximum likelihood estimate $\theta \leftarrow \arg \max_{\alpha} \log P(data|\theta)$
- Our case:

$$P(data|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$
$$P(data|\theta) = \prod_{k=1}^{K} P(f_k) P(a_k) P(s_k|f_k a_k) P(h_k|s_k) P(n_k|s_k)$$

 $\log P(data|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$

$$\frac{\partial \log P(data|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_k a_k)}{\partial \theta_{s|ij}}$$

$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$



EM and estimating
$$\theta_{s|ij}$$

observed X = {F,A,H,N}, unobserved Z={S}

E step: Calculate for each training example, k

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = E[s_k] = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$
M step:

$$\theta_{s|ij} \leftarrow \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j) \ E[s_k]}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

Allergy

Nose

Sinus

Recall MLE was:
$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

EM and estimating θ

More generally, Given observed set X, unobserved set Z of boolean values

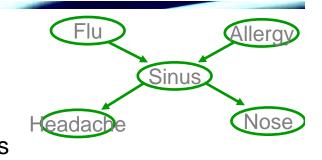
E step: Calculate for each training example, k

the expected value of each unobserved variable

M step:

Calculate estimates similar to MLE, but replacing each count by its expected count

 $\delta(Y = 1) \rightarrow E_{Z|X,\theta}[Y] \qquad \delta(Y = 0) \rightarrow (1 - E_{Z|X,\theta}[Y])$



2. Usupervised clustering: K-means and Mixtures of Gaussians

Clustering

- Given set of data points, group them
- Unsupervised learning
- Which patients are similar? (or which earthquakes, customers, faces, web pages, ...)

K-means Clustering

Given data $\langle x_1 \dots x_n \rangle$, and K, assign each x_i to one of K clusters, $C_1 \dots C_K$, minimizing $J = \sum_{j=1}^K \sum_{x_i \in C_j} ||x_i - \mu_j||^2$

Where μ_j is mean over all points in cluster C_i

K-Means Algorithm:

Initialize $\mu_1 \dots \mu_K$ randomly

Repeat until convergence:

- 1. Assign each point x_i to the cluster with the closest mean μ_i
- 2. Calculate the new mean for each cluster

$$\mu_j \leftarrow rac{1}{|C_j|} \sum_{x_i \in C_j} x_i$$

K Means Applet

- Run K-means applet
 - http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/AppletKM.html
- Try 3 clusters, 15 pts

Mixtures of Gaussians

K-means is EM'ish, but makes '<u>hard</u>' assignments of x_i to clusters. Let's derive a real EM algorithm for clustering. What object function shall we optimize?

• Maximize data likelihood!

What form of P(X) should we assume?

• Mixture of Gaussians

Mixture of Gaussians:

- Assume P(x) is a mixture of K different Gaussians
- Then each data point, *x*, is generated by 2-step process
 - 1. $z \leftarrow$ choose one of the K Gaussians, according to $\pi_1 \dots \pi_{K-1}$
 - 2. Generate x according to the Gaussian $N(\mu_z, \Sigma_z)$

$$P(\mathbf{x}) = \sum_{z=1}^{K} P(Z = z | \pi) N(\mathbf{x} | \mu_{\mathbf{z}}, \Sigma_{z})$$

Mixture Distributions

• $P(X|\phi)$ is a "mixture" of K different distributions: $P_1(X|\theta_1), P_2(X|\theta_2), ... P_K(X|\theta_K)$

where
$$\phi = \langle \theta_1 \dots \theta_K, \pi_1 \dots \pi_{K-1} \rangle$$

- We generate a draw $X \sim P(X|\phi)$ in two steps:
 - 1. Choose $Z \in \{1, ..., K\}$ according to P($Z \mid \pi_1 ... \pi_{K-1}$)
 - 2. Generate $X \sim P_k(X|\theta_k)$

$$P(\mathbf{x}|\phi) = \sum_{k=1}^{K} P(Z = k|\pi) P_k(\mathbf{x}|\theta_k)$$

EM for Mixture of Gaussians

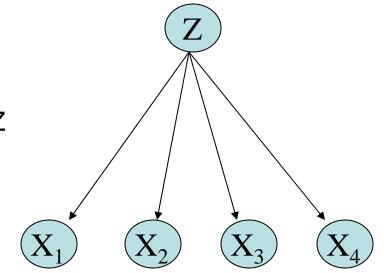
Simplify to make this easier:

- 1. assume $X = \langle X_1 \dots X_n \rangle$, and the X_i are conditionally independent given Z. $P(X|Z = j) = \prod N(X_i|\mu_{ji}, \sigma_{ji})$
- 2. assume only 2 mixture components, and $\forall i, j, \sigma_{ji} = \sigma$ $P(\mathbf{X}) = \sum_{j=1}^{2} P(Z = j | \pi) \prod_{i} N(x_i | \mu_{ji}, \sigma)$ (Z)
- 3. Assume σ known, $\pi_1 \dots \pi_{K_i} \mu_{1i} \dots \mu_{Ki}$ unknown

Observed: $X = \langle X_1 \dots X_n \rangle$ Unobserved: Z

ΕM

Given observed variables X, unobserved Z Define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$ where $\theta = \langle \pi, \mu_{ji} \rangle$



Iterate until convergence:

- E Step: Calculate $P(Z(n)|X(n), \theta)$ for each example X(n). Use this to construct $Q(\theta'|\theta)$
- M Step: Replace current θ by $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

EM - E StepCalculate $P(Z(n)|X(n),\theta)$ for each observed example X(n) $X(n) = \langle x_1(n), x_2(n), \dots x_T(n) \rangle$.

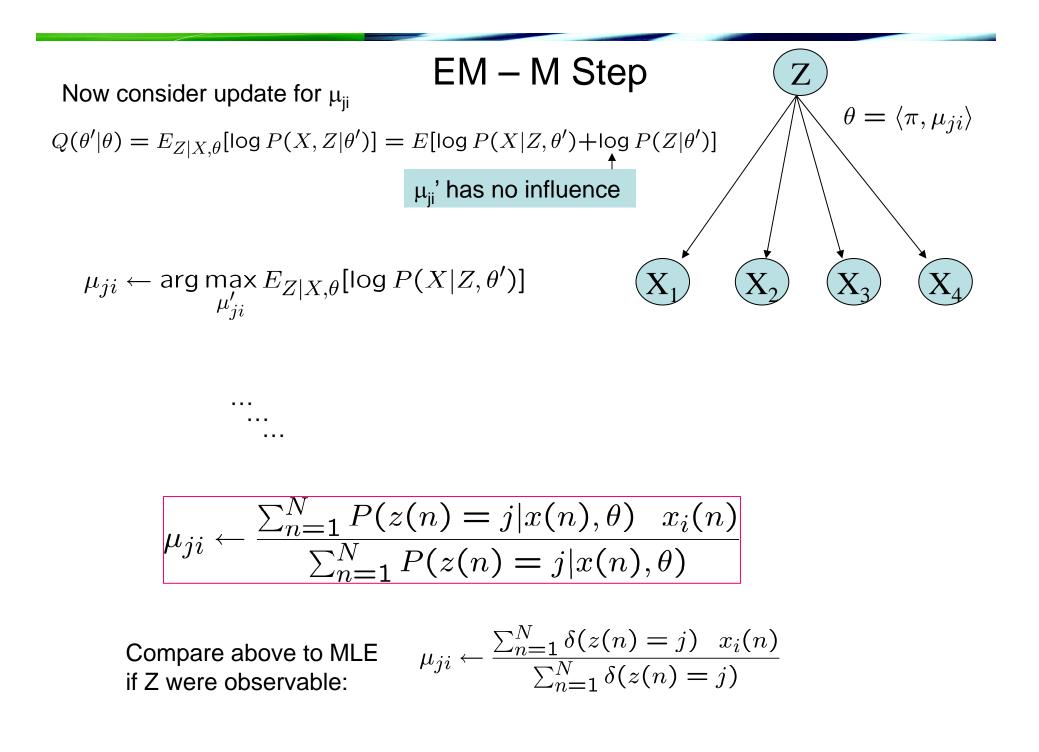
$$P(z(n) = k|x(n), \theta) = \frac{P(x(n)|z(n) = k, \theta) \quad P(z(n) = k|\theta)}{\sum_{j=0}^{1} p(x(n)|z(n) = j, \theta) \quad P(z(n) = j|\theta)}$$

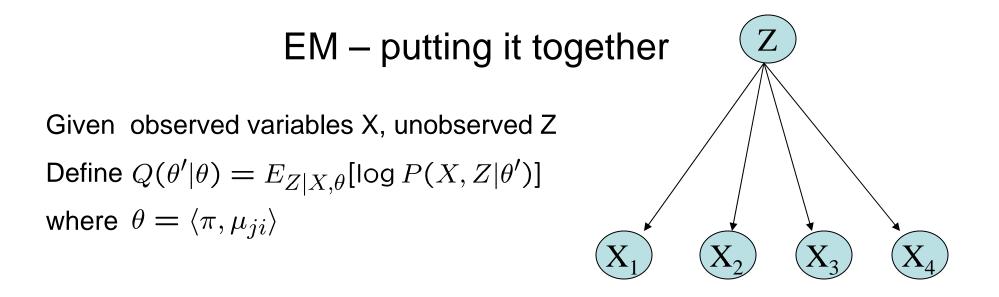
$$P(z(n) = k|x(n), \theta) = \frac{\left[\prod_{i} P(x_i(n)|z(n) = k, \theta)\right] \quad P(z(n) = k|\theta)}{\sum_{j=0}^{1} \prod_{i} P(x_i(n)|z(n) = j, \theta) \quad P(z(n) = j|\theta)}$$

$$P(z(n) = k | x(n), \theta) = \frac{\left[\prod_{i} N(x_{i}(n) | \mu_{k,i}, \sigma)\right] (\pi^{k} (1 - \pi)^{(1-k)})}{\sum_{j=0}^{1} \left[\prod_{i} N(x_{i}(n) | \mu_{j,i}, \sigma)\right] (\pi^{j} (1 - \pi)^{(1-j)})}$$

First consider update for
$$\pi$$

$$\begin{aligned}
& EM - M \text{ Step} \\
& Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X,Z|\theta')] = E[\log P(X|Z,\theta') + \log P(Z|\theta')] \\
& \pi' \text{ has no influence} \\
& \pi \leftarrow \arg \max_{\pi'} E_{Z|X,\theta}[\log P(Z|\pi')] \\
& E_{Z|X,\theta}\left[\log P(Z|\pi')\right] = E_{Z|X,\theta}\left[\log \left(\pi'\sum_{n} z(n)(1-\pi')\sum_{n}(1-z(n))\right)\right] \\
& = E_{Z|X,\theta}\left[\left(\sum_{n} z(n)\right)\log\pi' + \left(\sum_{n}(1-z(n))\right)\log(1-\pi')\right] \\
& = \left(\sum_{n} E_{Z|X,\theta}[z(n)]\right)\log\pi' + \left(\sum_{n} E_{Z|X,\theta}[(1-z(n)])\right)\log(1-\pi') \\
& \frac{\partial E_{Z|X,\theta}[\log P(Z|\pi')]}{\partial\pi'} = \left(\sum_{n} E_{Z|X,\theta}[z(n)]\right)\frac{1}{\pi'} + \left(\sum_{n} E_{Z|X,\theta}[(1-z(n)])\right)\frac{(-1)}{1-\pi'} \\
& \frac{\pi \leftarrow \frac{\sum_{n=1}^{N} E[z(n)]}{\left(\sum_{n=1}^{N} E[z(n)]\right) + \left(\sum_{n=1}^{N}(1-E[z(n)])\right)} = \frac{1}{N}\sum_{n=1}^{N} E[z(n)]
\end{aligned}$$





Iterate until convergence:

• E Step: For each observed example X(n), calculate $P(Z(n)|X(n),\theta)$ $P(z(n) = k \mid x(n),\theta) = \frac{[\prod_i N(x_i(n)|\mu_{k,i},\sigma)] \quad (\pi^k(1-\pi)^{(1-k)})}{\sum_{j=0}^1 [\prod_i N(x_i(n)|\mu_{j,i},\sigma)] \quad (\pi^j(1-\pi)^{(1-j)}))}$

• **M** Step: Update $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

$$\pi \leftarrow \frac{1}{N} \sum_{n=1}^{N} E[z(n)] \qquad \qquad \mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta) \quad x_i(n)}{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta)}$$

Mixture of Gaussians applet

• Run applet

http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.html

K-Means vs Mixture of Gaussians

• Both are iterative algorithms to assign points to clusters

т /

• Objective function

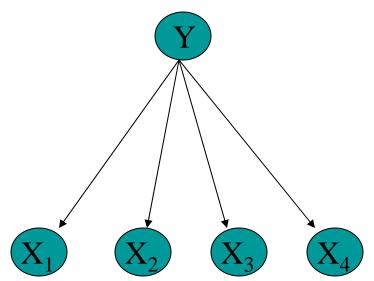
- K Means: minimize
$$J = \sum_{j=1}^{K} \sum_{x_i \in C_j} ||x_i - \mu_j||^2$$

– MixGaussians: maximize $P(X|\theta)$

- Mixture of Gaussians is the more general formulation
 - Equivalent to K Means when $\Sigma_k = \sigma I$, and $\sigma \to 0$

Using Unlabeled Data to Help Train Naïve Bayes Classifier

Learn P(Y|X)



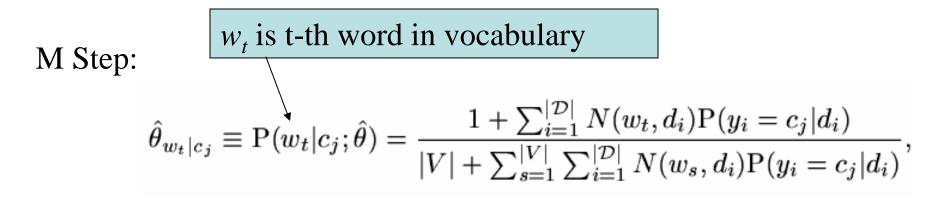
Υ	X1	X2	X3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

- Inputs: Collections \mathcal{D}^l of labeled documents and \mathcal{D}^u of unlabeled documents.
- Build an initial naive Bayes classifier, $\hat{\theta}$, from the labeled documents, \mathcal{D}^l , only. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- Loop while classifier parameters improve, as measured by the change in $l_c(\theta | \mathcal{D}; \mathbf{z})$ (the complete log probability of the labeled and unlabeled data
 - (E-step) Use the current classifier, $\hat{\theta}$, to estimate component membership of each unlabeled document, *i.e.*, the probability that each mixture component (and class) generated each document, $P(c_j | d_i; \hat{\theta})$ (see Equation 7).
 - (M-step) Re-estimate the classifier, $\hat{\theta}$, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- **Output:** A classifier, $\hat{\theta}$, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]

E Step:

$$\begin{split} \mathbf{P}(y_i = c_j | d_i; \hat{\theta}) &= \frac{\mathbf{P}(c_j | \hat{\theta}) \mathbf{P}(d_i | c_j; \hat{\theta})}{\mathbf{P}(d_i | \hat{\theta})} \\ &= \frac{\mathbf{P}(c_j | \hat{\theta}) \prod_{k=1}^{|d_i|} \mathbf{P}(w_{d_{i,k}} | c_j; \hat{\theta})}{\sum_{r=1}^{|\mathcal{C}|} \mathbf{P}(c_r | \hat{\theta}) \prod_{k=1}^{|d_i|} \mathbf{P}(w_{d_{i,k}} | c_r; \hat{\theta})}. \end{split}$$



$$\hat{\theta}_{c_j} \equiv \mathbf{P}(c_j|\hat{\theta}) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} \mathbf{P}(y_i = c_j|d_i)}{|\mathcal{C}| + |\mathcal{D}|}.$$

Elaboration 1: Downweight the influence of unlabeled examples by factor λ

$$\begin{split} l_{c}(\theta | \mathcal{D}; \mathbf{z}) &= \log(\mathrm{P}(\theta)) + \sum_{d_{i} \in \mathcal{D}^{l}} \sum_{j=1}^{|\mathcal{C}|} z_{ij} \log\left(\mathrm{P}(c_{j} | \theta) \mathrm{P}(d_{i} | c_{j}; \theta)\right) \\ &+ \lambda \left(\sum_{d_{i} \in \mathcal{D}^{u}} \sum_{j=1}^{|\mathcal{C}|} z_{ij} \log\left(\mathrm{P}(c_{j} | \theta) \mathrm{P}(d_{i} | c_{j}; \theta)\right) \right). \\ &\text{Chosen by cross validation} \end{split}$$

$$\hat{\theta}_{w_t|c_j} \equiv \mathbf{P}(w_t|c_j; \hat{\theta}) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} \Lambda(i) N(w_t, d_i) \mathbf{P}(y_i = c_j | d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|\mathcal{D}|} \Lambda(i) N(w_s, d_i) \mathbf{P}(y_i = c_j | d_i)}.$$

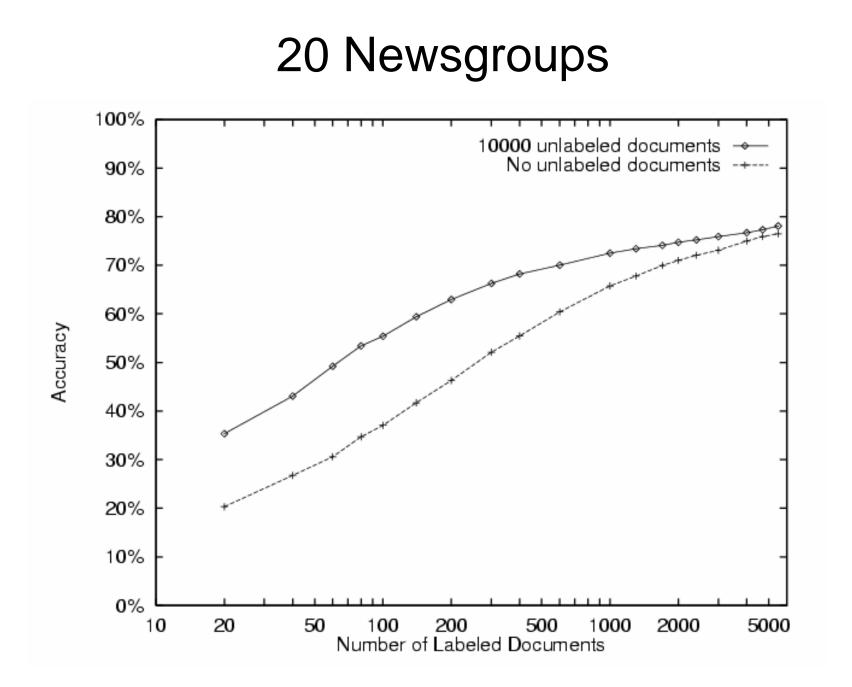
$$\hat{\theta}_{c_j} \equiv \mathbf{P}(c_j|\hat{\theta}) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} \Lambda(i)\mathbf{P}(y_i = c_j|d_i)}{|\mathcal{C}| + |\mathcal{D}^l| + \lambda|\mathcal{D}^u|} \qquad \qquad \Lambda(i) = \begin{cases} \lambda & \text{if } d_i \in \mathcal{D}^u \\ 1 & \text{if } d_i \in \mathcal{D}^l \end{cases}$$

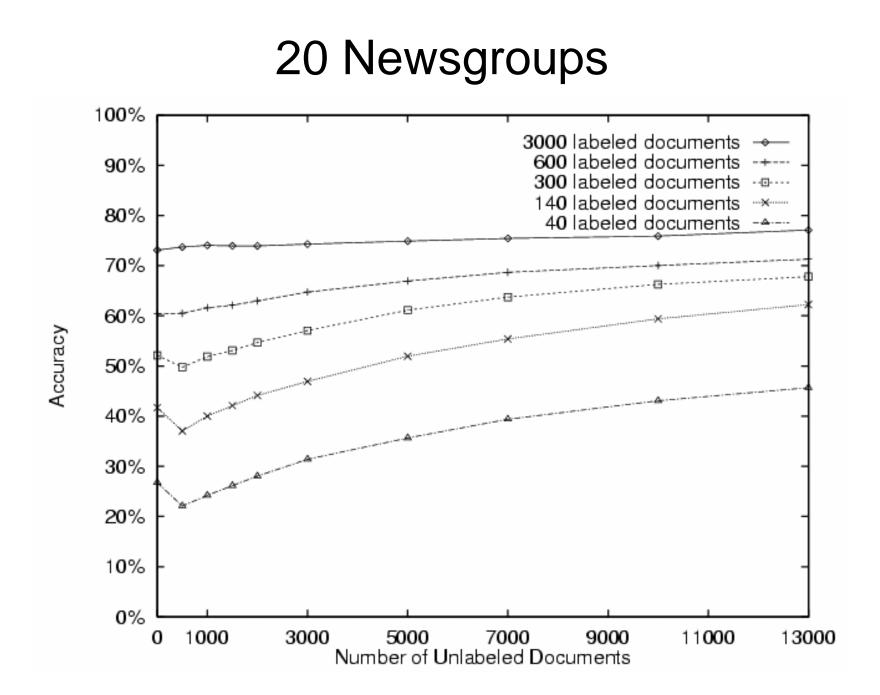
Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0	Iteration 1		Iteration 2
intelligence		DD	D
$D\overline{D}$		D	DD
artificial	Using one	lecture	lecture
understanding	labeled	cc	cc
DDw	Iubeleu	D^{\star}	DD:DD
dist	example per	DD:DD	due
identical		handout	D^{\star}
rus	class	due	homework
arrange		problem	assignment
games		set	handout
dartmouth		tay	set
natural		<i>DD</i> am	hw
cognitive		yurttas	exam
logic		homework	problem
proving		kfoury	<i>DD</i> am
prolog		sec	postscript
knowledge		postscript	solution
human		exam	quiz
representation		solution	chapter
field		assaf	ascii

Experimental Evaluation

- Newsgroup postings
 - 20 newsgroups, 1000/group
- Web page classification
 - student, faculty, course, project
 - 4199 web pages
- Reuters newswire articles
 - 12,902 articles
 - 90 topics categories





What you should know about EM

- For learning from partly unobserved data
- MLEst of $\theta = \arg \max_{\alpha} \log P(data|\theta)$
- EM estimate: $\theta = \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)]$ Where X is observed part of data, Z is unobserved $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$
- EM for training Bayes networks
- Can also develop MAP version of EM
- Be able to derive your own EM algorithm for your own problem

Combining Labeled and Unlabeled Data

How else can unlabeled data be useful for supervised learning/function approximation?

Combining Labeled and Unlabeled Data

How can unlabeled data $\{x\}$ be useful for learning f: $X \rightarrow Y$

- 1. Using EM, if we know the form of P(Y|X)
- 2. By letting us estimate P(X) and reweight labeled examples
- 3. Co-Training [Blum & Mitchell, 1998]
- 4. To detect overfitting [Schuurmans, 2002]