Graphical Models

ML 70I
Anna Goldenberg

HMMs

Outline

- Dynamic Models
- Gaussian Linear Models
- Kalman Filter
- DBN
- Undirected Models
- Unification
- Summary

HMM in short

- is a Bayes Net
- satisfies Markov property (independence of states given present)
- with discrete states (time steps are discrete)

State Space Models

O_{t}

$$
P(Q, O)=p\left(q_{0}\right) \prod_{t=1}^{T-1} p\left(q_{t+1} \mid q_{t}\right) \prod_{t=1}^{T} p\left(O_{t} \mid q_{t}\right)
$$

State Space Models

q_{t} - is a real-valued K-dimensional hidden state variable
O_{t} - is a D-dimensional real-valued observation vector

State Space Models

q_{t}
hidden states
O_{t}
observations

$q_{t}=f\left(q_{t-1}\right)+w_{t}$
f determines mean of q_{t} given mean of q_{t-1} w_{t} is zero-mean random noise vector
$O_{t}=g\left(q_{t}\right)+v_{t}$ similarly

Gaussian Linear State Space Models

- O_{t} and q_{t} are Gaussian
- fand g are linear and time-invariant
$q_{t}=A q_{t-1}+w_{t}$,
$w_{t} \sim N(0, R)$
$O_{t}=B q_{t-1}+v_{t}$,
$v_{t} \sim N(0, S)$
$q_{0} \sim N\left(0, \Sigma_{0}\right)$
A - transition matrix
B - observation matrix

Kalman Filter (I960)

- time update $P\left(q_{t-1} \mid O_{0}, \ldots, O_{t-1}\right) \rightarrow P\left(q_{t} \mid O_{0}, \ldots, O_{t-1}\right)$

$E\left(q_{t \mid t-1}\right)=A \cdot E\left(q_{t-1 \mid t-1}\right)$
$V\left(q_{t \mid t-1}\right)=A \cdot V\left(q_{t-1 \mid t-1}\right) A^{T}+R$
measurement update $P\left(q_{t} \mid O_{o}, \ldots, O_{t-1}\right) \rightarrow P\left(q_{t} \mid O_{o}, \ldots, O_{t}\right)$

2. $P\left(q_{t} \mid O_{o}, \ldots, O_{t-1}\right) \rightarrow P\left(q_{t} \mid O_{o}, \ldots, O_{t}\right)$

$$
\begin{aligned}
& E\left(q_{t \mid t}\right)=E\left(q_{t \mid t-1}\right)+\Sigma_{12} \Sigma_{22}^{-1}\left(O_{t}-E\left(O_{t \mid t}\right)\right) \\
& V\left(q_{t \mid t}\right)=V\left(q_{t \mid t-1}\right)-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

Example of use

Reported by Welch and Bishop, SIGGRAPH 200I

Dynamic Bayes Nets

- So far

- But are there more appealing models?

Kalman Filter Usage

- Tracking motion
- Missiles
- Hand motion
- Lip motion from videos
- Signal Processing
- Navigation
- Economics (for prediction)

Dynamic Bayes Nets

- It's just a Bayes Net!
- Approach to the dynamics
- I.Start with some prior for the initial state
- 2. Predict the next state just using the observation up to the previous time step
- 3. Incorporate the new observation and re-estimate the current state

Dynamic Bayes Nets

- It's just a Bayes Net!
- Approach to the dynamics
- I.Start with som Most importantly:
- 2. Predict the no Use the structure of the Bayes Net.
- 3.Incorporate the Use the independencies!!!

Are all GM directed?

There are Undirected Graphical Models!

Other graphical models
but first...

Any questions so far?

Undirected models

$$
\begin{aligned}
& p(X)=\frac{1}{Z} \prod_{C} \psi\left(X_{C}\right) \\
& \psi\left(X_{C}\right) \quad \text { - non-negative potential function }
\end{aligned}
$$

What are C?

Cliques

$$
p(X)=\frac{1}{Z} \prod_{C} \psi\left(X_{C}\right)
$$

$\psi\left(X_{C}\right) \quad$ - non-negative potential function

A clique C is a subset $C \in V$ if $\forall i, j \in C,(i, j) \in E$
C is maximal if it is not contained in any other clique

Decomposition

Note to resolve the confusion:
The most common machine learning notation is the decomposition over maximal cliques
$p(A, B, C, D, E)=\frac{1}{Z} p(A, B, C) p(B, D) p(C, E) p(D, E)$

Cliques

i) B-a clique?
ii) BC - a maximal clique?
iii) $A B C D$ - a clique?
iv) $A B C$ - a maximal clique?
v) BCDE - a clique?

Independence

Rule: V_{1} is independent of V_{2} given cutset S
S is called the Markov Blanket (MB)
e.g. $M B(B)=\{A, C, D\}$, i.e. the set of neighbors

Are undirected models useful?

- Yes!
- Used a lot in Physics (Ising model, Boltzmann machine)
- In vision (every pixel is a node)
- Bioinformatics

Are undirected models useful?

- Yes!
- Used a lot in Physics (Ising model, Boltzmann machine)
- In vision (every pixel is a node), bioinformatics
\Rightarrow Why not more popular?
- the ZZZZZZ! it's the partition function

$$
p(X)=\prod_{C}^{1} \psi\left(X_{C}\right)
$$

Chain Graphs

- Generalization of MRFs and Bayes Nets
- Structured as blocks
- Undirected edges within a block
- Directed edges between blocks

Chain Graphs

- Generalization of MRFs and Bayes
- Structured as blocks
- Undirected edges withir
- Directed edges between
quite intractable not very popular used in BioMedical Engineering (text)

Directed

(C)

Graphical Models

Undirected?
(A)

Directed?
(A)
(B)
(C)
(B)
(D)

Summary

- Graphical Models is a huge evolving field
- There are many other variations that haven't been discussed
- Used extensively in variety of domains
- Tractability issues
- More work to be done!

