Graphical Models

Anna Goldenberg

Outline

- ➡ Dynamic Models
 - Gaussian Linear Models
 - ➡ Kalman Filter
 - ➡ DBN
- Undirected Models
- Unification
- ➡ Summary

- ➡ Tracking motion
 - Missiles
 - ➡ Hand motion
 - ➡ Lip motion from videos
- ➡ Signal Processing
- Navigation
- ➡ Economics (for prediction)

Are undirected models useful?

- ➡ Yes!
 - Used a lot in Physics (Ising model, Boltzmann machine)
 - ➡ In vision (every pixel is a node)
 - Bioinformatics

Are undirected models useful?

- ➡ Yes!
 - → Used a lot in Physics (Ising model, Boltzmann machine)
 - → In vision (every pixel is a node), bioinformatics
- ➡ Why not more popular?
 - ➡ the ZZZZZZ! it's the partition function

$$p(X) = \prod_{C} \psi(X_C)$$

What's Z and ways to fight it

$$Z = \sum_{\forall x} \prod_{C} \psi(X_C)$$

- Approximations
 - → Sampling (MCMC sampling is common)
 - Pseudo-Likelihood
 - ➡ Mean-field approximation

Chain Graphs

- Generalization of MRFs and Bayes Nets
- ➡ Structured as blocks
 - Undirected edges within a block
 - Directed edges between blocks

Summary Graphical Models is a huge evolving field There are many other variations that haven't been discussed Used extensively in variety of domains Tractability issues More work to be done!