Neural Networks

Required reading:
* Neural nets: Mitchell chapter 4

Optional reading:

 Bias/Variance error decomposition: Bishop: 9.1, 9.2

Machine Learning 10-701

Tom M. Mitchell
Center for Automated Learning and Discovery
Carnegie Mellon University

October 4, 2005



Today:
e Finish up

— MLE vs MAP for logisitic regression
— Generative/Discriminative classifiers

e Artificial neural networks



MLE vs MAP

e Maximum conditional likelihood estimate
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MLE vs MAP

e Maximum conditional likelihood estimate
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Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X =2 Y, or P(Y|X)

Generative classifiers:

 Assume some functional form for P(X|Y), P(X)

« Estimate parameters of P(X]|Y), P(X) from training data
e Use Bayes rule to calculate P(Y|X= x))

Discriminative classifiers:

 Assume some functional form for P(Y|X)

« Estimate parameters of P(Y|X) from training data



Nailve Bayes vs Logistic Regression

Consider Y boolean, X; continuous, X=<X; ... X >

Number of parameters:
e NB:4n +1
e LR:n+1

Estimation method:
 NB parameter estimates are uncoupled
LR parameter estimates are coupled



Nailve Bayes vs. Logistic Regression

_ L _ . [Ng & Jordan, 2002]
 Generative and Discriminative classifiers

e Asymptotic comparison (# training examples =2 infinity)
« when model correct

 GNB, LR produce identical classifiers

« when model incorrect
* LR is less biased — does not assume cond indep.

* therefore expected to outperform GNB



Nailve Bayes vs. Logistic Regression

e Generative and Discriminative classifiers

* Non-asymptotic analysis (see [Ng & Jordan, 2002] )

e convergence rate of parameter estimates (slightly
oversimplified — see paper for bounds)

« GNB order log n (where n = # of attributes in X)

e LR order n

GNB converges more quickly to its (perhaps less helpful)
asymptotic estimates



pima [sontinuaus)

adult (corfinuous)

045

Easton dpradict if = median price, conbinuous)

0.4

L
"
i

3

cpldigits (0'e and 1's, conlinuaus)

) ) optdigits (2's and 3's, conlinuous) sonar (sorfinuoLs) adull {decrede)
0.4 T T T 0.4 T T T 0.5 T T T T 5 = . . = 0.7 T T T
o
0.3 ] o8
L
1
I|
ED.'E". 1
i
\ ]
i
II\.
I:l.1' '|I " ]
\
S - - = \ . ; . :
50 100 150 200 200 '1-'_‘- 20 40 [=34] &0 100 ] M 40 @0 B0 10D 120 4C
m m m
w U ]
£
o
- t Iefses (predict hard va. soll, disenets)
experiments o

sick [discrabs)

from UCI data

sets ' L

Fipure 1: Results of 15 experiments on datasets from the UCT Machine Learnin,
repogitory. Plots are of generalization error vs. m (averaged over 1000 randor
train/test splits). Dashed line is logistic regression; solid line is naive Bayes.,



What you should know:

e Logistic regression
— Functional form follows from Naive Bayes assumptions

— But training procedure picks parameters without the
conditional independence assumption

— MLE training: pick W to maximize P(Y | X, W)
— MAP training: pick W to maximize P(W | X,Y)
 ‘regularization’

o Gradient ascent/descent
— General approach when closed-form solutions unavailable

e Generative vs. Discriminative classifiers



Artificial Neural Networks



Artificial Neural Networksto learnf: X 2> Y

« f might be non-linear function
o X (vector of) continuous and/or discrete vars
e Y (vector of) continuous and/or discrete vars

 Represent f by network of threshold units

 Each unitis a logistic function
1

1 4 exp(wo + 3; wiz;)

unit output =

 MLE: train weights of all units to minimize sum of
sqguared errors at network outputs



Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10
e Connections per neuron ~ 10*™°
e Scene recognition time ~ .1 second
¢ 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process
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Sigmoid Unit

o(x) is the sigmoid function
1
L+e "

Nice property: %}J =o(z)(1 —o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation



MLE Training for Neural Networks

 Consider regression problem f:X->Y , for scalar Y
y = f(X) + € «—_noise N(0,c,)

deterministic
W — argmax In [1P(YY X!, W)
l

W —argmin Y (y' — f(z"))?
W

|

| earned
neural network



MAP Training for Neural Networks

 Consider regression problem f:X->Y , for scalar Y
y = f(X) + € «—_noise N(0,c,)

deterministic

iGaussian P(W) = N(O,c])
W «— arg max in P(W) [ PV Xt W)
l

W — argmin S wi| 4+ |3 () - Fah))?

W
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MLE Training for Neural Networks

« Consider regression problem f: XY , for Y=<y, ... y\>

y; = fi(X) + &~ noise N(0,6) drawn independently
for each output y,
deterministic

W — argmax In [1P(YY X!, W)
[

W —argmin 373 (y; — fi(z")?
[l 1



Error Gradient for a Sigmoid Unit

t, = target output

04 = Observed unit
output
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Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w]
2. W — ’!?VED[‘EE]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example d in D

1. Compute the gradient V E ]
2.W + W — ??VEd[’lﬁ]

Ep[w] = > ng(td — 0g)
Ed[tﬁ] = %(td — Od)

Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if n
made small enough



Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit £
O Ok(l — Ok)(tk - Ok)
3. For each hidden unit A

op<—on(l—o0p) X wpio
k€outputs '

4. Update each network weight w; ;
w; j — wij+ Aw;
where

Aw; j = no;x; ;



More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum o
A’wm(n) = nd;x; ; + C}:Awid(n —1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast



Learning Hidden Layer Representations

A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??




Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




Training

Sum of squared errors for each output unit

500 1000 1500 2



Training

Hidden unit encoding for input 01000000

e




Training

Weights from inputs to one hidden unit




Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
¢ Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
e Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as
training progresses



Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].



Overfitting in ANNs

Error
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Neural Nets for Face Recognition

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces



Learned Hidden Unit Weights
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Typical input images

http://www.cs.cmu.edu/~tom/faces.html



Semantic Memory Model Based on ANN'’s
[McClelland & Rogers, Nature 2003]
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Humans act as though they have a hierarchical
memory organization

1. Victims of Semantic Dementia progressively lose knowledge of objects

But they lose specific details first, general properties later, suggesting
hierarchical memory

Thing
NonLiving/\ Living
2. Children appear to learn general N P|ar(\Anima|
categories and properties first, following PN
the same hierarchy, top down". Fish Bird
/T
Canary

Question: What learning mechanism could produce this
emergent hierarchy?

* some debate remains on this.



Memory deterioration follows semantic hierarchy
[McClelland & Rogers, Nature 2003]
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ANN

Activation

Also Models Progressive Deterioration
[McClelland & Rogers, Nature 2003]
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Alternative Error Functions

Original MLE error fn.

Penalize large weights:

S - 2 2
Flw)=- % > tkd — Okd)" |+ ¥V X Wi,
( ) QdED kEoutputs( kd kd) ﬂ}{zj J
Train on target slopes as well as values:
2

1 2
— ¥ > tkd — Ord)” + > ( ; -
2 i keo s | O O

E(‘lﬁ) — atkd aOkd)

Tie together weights:
e c.g.. in phoneme recognition network



Bias/Variance Decomposition of Error



Bias — Variance decomposition of error
Reading: Bishop chapter 9.1, 9.2

Consider simple regression problem f:X-2>Y

y =1(X) + ¢

|
‘ noise N(O,c)

deterministic

What are sources of prediction error?

Ep [ |, [ (@)~ F@)plylmIp()dydz

learned



Sources of error

 What if we have perfect learner, infinite data?
— Our learned h(x) satisfies h(x)=f(x)
— Still have remaining, unavoidable error




Sources of error

 What if we have only n training examples?

 What Is our expected error

— Taken over random training sets of size n, drawn
from distribution D=p(X,y)

/y/x(h(f”) — f(2))?p(y|z)p(z)dyda




Sources of error

Bp || [ (b@) = 1@ p(ul)p@)dydz

— unavoidable Error + bias? -+ variance

vias? = [(Eplh(@)] - f(2))?p()de

variance = /ED[(h(a:) — Ep[h(2)])?]p(z)dz



