
Read Chapter 7 of Machine Learning
[Suggested exercises: 7.1, 7.2, 7.5, 7.7]



Given:

• Instance space X:

- e.g. X is set of boolean vectors of length n;  x = <0,1,1,0,0,1>

• Hypothesis space H:  set of functions h: X Y

- e.g., H is the set of boolean functions (Y={0,1}) defined by conjunction of 
constraints on the features of x. 

• Training Examples D: sequence of positive and negative examples of an 
unknown target function c: X {0,1}  

- <x1, c(x1)>, … <xm, c(xm)> 

Determine:
• A hypothesis h in H such that h(x)=c(x) for all x in X

Function Approximation
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Any(!) learner 
that outputs 
a hypothesis 
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with all 
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(i.e., an h 
contained in 
VSH,D)



What it means

[Haussler, 1988]: probability that the version space is not ε-exhausted 
after m training examples is at most

1. How many training examples suffice?

Suppose we want this probability to be at most δ

2. If                                 then with probability at least (1-δ):







Sufficient condition: 

Holds if L requires 
only a polynomial 
number of training 
examples, and 
processing per 
example is polynomial



true error training error degree of overfitting



Additive Hoeffding Bounds – Agnostic Learning

• Given m independent coin flips of coin with Pr(heads) = θ
bound the error in the estimate

• Relevance to agnostic learning: for any single hypothesis h

• But we must consider all hypotheses in H

• So, with probability at least (1-δ) every h satisfies



General Hoeffding Bounds

• When estimating parameter  θ ∈ [a,b] from m examples

• When estimating a probability θ ∈ [0,1], so

• And if we’re interested in only one-sided error, then


