Computational Learning Theory

Read Chapter 7 of Machine Learning
[Suggested exercises: 7.1,7.2, 7.5, 7.7]

e Computational learning theory
e Setting 1: learner poses queries to teacher
e Setting 2: teacher chooses examples

e Setting 3: randomly generated instances, labeled
by teacher

e Probably approximately correct (PAC) learning

e Vapnik-Chervonenkis Dimension



Function Approximation

Given:
* [nstance space X:

- e.g. X is set of boolean vectors of length n; x =<0,1,1,0,0,1>
» Hypothesis space H: set of functions h: X 2> Y

- e.g., H is the set of boolean functions (Y={0,1}) defined by conjunction of
constraints on the features of x.

 Training Examples D: sequence of positive and negative examples of an
unknown target function c: X -{0,1}

- <Xq, C(X1)>, ... <X, C(X,)>

Determine:
* A hypothesis h in H such that h(x)=c(x) for all x in X
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Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:
e Probability of successful learning
e Number of training examples
e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented



Sample Complexity

How many training examples are sufficient to learn
the target concept?

1. If learner proposes instances, as queries to
teacher

e Learner proposes instance x, teacher provides
c(x)
2. If teacher (who knows ¢) provides training
examples

e teacher provides sequence of examples of form
(z,c(x))
3. If some random process (e.g., nature) proposes
instances

e instance x generated randomly, teacher
provides c(x)



Instances, Hypotheses, and More-General-Than

Instances X

xXy= <Sunny, Warm, High, Strong, Cool, Same>
,1:2: <Sunny, Warm, High, Light, Warm, Same>

Hypotheses H
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hlz <Sunny, ?, ?, Strong, ?, 7>
hzz <Sunny, 7, 7,7, 7, 7>

f13: <Sunny, 7, 7, ?, Cool, 7>



Sample Complexity: 1

Learner proposes instance x, teacher provides ¢(z)
(assume c is in learner’s hypothesis space H)

Optimal query strategy: play 20 questions

, . e pick instance x such that half of hypotheses in
R V'S classify x positive, half classify x negative
the number of P ’ M <
queries needed | e When this is possible, need [log, |H|] queries to
To converge to learn ¢

the correct
hypothesis. e when not possible, need even more




Sample Complexity: 2

Teacher (who knows ¢) provides training examples
(assume c is in learner’s hypothesis space H)

Optimal teaching strategy: depends on H used by
learner

Consider the case H = conjunctions of up to n
boolean literals and their negations

e.g., (AirTemp = Warm) A (Wind = Strong),
where AwrT'emp, Wind, ... each have 2 possible
values.



Sample Complexity: 2

Teacher (who knows ¢) provides training examples
(assume c is in learner’s hypothesis space H)

Optimal teaching strategy: depends on H used by
learner

Consider the case H = conjunctions of up to n
boolean literals and their negations

e.g., (AirTemp = Warm) A (Wind = Strong),
where AwrT'emp, Wind, ... each have 2 possible
values.

e if n possible boolean attributes in H, n + 1
examples suffice

e why?



Sample Complexity: 3

Given:
e set of instances X
e set of hypotheses H
e set of possible target concepts C

e training instances generated by a fixed, unknown
probability distribution D over X

Learner observes a sequence D of training examples
of form (x,¢(x)), for some target concept ¢ € C

e instances x are drawn from distribution D
e teacher provides target value ¢(z) for each
Learner must output a hypothesis h estimating ¢

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free
classifications



True Error of a Hypothesis

Instance space X P(X) =D

Where ¢
and & disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that h will misclassify an instance
drawn at random according to D.

errorp(h) = E%[c(m) # h(z)]



Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(z) # ¢(x) over training instances D

> zeD 0(c(z) = h(z))
D]

errorp(h) = xFe)IIE)[C(x) #*= h(x)] =

4 
Set of training

True error of hypothesis h with respect to ¢ examples

e How often h(x) # c(zx) over future instances
drawn at random from D

_ Probabilit
errorp(h) = E%Lﬂ($) # h(z)] d?so'rrcilb:.l"ric))ln

P(x)




Two Notions of Error

Can we bound
errorp(h)
Training error of hypothesis h with respect to in terms of
target concept c ET‘?‘QTD(h)
e How often h(z) # ¢(x) over training instances D 22
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e How often h(x) # c(zx) over future instances
drawn at random from D
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Version Spaces

A hypothesis h is consistent with a set of
training examples D of target concept ¢ if and
only if h(z) = ¢(x) for each training example
(z,c(x)) in D.

Consistent(h, D) = (W{(x,c(x)) € D) h(zx) = ¢(x)

The version space, V Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

VSuyp={h € H|Consistent(h,D)}



Exhausting the Version Space

Hypothesis space H

L -
. | errgr=.3
S r=4

F=.4

Ll
. i error=.2
erraor=.3 r=.3

r=.1

(r = training error, error = true error)

Definition: The version space V Sy p is said
to be e-exhausted with respect to ¢ and D. if
every hypothesis h in V.Sy p has true error less
than € with respect to ¢ and D.

(Vh € VSy p) errorp(h) < €



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988|.

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not

e-exhausted (with respect to c¢) is less than Any(!) learner
|H|E—Em that OUTPU":S
a hypothesis
Interesting! This bounds the probability that any  consistent
: \ . : with all
consistent learner will output a hypothesis A with training
crror() > e ampis
If we want to this probability to be below § (i,e.,anh
B contained in
[Hle™™ <0 VS,i5)

then
m > ~(In|H| +In(1/5))



What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |H|e™ "

Pr[(3h € H)s.t.(errorirgin(h) = O)A(errorgye(h) > ¢€)] < |H|e™ ™

T

Suppose we want this probability to be at most

1. How many training examples suffice?

m > 2(In|H| + In(1/5))

2. Iferrory,.q,.,n,(h) = O then with probability at least (1-3):
erroryrye(h) < l(In |H|+In(1/9))
m



Learning Conjunctions of Boolean
Literals

How many examples are sufficient to assure with
probability at least (1 — d) that

every h in V' Sy p satisfies errorp(h) < €

Use our theorem:
1
m 2 —(In|H| + In(1/9))

Suppose H contains conjunctions of constraints on

up to n boolean attributes (i.e., n boolean literals).
Then |H| = 3", and

e %(m 3% 4+ In(1/4))

m > %(nh13 +In(1/4))



PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < e < 1/2, and § such that
0<6<1/2,

learner L will with probability at least (1 — §)
output a hypothesis h € H such that
errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using Sufficient condition:

H if for all ¢ € C, distributions D over X, € Holds if L requires

such that 0 < € < 1/2, and ¢ such that only a polynomial
0<4d<1/2, number of training

les, and
learner L will with probability at least (1,4 8) oroR b T8

output a hypothesis h € H such that example is polynomial
errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




Agnostic Learning

So far, assumed ¢ € H
Agnostic learning setting: don’t assume ¢ € H
e What do we want then?

— The hypothesis h that makes fewest errors on
training data

e What is sample complexity in this case?

m> (I | H| +1n(1/0)

€

derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) + €] < o~ 2me’

/ [N

true error  training error degree of overfitting



Additive Hoeffding Bounds — Agnostic Learning

Given m independent coin flips of coin with Pr(heads) = 0
bound the error in the estimate 9

Pri0 > 04 ¢] < e=2m

Relevance to agnostic learning: for any single hypothesis h

2
PI’[BTTOTtrue(h) > QTTOTtrain(h) + 6] < €—2me

But we must consider all hypotheses in H

Pr((3h € H)errorirye(h) > erroriyqgin(h)+e] < |H]e_2m62

So, with probability at least (1-3) every h satisfies

In|H| 4+ In %

2m

GT?“OTtrue(h) < errortrain(h> + J



General Hoeffding Bounds

 When estimating parameter 0 € [a,b] from m examples

_2me2
P(10 - E[0]] > ¢) < 20~

 When estimating a probability 6 € [0,1], so

P10 — E[f]] > ¢) < 2¢2m€’

 And if we're interested in only one-sided error, then

P((E[f] — ) > ¢) < e~ 2m€



