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Learning in Bayes Nets

I. Parameter Learning/Estimation: infer © from data, given G
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2. Structure Learning: inferring G and © from data
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Parameter Learning

= G is a given DAG over N variables

= Goal: Estimate @ from iid data D = (z!,...

where M is the number of records

= Each record """ = {Z{n, - 71.71\1}}

= Complete Observability (no missing values)
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Parameter Estimation Outline

= Frequentist Parameter Estimation
= MLE
= example of estimation with discrete data
= MAP
= estimate for discrete data
= Bayesian Parameter Estimation

= How it’s different from Frequentist




Maximum Likelihood Estimator

]

Likelihood (for iid data): p(D|f) = HHP x|y, 6

]

Log likelihood 1(#; D) = log p(D|#) = ZZlogp "o

- MLe  Our = arg max[(0; D)
)

]

advantages:  has nice statistical properties

]

disadvantages: can overfit

Example: MLE for one variable

= Variable X ~ Multinomial with K values (K-sided die)
= Observe Mrolls: ,4,K,2,...
= model p(X =Fk)=0,, > 0=1(Q)

k

=> log[[ 1™ = 0,67221 k) log(6y,) ZNklogGk )

Maximizing (1) subject to constraint (2):

A Ni . .
O, M1 = w the fraction of times k occurs

Discrete Bayes Nets

p(x|0) = p(x1]01)p(x2lx1, 82)p(xalx1, 03)p(xalx2, X3, 64)

= Assume each CPD is represented as a table
def

(7‘”;‘71’3( 7]‘X7T7]1>
= Loglikelihood: ¢ = OAHHQM}‘M
mojk
AML Nuk

= Parameter Estimator: 92]’\ Z
i Nijk

Continuous Variables

Example: Gaussian Variables

One variable: X ~ N(u,o)

ML estimates: farr = 2 m Tm
M
2
. o
O,QML — Zm( mM IU‘ML)

Similarly for several Continuous Variables
Another option to estimate parameters: X; ~ f(Pa;,0)




Maximum A Posteriori estimate

(MAP) Example: MAP for Multinomial

Nij
= MLE is obtained by maximizing loglikelihood Multinomial likelihood: P(D|0) = H Heijk i
m ijk
= sensitive to small sample sizes I, 91(‘.1”""1)
Dirichlet Prior:  P(fla) = sz(ix)

= MAP comes from maximizing posterior

; Nijrtaijr—1
Posterior: P(0|D, ) H 01"
ijk

p(0|D) ~ p(D|0)p(0) = likelihood x prior

= pri t thing fact MAP GMAP _ Nijk + aijk
rior acts as a smoothing ractor ik =
P g ] Z]’(Nlﬂlk + aij’k)

Q¢ can be thought of as virtual pseudo counts

Bayesian vs Frequentist

= Frequentist:

- 9 are unknown constants

= MLE is a very common frequentist estimator Q u e Sti O n S O n
- Bayesin Parameter Learning?

= unknown 0 are random variables

= estimates differ based on a prior




What if G is not given?

= When?!
= Scientific discovery (protein networks, data mining)

= Need a good model for compression, prediction...

Structural Learning

= Constraint Based

= Test independencies
= Add edges according to the tests

= Search and Score

= Define a selection criterion that measures goodness of a model
= Search in the space of all models (or orders)

= Mix models (recent)

= Test for almost all independencies
= Search and score according to possible

Constraint Based Learning

= Define Conditional Independence Test Ind(X;X;|S)
2 . (Ozi,zﬂs - Ez,,zj\s)z
= eg X Z s

Ea:i,:tj|s

Ti,2j
G2, conditional entropy, etc.

= if Ind(X;X;|S)<p, then independence
= Choose p with care!

= Construct model consistent with the set of independencies

Constraint Based Learning

= Cons:
= Independence tests are less reliable on small samples

= One incorrect independence test might propagate far (not robust to
noise)

= Pros:
= More global decisions => doesn’t get stuck in local minima as much

= Works well on sparse nets (small markov blankets, sufficient data)




Score Based Search
Outline

]

Select the highest scoring model!

]

What should the score be?

]

Specialized structures (trees, TANSs)

]

Selection operators - how to navigate the space of models?

Theorem: maximizing Bayesian Score for d=2
(not a tree) is NP-hard (Chickering, 2002)

Maximum likelihood in
Information Theoretic terms

log P(D|0, G) = M > I(X;|Pax,) — MY H(X;)

The entropy does not depend on the current model

]

]

Thus, it’s enough to maximize mutual information!

]

General case:

= Same as constraint search!

]

Special case (trees):

= have to consider only all pairs (tree => only one parent): O(N?)

Chow Liu tree algorithm

= Compute empirical distribution:
_ Count(ay, x;)

P(r;,x;) =
(i, 7) M
= Mutual Information:
- n P(a;,x5)
F(X;, X)) = P(a;,x)l0g =2
v m,%- v P(x;)P(xy)

= Set I(X;, X;) as weight per edge between X; and X;

= Find Optimal tree BN by getting the maximum spanning tree

for direction: pick a random node as root
direct in BFS order

Tree Augmented Naive Bayes

TAN (Friedman et al, 1997) is an extension of Chow Liu

Naive Bayes

ﬁ(.;:l-._:f:_j- | e)

TAN: f(Y, X’J’ | C’) = Z f’((_f, (f.',«ﬂ')“;) |Og m
x; : xj|e

0T

Score(TAN): Z I(X:,C) + Z I(X;,{Pax,,C})




Ml Problem

= Doesn’t penalize complexity: I(A,B) < I(A{B,C})
= Adding a parent always increases the score!

= Model will overfit, since the completely connected
graph would be favored

Penalized Likelihood Score

= BIC (Bayesian Information Criterion)
logP(D) ~ logP(Diz) — 5 log (V)
, Where d is the number of free parameters
= AIC (Akaike Information Criterion)

logP(D) ~ logP(D|0y1) — d

= BIC penalizes complexity more than AIC

Minimum Description Length

= Total number of bits needed to describe data is -log2P(x)
= |nstead - send the model and then residuals:
-L(D,H) = - logP(H) - log P(D|H) = -log P(H|D) + const

= The best is the one with the shortest message!

Example: BIC and AIC R
are consistent and decomposable G”JD

What should the score be?

= Consistent : for all G’ |-equivalent to the true G and
all G* not equivalent to G
Score(G)=Score(G’) and Score(G*)<Score(G’)

= Decomposable : can be locally computed (for efficiency)
Score(G; D) = Z FamScore(X;|Pax,; D)
i ~
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Bayesian Scoring
Parameter Prior

Parameter Prior - important for small datasets!

Dirichlet Parameters ( from a few slides before )
For each possible family define a prior distribution
Can encode it as a Bayes Net

(Usually Independent - product of marginals)

Bayesian Scoring
Parameter Prior

= Bayes Dirichlet equivalent scoring (BDe) :
/
OéXi‘ani = MP (XZ, Pa(Xz))
= |s consistent (and decomposable)

Theorem: If P(G) assigns the same prior to |-equivalent
structures and Parameter prior is Dirichlet then Bayesian
score satisfies score equivalence, if and only if prior is of
BDe form!

The BDeu (uniform) prior is P'(X;, Xr,) = |X»||1X~»|

Bayesian Scoring
Structure Prior

Structure Prior - should satisfy prior modularity

Parameter Modularity: if X has the same set of parents
in two different structures, then parameters should be
the same.

Typically set to uniform.

1
Can be a function of prior counts: ——
a+1

Structure search algorithms

= Order in known

= Order is unknown
= Search in the space of orderings
= Search in the space of DAGs

= Search in the space of equivalence classes




Order is known

= Suppose the total orderingis X1 < Xo... < X,

= Then for each node X; can find an optimal set of parents in

= Choice of parents for X; doesn’t depend on previous X;

1 — 1
= Need to search among all ( d > choices (where d is the
maximum number of parents) for the highest local score

= Greedy search with known order, aka K2 algorithm is O(d (7

)

Order is unknown
Search space of orderings

= Select an order according to some heuristic

= Use K2 to learn a BN corresponding to the
ordering and score it

= Maybe do multiple restarts

= Most recent research: Tessier and Koller (2005)

Order is unknown
Search space of DAGs

= Typical search operators

= Add an edge
= Remove an edge
= Reverse an edge

= At most O(n?) steps to get from any graph to any graph
= Moves are reversible
= Simplest search is Greedy Hillclimbing

= Move to proposed new graph if it satisfies constraints

Exploiting Decomposable Score

= [f the operator for edge (X,Y) is valid, then we need
only to look at the families of X andY

= e.g.for addition operator o

d¢:(0) = FamScore(Y, Pa(Y, G)JUX|D)—FamScore(Y, Pa(Y, G)|D)




Evaluating costs of moves Suboptimality

= Total O(N”2) operators = Hillclimbing might get stuck in local maxima

= For each operator need to check for acyclicity O(e)
For local moves check acyclicity in amortized O(l) using
ancestor matrix

= Local maxima are common because of equivalent classes

= Solutions

= If new graph is acyclic, need to score it (amortized) O(M) = Random restarts

= K steps to convergence

= Total time O(K N*2 M)

= TABU: do not undo up to L latest steps

= Data perturbation
= For large M can use AD Trees to compute counts in sub

linear time = Simulated Annealing (slow!)

Searching in space of equivalent

Other operators classes (GES)

Optimal Reinsertion (Moore and Wong, 2003) = Pros: Space of equivalent classes is smaller

= Start with an arbitrary DAG .
y = Cons: Operators are more complicated

Q = At every step sever all the edges of a given node Harder to implement
= Reinsert it optimally = Empirically shown to have outperformed Greedy
(find best set of parents and children) Hillclimbing
= Random restart if necessary = Proved to find an optimal BN as M —

Pros: works much faster and is less prone to get stuck
in local minima




Current problems with

Constraint+Score Algorithms
Structural Search

Tsamardinos et al, 2005 |. Scalability
= Find edges via independence tests 2. Scalability
= Find final structures from the pool of edges using hill- o
climbing 3. Scalability
Claims to be faster than most of the algorithms described 4. Assumption that data samples are iid
above!!!

Note: there are special purpose algorithms that scale...

Questions on Structural
Learning?




