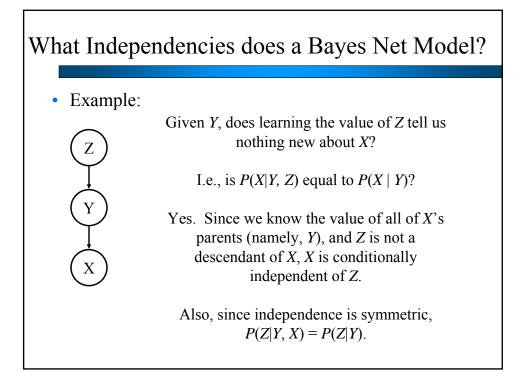
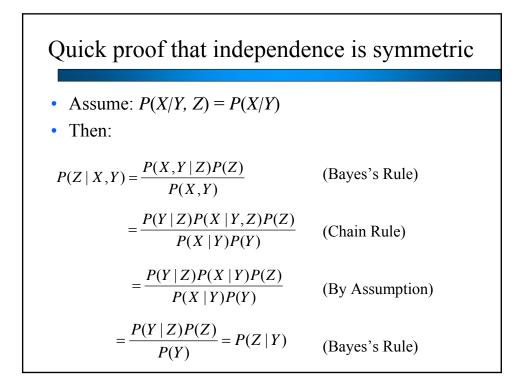
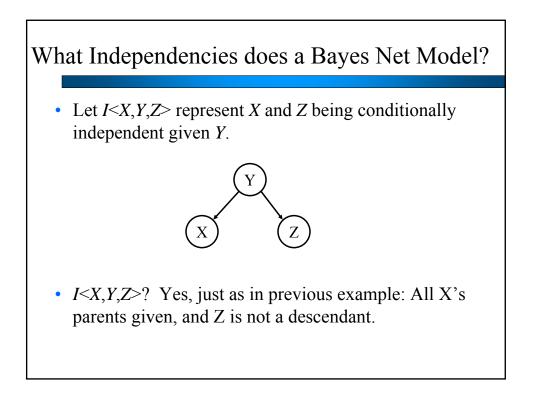
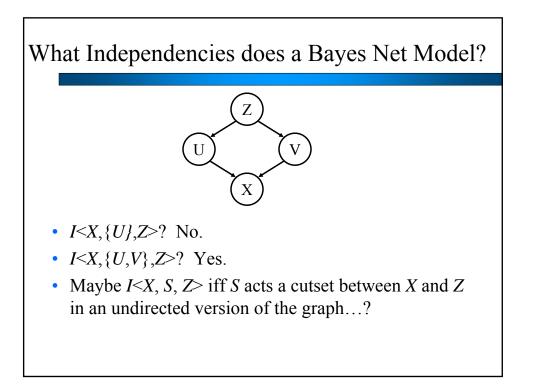


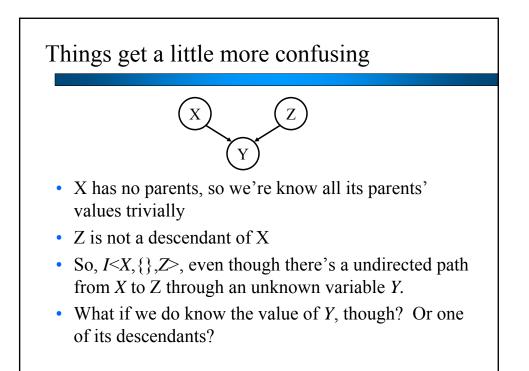
What Independencies does a Bayes Net Model? In order for a Bayesian network to model a probability distribution, the following must be true by definition: Each variable is conditionally independent of all its nondescendants in the graph given the value of all its parents. This implies P(X₁...X_n) = ∫ⁿ_{i=1} P(X_i | parents(X_i)) But what else does it imply?

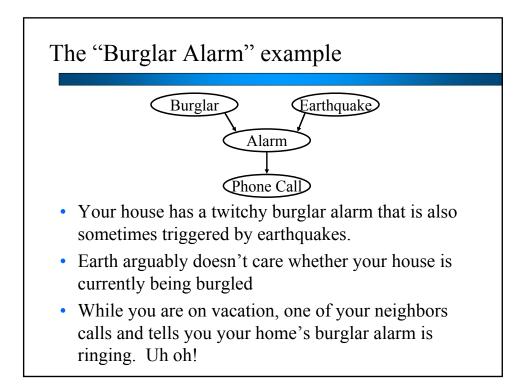


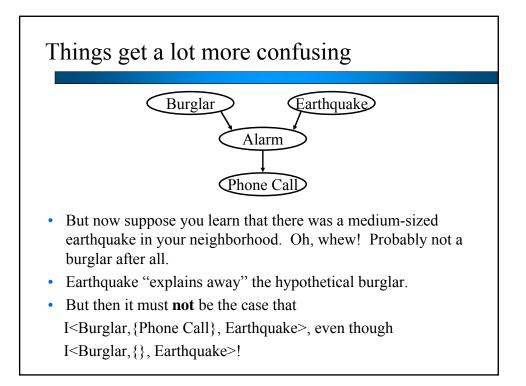


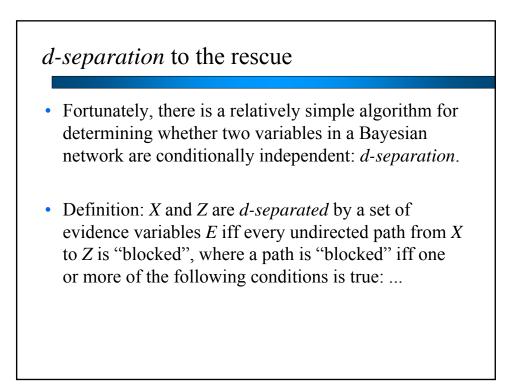


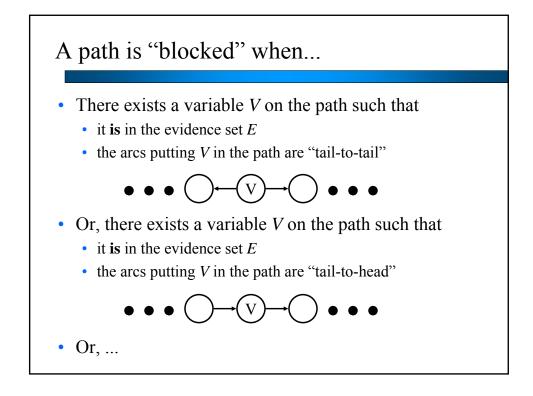


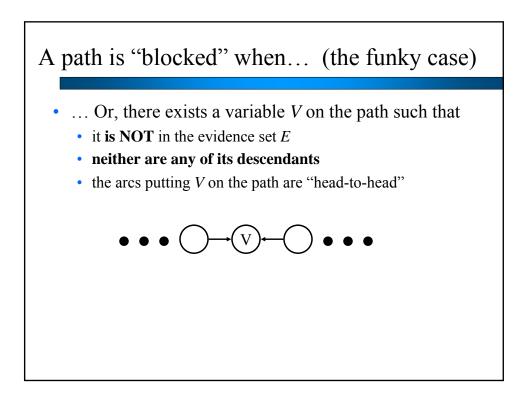


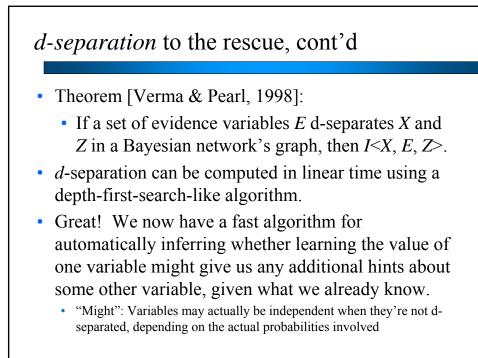


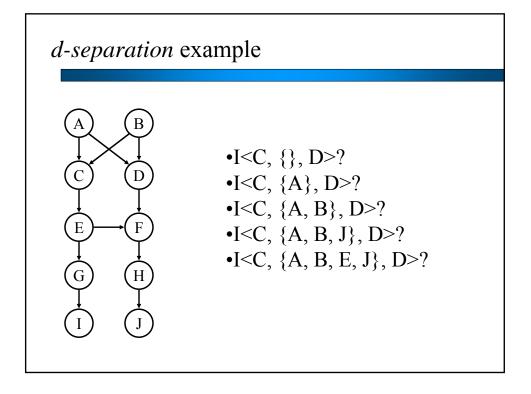


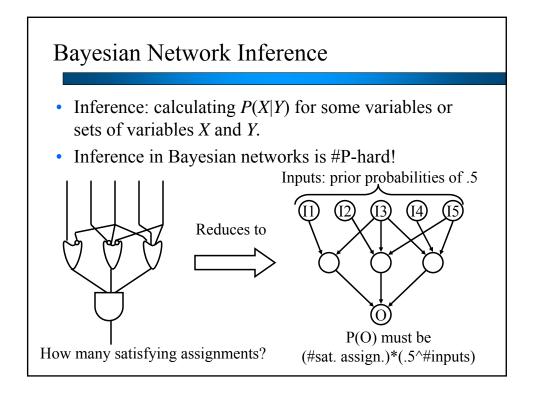


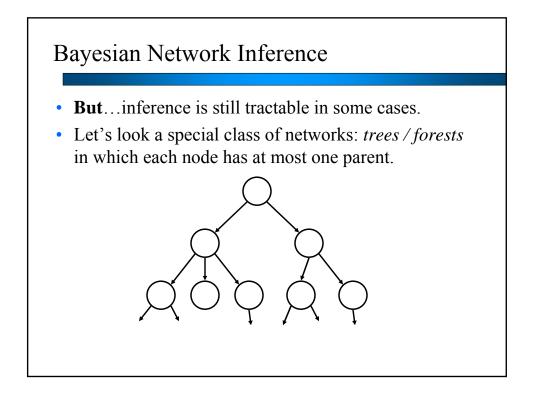


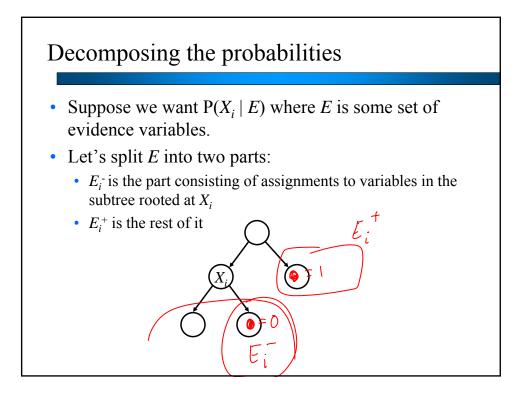


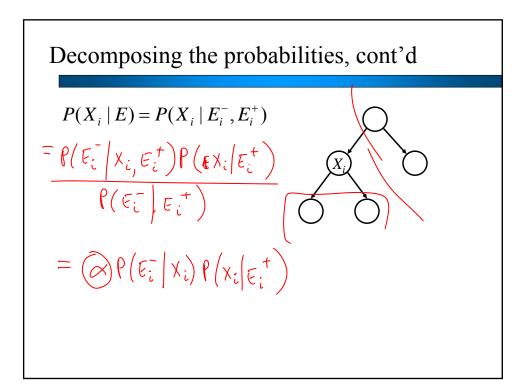


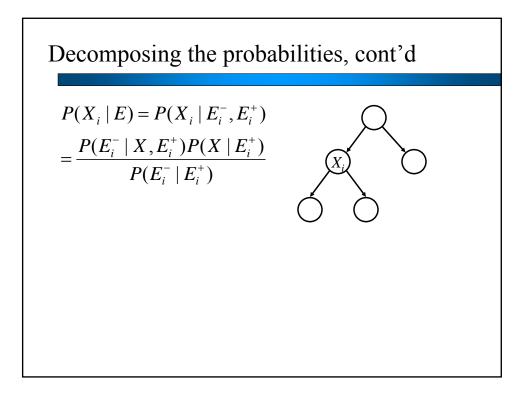


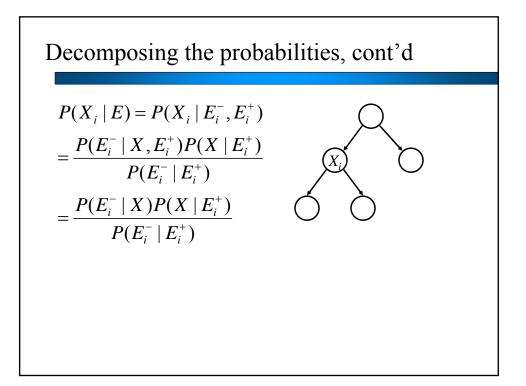


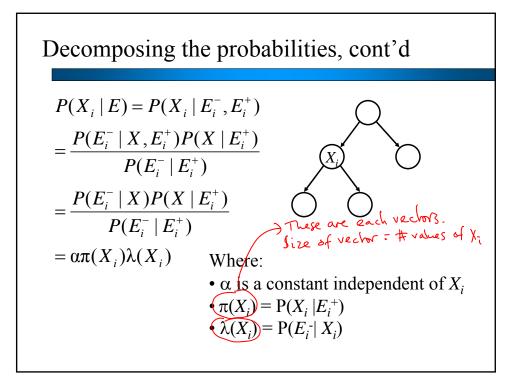


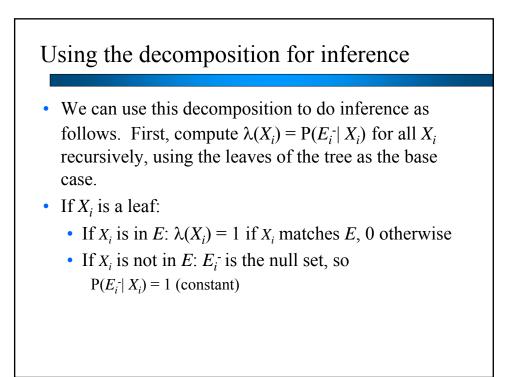


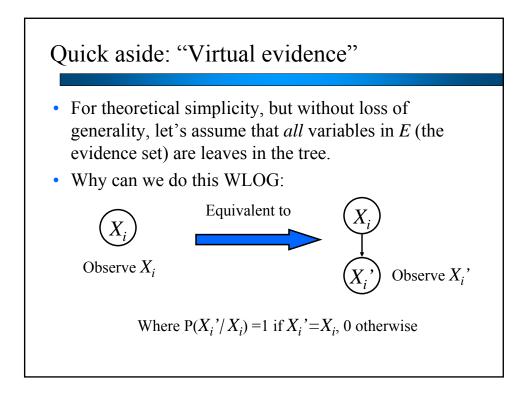


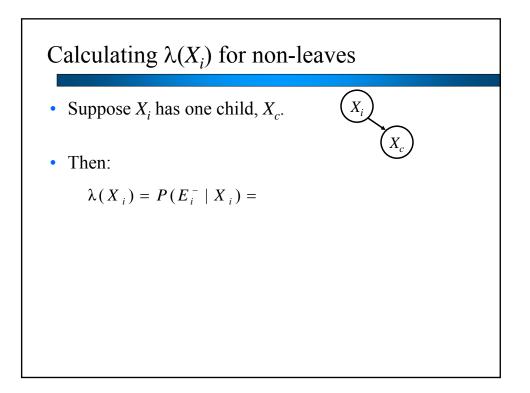


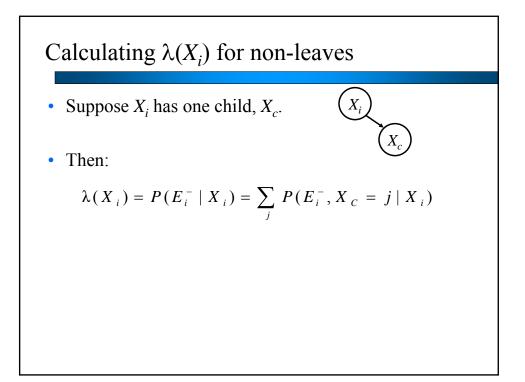


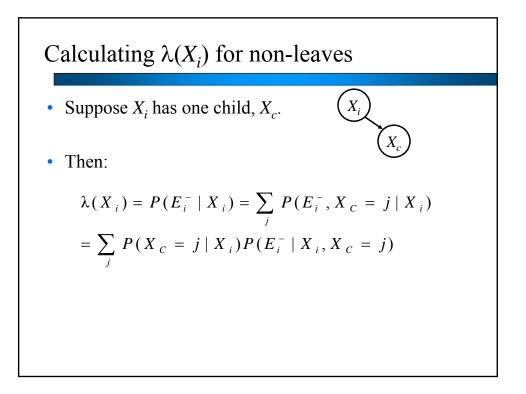


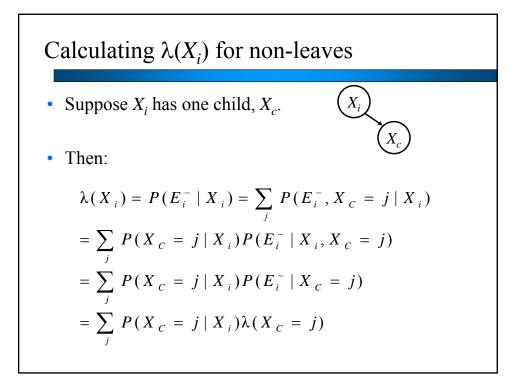


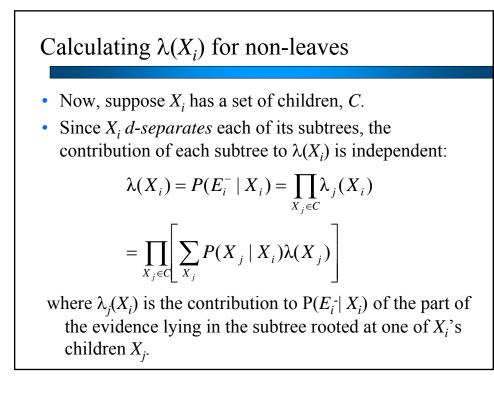


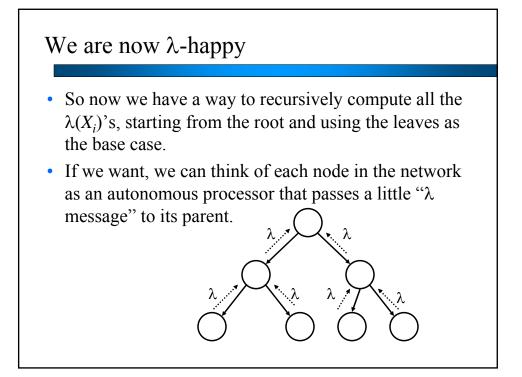






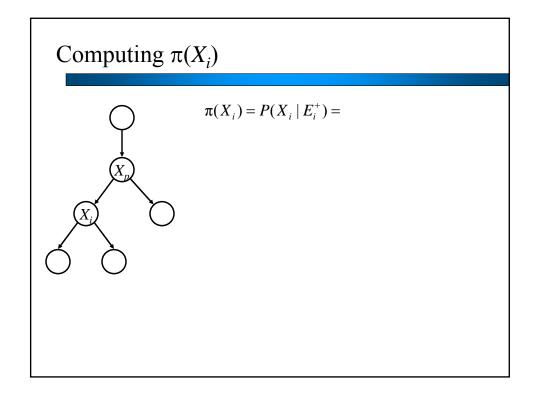


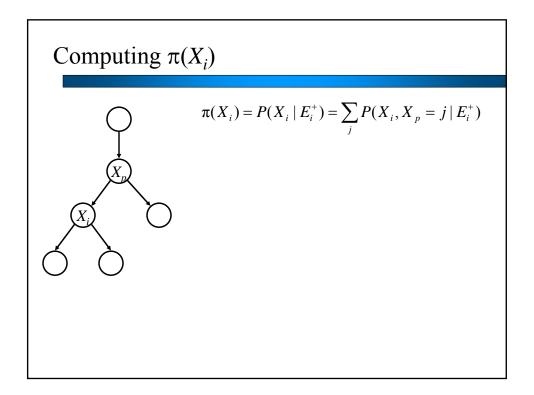


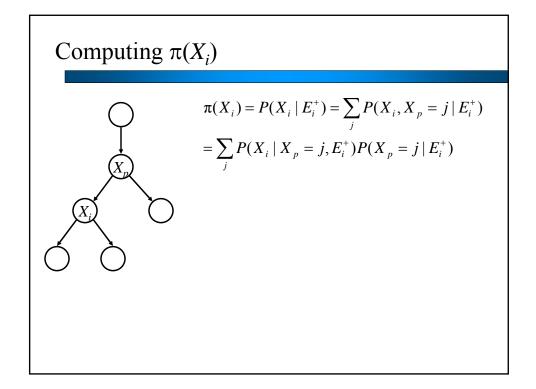


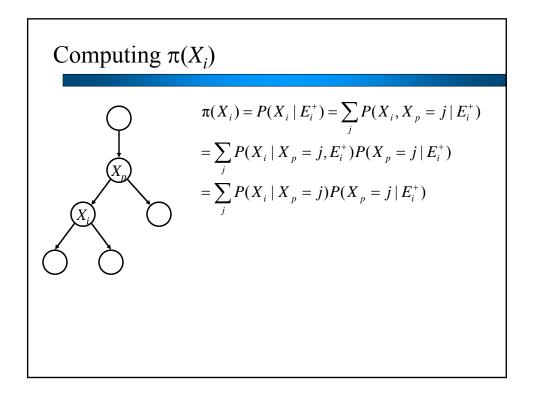
The other half of the problem

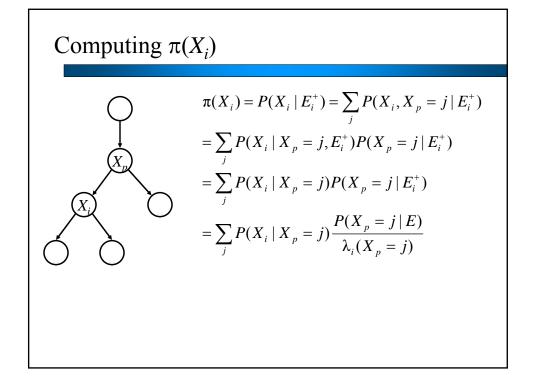
- Remember, $P(X_i|E) = \alpha \pi(X_i)\lambda(X_i)$. Now that we have all the $\lambda(X_i)$'s, what about the $\pi(X_i)$'s? $\pi(X_i) = P(X_i | E_i^+)$.
- What about the root of the tree, X_r ? In that case, E_r^+ is the null set, so $\pi(X_r) = P(X_r)$. No sweat. Since we also know $\lambda(X_r)$, we can compute the final $P(X_r)$.
- So for an arbitrary X_i with parent X_p , let's inductively assume we know $\pi(X_p)$ and/or $P(X_p/E)$. How do we get $\pi(X_i)$?

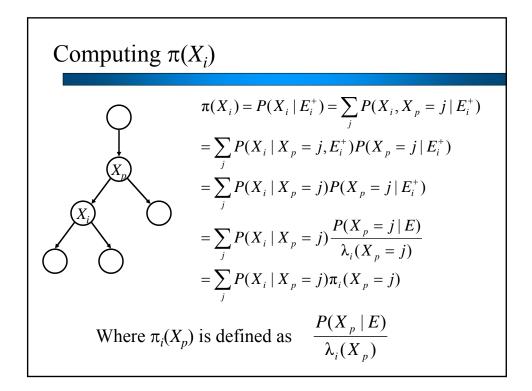


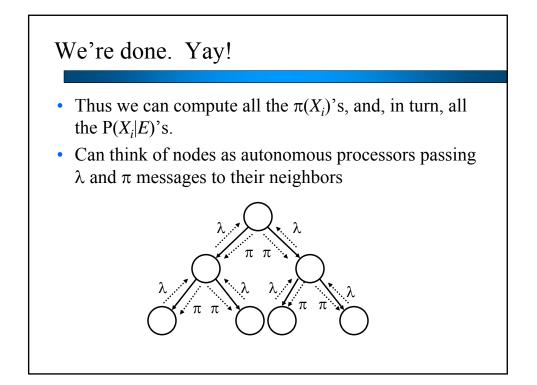


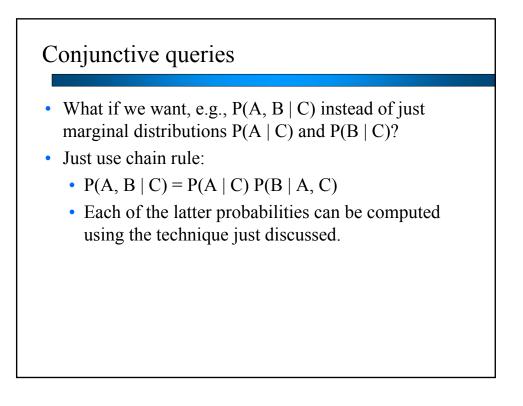












Polytrees

• Technique can be generalized to *polytrees*: undirected versions of the graphs are still trees, but nodes can have more than one parent

