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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

N = 3

t=0



2

Copyright © Andrew W. Moore Slide 3

A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

On the t’th timestep the system is 
in exactly one of the available 
states. Call it qt

Note: qt ∈{s1, s2 .. sN }
N = 3

t=0

qt=q0=s3

Current State
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A Markov System
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Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

On the t’th timestep the system is 
in exactly one of the available 
states. Call it qt

Note: qt ∈{s1, s2 .. sN }

Between each timestep, the next 
state is chosen randomly.

N = 3

t=1

qt=q1=s2

Current State



3

Copyright © Andrew W. Moore Slide 5

A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps, 
t=0, t=1, …

On the t’th timestep the system is 
in exactly one of the available 
states. Call it qt

Note: qt ∈{s1, s2 .. sN }

Between each timestep, the next 
state is chosen randomly.

The current state determines the 
probability distribution for the 
next state.

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0
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t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1

Often notated with arcs 
between states
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Markov Property

s1 s3

s2

qt+1 is conditionally independent 
of { qt-1, qt-2, … q1, q0 } given qt.

In other words:

P(qt+1 = sj |qt = si ) =

P(qt+1 = sj |qt = si ,any earlier history)

Question: what would be the best 
Bayes Net structure to represent 
the Joint Distribution of ( q0, q1, 
… q3,q4 )?

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1
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Markov Property

s1 s3

s2

qt+1 is conditionally independent 
of { qt-1, qt-2, … q1, q0 } given qt.

In other words:

P(qt+1 = sj |qt = si ) =

P(qt+1 = sj |qt = si ,any earlier history)

Question: what would be the best 
Bayes Net structure to represent 
the Joint Distribution of ( q0, q1, 
q2,q3,q4 )?

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2
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P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1

Answer:
q0

q1

q2

q3

q4
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Question: what would be the best 
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the Joint Distribution of ( q0, q1, 
q2,q3,q4 )?

N = 3

t=1
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P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0
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1/2
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1

Answer:
q0

q1

q2

q3

q4

Each of these 
probability 
tables is 
identical

aNN
…aNj

…aN2aN1
N

aiN
…aij

…ai2ai1
i

:::::::

…

…

…
…

a3Na3j
…a32a31

3

a2Na2j
…a22a21

2

a1Na1j
…a12a11

1
P(qt+1=sN|qt=si)P(qt+1=sj|qt=si)…P(qt+1=s2|qt=si)P(qt+1=s1|qt=si)i

Notation:
)|( 1 itjtij sqsqPa === +
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A Blind Robot

H

R

STATE q = Location of Robot,
Location of Human

A human and a 
robot wander 
around randomly 
on a grid…

Note: N (num. 

states) = 18 * 

18 = 324
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Dynamics of System

H

R
q0 =

Typical Questions:
• “What’s the expected time until the human is 
crushed like a bug?”

• “What’s the probability that the robot will hit the 
left wall before it hits the human?”

• “What’s the probability Robot crushes human 
on next time step?”

Each timestep the 
human moves 
randomly to an 
adjacent cell.  And 
Robot also moves 
randomly to an 
adjacent cell.
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Example Question
“It’s currently time t, and human remains uncrushed.  What’s the 
probability of crushing occurring at time t + 1 ?”

If robot is blind:

We can compute this in advance.

If robot is omnipotent:

(I.E. If robot knows state at time t), 
can compute directly.

If robot has some sensors, but 
incomplete state information …

Hidden Markov Models are 
applicable!

We’ll do this first

Too Easy. We 
won’t do this

Main Body
of Lecture
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What is P(qt =s)? slow, stupid answer

Step 1: Work out how to compute P(Q) for any path Q 
= q1 q2 q3 .. qt

Given we know the start state q1 (i.e. P(q1)=1)
P(q1 q2 .. qt) = P(q1 q2 .. qt-1) P(qt|q1 q2 .. qt-1) 

= P(q1 q2 .. qt-1) P(qt|qt-1)
= P(q2|q1)P(q3|q2)…P(qt|qt-1)

Step 2: Use this knowledge to get P(qt =s)

WHY?

∑
∈

==
st Q

t QPsqP
in  endthat length  of Paths

)()( Computation is 

exponential in t
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
= P(qt = si)

• Easy to do inductive definition

=∀ )(0 ipi

===∀ ++ )()( 11 jtt sqPjpj
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
= P(qt = si)

• Easy to do inductive definition

⎩
⎨
⎧

=∀
otherwise0

statestart   theis if1
)(0

 s
ipi i

===∀ ++ )()( 11 jtt sqPjpj
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
= P(qt = si)

• Easy to do inductive definition

⎩
⎨
⎧

=∀
otherwise0

statestart   theis if1
)(0

 s
ipi i

===∀ ++ )()( 11 jtt sqPjpj

==∧=∑
=

+

N

i
itjt sqsqP

1
1 )(
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
= P(qt = si)

• Easy to do inductive definition

⎩
⎨
⎧

=∀
otherwise0

statestart   theis if1
)(0

 s
ipi i

===∀ ++ )()( 11 jtt sqPjpj

==∧=∑
=

+

N

i
itjt sqsqP

1
1 )(

====∑
=

+

N

i
ititjt sqPsqsqP

1
1 )()|( ∑

=

N

i
tij ipa

1
)(

Remember,
)|( 1 itjtij sqsqPa === +
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
= P(qt = si)

• Easy to do inductive definition

• Computation is simple.
• Just fill in this table in this

order:

⎩
⎨
⎧

=∀
otherwise0

statestart   theis if1
)(0

 s
ipi i

===∀ ++ )()( 11 jtt sqPjpj

==∧=∑
=

+

N

i
itjt sqsqP

1
1 )(

====∑
=

+

N

i
ititjt sqPsqsqP

1
1 )()|( ∑

=

N

i
tij ipa

1
)(

tfinal

:

1

0100

pt(N)…pt(2)pt(1)t
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
= P(qt = si)

• Easy to do inductive definition

• Cost of computing Pt(i) for all 
states Si is now O(t N2)

• The stupid way was O(Nt)
• This was a simple example
• It was meant to warm you up 

to this trick, called Dynamic 
Programming, because 
HMMs do many tricks like 
this.

⎩
⎨
⎧

=∀
otherwise0

statestart   theis if1
)(0

 s
ipi i

===∀ ++ )()( 11 jtt sqPjpj

==∧=∑
=

+

N

i
itjt sqsqP

1
1 )(

====∑
=

+

N

i
ititjt sqPsqsqP

1
1 )()|( ∑

=

N

i
tij ipa

1
)(
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Hidden State
“It’s currently time t, and human remains uncrushed.  What’s the 
probability of crushing occurring at time t + 1 ?”

If robot is blind:

We can compute this in advance.

If robot is omnipotent:

(I.E. If robot knows state at time t), 
can compute directly.

If robot has some sensors, but 
incomplete state information …

Hidden Markov Models are 
applicable!

We’ll do this first

Too Easy. We 
won’t do this

Main Body
of Lecture
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Hidden State

H

R0

H

®

WWW

• The previous example tried to estimate P(qt = si)
unconditionally (using no observed evidence).

• Suppose we can observe something that’s affected 
by the true state.

• Example: Proximity sensors. (tell us the contents of 
the 8 adjacent squares)

W 
denotes 
“WALL”

True state qt What the robot sees: 
Observation Ot

Copyright © Andrew W. Moore Slide 22

Noisy Hidden State

H

R0

H

®

WWW

• Example: Noisy Proximity sensors. (unreliably tell us 
the contents of the 8 adjacent squares)

W 
denotes 
“WALL”

True state qt Uncorrupted Observation

HH

W®

WW

What the robot sees: 
Observation Ot
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Noisy Hidden State

H

2R0

H

®

WWW

• Example: Noisy Proximity sensors. (unreliably tell us 
the contents of the 8 adjacent squares)

W 
denotes 
“WALL”

True state qt Uncorrupted Observation

HH

W®

WW

What the robot sees: 
Observation Ot

Ot is noisily determined depending on 
the current state.

Assume that Ot is conditionally 
independent of {qt-1, qt-2, … q1, q0 ,Ot-1, 
Ot-2, … O1, O0 } given qt.

In other words:

P(Ot = X |qt = si ) =

P(Ot = X |qt = si ,any earlier history)
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Noisy Hidden State

H

2R0

H

®

WWW

• Example: Noisy Proximity sensors. (unreliably tell us 
the contents of the 8 adjacent squares)

W 
denotes 
“WALL”

True state qt Uncorrupted Observation

HH

W®

WW

What the robot sees: 
Observation Ot

Ot is noisily determined depending on 
the current state.

Assume that Ot is conditionally 
independent of {qt-1, qt-2, … q1, q0 ,Ot-1, 
Ot-2, … O1, O0 } given qt.

In other words:

P(Ot = X |qt = si ) =

P(Ot = X |qt = si ,any earlier history)

Question: what’d be the best Bayes Net 
structure to represent the Joint Distribution 
of (q0, q1, q2,q3,q4 ,O0, O1, O2,O3,O4 )?
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Noisy Hidden State

H

2R0

H

®

WWW

• Example: Noisy Proximity sensors. (unreliably tell us 
the contents of the 8 adjacent squares)

W 
denotes 
“WALL”

True state qt Uncorrupted Observation

HH

W®

WW

What the robot sees: 
Observation Ot

Ot is noisily determined depending on 
the current state.

Assume that Ot is conditionally 
independent of {qt-1, qt-2, … q1, q0 ,Ot-1, 
Ot-2, … O1, O0 } given qt.

In other words:

P(Ot = X |qt = si ) =

P(Ot = X |qt = si ,any earlier history)

Question: what’d be the best Bayes Net 
structure to represent the Joint Distribution 
of (q0, q1, q2,q3,q4 ,O0, O1, O2,O3,O4 )?

Answer:

q0

q1

q2

q3

q4

O0

O1

O2

O3

O4

Copyright © Andrew W. Moore Slide 26

Noisy Hidden State

H

2R0

H

®

WWW

• Example: Noisy Proximity sensors. (unreliably tell us 
the contents of the 8 adjacent squares)

W 
denotes 
“WALL”

True state qt Uncorrupted Observation

HH

W®

WW

What the robot sees: 
Observation Ot

Ot is noisily determined depending on 
the current state.

Assume that Ot is conditionally 
independent of {qt-1, qt-2, … q1, q0 ,Ot-1, 
Ot-2, … O1, O0 } given qt.

In other words:

P(Ot = X |qt = si ) =

P(Ot = X |qt = si ,any earlier history)

Question: what’d be the best Bayes Net 
structure to represent the Joint Distribution 
of (q0, q1, q2,q3,q4 ,O0, O1, O2,O3,O4 )?

Answer:

q0

q1

q2

q3

q4

:::::::

bN (M)…bN(k)…bN (2)bN (1)N

bi (M)…bi(k)…bi (2)bi(1)i

:::::::

…

…

…

…

b3 (M)b3(k)…b3 (2)b3 (1)3

b2 (M)b2(k)…b2 (2)b2 (1)2

b1(M)b1 (k)…b1 (2)b1(1)1
P(Ot=M|qt=si)P(Ot=k|qt=si)…P(Ot=2|qt=si)P(Ot=1|qt=si)i

Notation:
)|()( itti sqkOPkb ===O0

O1

O2

O3

O4
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Hidden Markov Models
Our robot with noisy sensors is a good example of an HMM
• Question 1: State Estimation

What is P(qT=Si | O1O2…OT)
It will turn out that a new cute D.P. trick will get this for us.

• Question 2: Most Probable Path
Given O1O2…OT , what is the most probable path that I took?
And what is that probability?
Yet another famous D.P. trick, the VITERBI algorithm, gets 

this.
• Question 3: Learning HMMs:

Given O1O2…OT , what is the maximum likelihood HMM that 
could have produced this string of observations?

Very very useful. Uses the E.M. Algorithm
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Are H.M.M.s Useful?
You bet !!
• Robot planning + sensing when there’s uncertainty 

(e.g. Reid Simmons / Sebastian Thrun / Sven 
Koenig)

• Speech Recognition/Understanding
Phones → Words, Signal → phones

• Human Genome Project
Complicated stuff your lecturer knows nothing 

about.
• Consumer decision modeling
• Economics & Finance.
Plus at least 5 other things I haven’t thought of.
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Some Famous HMM Tasks
Question 1: State Estimation

What is P(qT=Si | O1O2…Ot)

Copyright © Andrew W. Moore Slide 30

Question 1: State Estimation
What is P(qT=Si | O1O2…Ot)

Some Famous HMM Tasks
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Question 1: State Estimation
What is P(qT=Si | O1O2…Ot)

Some Famous HMM Tasks
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Question 1: State Estimation
What is P(qT=Si | O1O2…Ot)

Question 2: Most Probable Path
Given O1O2…OT , what is 

the most probable path 
that I took?

Some Famous HMM Tasks
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Question 1: State Estimation
What is P(qT=Si | O1O2…Ot)

Question 2: Most Probable Path
Given O1O2…OT , what is 

the most probable path 
that I took?

Some Famous HMM Tasks
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Question 1: State Estimation
What is P(qT=Si | O1O2…Ot)

Question 2: Most Probable Path
Given O1O2…OT , what is 

the most probable path 
that I took?

Some Famous HMM Tasks
Woke up at 8.35, Got on Bus at 9.46, 
Sat in lecture 10.05-11.22…
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Some Famous HMM Tasks
Question 1: State Estimation

What is P(qT=Si | O1O2…Ot)
Question 2: Most Probable Path

Given O1O2…OT , what is 
the most probable path 
that I took?

Question 3: Learning HMMs:
Given O1O2…OT , what is 

the maximum likelihood 
HMM that could have 
produced this string of 
observations?
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Some Famous HMM Tasks
Question 1: State Estimation

What is P(qT=Si | O1O2…OT)
Question 2: Most Probable Path

Given O1O2…OT , what is 
the most probable path 
that I took?

Question 3: Learning HMMs:
Given O1O2…OT , what is 

the maximum likelihood 
HMM that could have 
produced this string of 
observations?
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Some Famous HMM Tasks
Question 1: State Estimation

What is P(qT=Si | O1O2…OT)
Question 2: Most Probable Path

Given O1O2…OT , what is 
the most probable path 
that I took?

Question 3: Learning HMMs:
Given O1O2…OT , what is 

the maximum likelihood 
HMM that could have 
produced this string of 
observations?

Eat

Bus

walk

aAB

aBB

aAA

aCB

aBA aBC

aCC

Ot-1 Ot+1

Ot

bA(Ot-1)

bB(Ot)

bC(Ot+1)
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Basic Operations in HMMs
For an observation sequence O = O1…OT, the three basic HMM 

operations are:

Complexity
+

AlgorithmProblem

O(TN2)Baum-Welch (EM)Learning:
Computing λ* = argmaxλ P(O|λ)

O(TN2)Viterbi DecodingInference:
Computing Q* = argmaxQ P(Q|O)

O(TN2)Forward-BackwardEvaluation:
Calculating P(qt=Si | O1O2…Ot)

T = # timesteps, N = # states
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HMM Notation
(from Rabiner’s Survey)
The states are labeled S1 S2 .. SN

For a particular trial….
Let T be the number of observations

T is also the number of states passed 
through

O = O1 O2 .. OT is the sequence of observations
Q = q1 q2 .. qT    is the notation for a path of states

λ = 〈N,M,{πi,},{aij},{bi(j)}〉 is the specification of an 
HMM

*L. R. Rabiner, "A Tutorial on 
Hidden Markov Models and 
Selected Applications in Speech 
Recognition," Proc. of the IEEE, 
Vol.77, No.2, pp.257--286, 1989.

Available from
http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf?arnumber=18626
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HMM Formal Definition
An HMM, λ, is a 5-tuple consisting of
• N   the number of states
• M   the number of possible observations
• {π1, π2, .. πN}  The starting state probabilities

P(q0 = Si) = πi

• a11 a22 … a1N

a21 a22 … a2N

: : :
aN1 aN2 … aNN

• b1(1) b1(2) … b1(M) 
b2(1) b2(2) … b2(M) 
: : :

bN(1) bN(2) … bN(M)

This is new. In our 
previous example, 
start state was 
deterministic

The state transition probabilities

P(qt+1=Sj | qt=Si)=aij

The observation probabilities

P(Ot=k | qt=Si)=bi(k)



21

Copyright © Andrew W. Moore Slide 41

Here’s an HMM

N = 3
M = 3
π1 = 1/2 π2 = 1/2 π3 = 0

a11 = 0 a12 = 1/3 a13 = 2/3

a12 = 1/3 a22 = 0 a13 = 2/3

a13 = 1/3 a32 = 1/3 a13 = 1/3

b1 (X) = 1/2 b1 (Y) = 1/2 b1 (Z) = 0
b2 (X) = 0 b2 (Y) = 1/2 b2 (Z) = 1/2

b3 (X) = 1/2 b3 (Y) = 0 b3 (Z) = 1/2

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
__O1=__q1=
__O0=__q0=

50-50 choice 
between S1 and 

S2

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
__O1=__q1=
__O0=S1q0=

50-50 choice 
between X and Y

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
__O1=__q1=
XO0=S1q0=

Goto S3 with 
probability 2/3 or 
S2 with prob. 1/3

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
__O1=S3q1=
XO0=S1q0=

50-50 choice 
between Z and X

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=__q2=
XO1=S3q1=
XO0=S1q0=

Each of the three 
next states is 
equally likely

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

S2

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

__O2=S3q2=
XO1=S3q1=
XO0=S1q0=

50-50 choice 
between Z and X

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

ZO2=S3q2=
XO1=S3q1=
XO0=S1q0=

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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State Estimation

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0 a12 = ⅓ a13 = ⅔
a12 = ⅓ a22 = 0 a13 = ⅔
a13 = ⅓ a32 = ⅓ a13 = ⅓

b1 (X) = ½ b1 (Y) = ½ b1 (Z) = 0
b2 (X) = 0 b2 (Y) = ½ b2 (Z) = ½
b3 (X) = ½ b3 (Y) = 0 b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output 
symbols in each state at 
random.

Let’s generate a sequence of 
observations:

ZO2=?q2=
XO1=?q1=
XO0=?q0=

This is what the 
observer has to 

work with…

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Prob. of a series of observations
What is P(O) = P(O1 O2 O3) = 

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for 
an arbitrary path Q?

How do we compute P(O|Q) 
for an arbitrary path Q?

∑
∈

∧=
3length  of Paths

)()(
Q

QOO PP

∑
∈

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Prob. of a series of observations
What is P(O) = P(O1 O2 O3) = 

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for 
an arbitrary path Q?

How do we compute P(O|Q) 
for an arbitrary path Q?

∑
∈

∧=
3length  of Paths

)()(
Q

QOO PP

P(Q)= P(q1,q2,q3)

=P(q1) P(q2,q3|q1) (chain rule)

=P(q1) P(q2|q1) P(q3| q2,q1)  (chain)

=P(q1) P(q2|q1) P(q3| q2) (why?)

Example in the case Q = S1 S3 S3:

=1/2 * 2/3 * 1/3 = 1/9

∑
∈

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Prob. of a series of observations
What is P(O) = P(O1 O2 O3) = 

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for 
an arbitrary path Q?

How do we compute P(O|Q) 
for an arbitrary path Q?

∑
∈

∧=
3length  of Paths

)()(
Q

QOO PP

P(O|Q)

= P(O1 O2 O3 |q1 q2 q3 )

= P(O1 | q1 ) P(O2 | q2 ) P(O3 | q3 ) (why?)

Example in the case Q = S1 S3 S3:

= P(X| S1) P(X| S3) P(Z| S3) =

=1/2 * 1/2 * 1/2 = 1/8

∑
∈

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3

Prob. of a series of observations
What is P(O) = P(O1 O2 O3) = 

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for 
an arbitrary path Q?

How do we compute P(O|Q) 
for an arbitrary path Q?

∑
∈

∧=
3length  of Paths

)()(
Q

QOO PP

P(O|Q)

= P(O1 O2 O3 |q1 q2 q3 )

= P(O1 | q1 ) P(O2 | q2 ) P(O3 | q3 ) (why?)

Example in the case Q = S1 S3 S3:

= P(X| S1) P(X| S3) P(Z| S3) =

=1/2 * 1/2 * 1/2 = 1/8

∑
∈

=
3length  of Paths

)()|(
Q

QQO PP

P(O) would need 27 P(Q)

computations and 27 P(O|Q)

computations

A sequence of 20 observations would need 320 = 

3.5 billion computations and 3.5 billion P(O|Q)

computations So let’s be smarter…
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The Prob. of a given series of 
observations, non-exponential-cost-style

Given observations O1 O2 … OT

Define

αt(i) = P(O1 O2 … Ot ∧ qt = Si | λ)         where 1 ≤ t ≤ T

αt(i) =   Probability that, in a random trial,

• We’d have seen the first t observations 

• We’d have ended up in Si as the t’th state visited. 

In our example, what is α2(3) ?
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αt(i): easy to define recursively
αt(i) = P(O1 O2 … OT ∧ qt = Si | λ) (αt(i) can be defined stupidly by considering all paths length “t”. How?)

( ) ( )
( ) ( )

( ) ( )
=

=∧=
=

===

=∧=

+++ jtttt

ii

i

SqOOOOj

SqOSq
SqOi

11211

111

111

...P 
what?                                        

PP
P 

α

α
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αt(i): easy to define recursively
αt(i) = P(O1 O2 … OT ∧ qt = Si | λ) (αt(i) can be defined stupidly by considering all paths length “t”. How?)

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )iOba

iSqOSqSq

iSqSqO

SqOOOSqOOOSqO

SqOSqOOO

SqOOOOj

SqOSq
SqOi

t
i

tjij

t
i

jttitjt

t
i

itjtt

N

i
ittittjtt

N

i
jttitt

jtttt

ii

i

α

α

α

α

α

∑

∑

∑

∑

∑

+

+++

++

=
++

=
++

+++

=

====

===

=∧=∧==

=∧∧=∧=

=∧=
=

===

=∧=

1

111

11

1
212111

1
1121

11211

111

111

PP

,P

...P...,P

...P

...P 
what?                                        

PP
P 
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in our example
( ) ( )
( ) ( )
( ) ( ) ( )iObaj

Obi
SqOOOi

t
i

tjijt

ii

ittt

αα

πα
λα

∑ ++ =

=

=∧=

11

11

21

  
..P

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
72
13     

72
12     01

12
13     02     01

03     02     
4
11

333

222

111

===

===

===

ααα

ααα

ααα

WE SAW   O1 O2 O3 = X X Z

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Easy Question

We can cheaply compute

αt(i)=P(O1O2…Ot∧qt=Si)

(How) can we cheaply compute

P(O1O2…Ot)   ?

(How) can we cheaply compute

P(qt=Si|O1O2…Ot)
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Easy Question

We can cheaply compute

αt(i)=P(O1O2…Ot∧qt=Si)

(How) can we cheaply compute

P(O1O2…Ot)   ?

(How) can we cheaply compute

P(qt=Si|O1O2…Ot)

∑
=

N

i
t i

1
)(α

∑
=

N

j
t

t

j

i

1
)(

)(

α

α
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Most probable path given observations

( )

( )

( )
( )

( ) ( )QQOOO

OOO
QQOOO

OOOQ

OOOQ

OOO

T

T

T

T

T

T

P...P  

...P
)(P...P

  

...P       

:answer stupid Slow,

?...P     isWhat 

i.e.,...given path  probablemost  sWhat'

21
Q

21

21

Q

21
Q

21
Q

21

argmax

argmax

argmax

argmax

=

=
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Efficient MPP computation
We’re going to compute the following variables:

δt(i)=      max        P(q1 q2 .. qt-1 ∧ qt = Si ∧ O1 .. Ot)
q1q2..qt-1

=  The Probability of the path of Length t-1 with the 
maximum chance of doing all these things:

…OCCURING
and

…ENDING UP IN STATE Si
and

…PRODUCING OUTPUT O1…Ot

DEFINE: mppt(i) =  that path

So:                 δt(i)= Prob(mppt(i))
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The Viterbi Algorithm
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( )1

111

11

max

1

21121

maxarg

21121

max

PP
P  choice one

.....P  121

.....P  121

...

...

Ob
SqOSq

OSqi

OOOSqqqqtimpp

OOOSqqqqti

ii

ii

i

tittt

tittt

qqq

qqq

π

δ

δ

=

===

∧==

∧=∧−=

∧=∧−=

−

−

Now, suppose we have all the δt(i)’s and mppt(i)’s for all i.          

HOW TO GET δt+1(j) and mppt+1(j)?  

mppt(1) Prob=δt(1)

mppt(2) 

:

mppt(N) 

S1

S2

SN

qt

Sj

qt+1

Prob=δt(N)

Prob=δt(2)
?:
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The Viterbi Algorithm
time t time t+1

S1
: Sj
Si
:

The most prob path with last 
two states Si Sj

is

the most prob path to Si , 
followed by transition Si → Sj
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The Viterbi Algorithm
time t time t+1

S1
: Sj
Si
:

The most prob path with last 
two states Si Sj

is

the most prob path to Si , 
followed by transition Si → Sj

What is the prob of that path?
δt(i) x P(Si → Sj ∧ Ot+1 | λ)

= δt(i) aij bj (Ot+1)
SO   The most probable path to Sj has 

Si* as its penultimate state
where  i*=argmax δt(i) aij bj (Ot+1)

i
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The Viterbi Algorithm
time t time t+1

S1
: Sj
Si
:

The most prob path with last 
two states Si Sj

is

the most prob path to Si , 
followed by transition Si → Sj

What is the prob of that path?
δt(i) x P(Si → Sj ∧ Ot+1 | λ)

= δt(i) aij bj (Ot+1)
SO   The most probable path to Sj has 

Si* as its penultimate state
where  i*=argmax δt(i) aij bj (Ot+1)

i

} with i* defined 
to the left

Summary:
δt+1(j)  =  δt(i*) aij bj (Ot+1)
mppt+1(j)  =  mppt+1(i*)Si*
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What’s Viterbi used for?

Classic Example

Speech recognition:

Signal → words

HMM → observable is signal

→ Hidden state is part of word 
formation

What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not 
one big jump.
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HMMs are used and useful
But how do you design an HMM?

Occasionally, (e.g. in our robot example) it is reasonable to 
deduce the HMM from first principles.

But usually, especially in Speech or Genetics, it is better to infer 
it from large amounts of data.  O1 O2 .. OT with a big “T”.

O1 O2 .. OT

O1 O2 .. OT

Observations previously
in lecture

Observations in the 
next bit
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Inferring an HMM
Remember, we’ve been doing things like

P(O1 O2 .. OT | λ )

That “λ” is the notation for our HMM parameters.

Now We have some observations and we want to 
estimate λ from them.

AS USUAL: We could use

(i) MAX LIKELIHOOD   λ = argmax P(O1 .. OT | λ)
λ

(ii) BAYES
Work out P( λ | O1 .. OT )

and then take E[λ] or max P( λ | O1 .. OT )
λ
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Max likelihood HMM estimation

( )

( ) =∑

=∑

−

=

−

=

1

1

1

1

,
T

t
t

T

t
t

ji

i

ε

γ

Define
γt(i) = P(qt = Si | O1O2…OT , λ )
εt(i,j) = P(qt = Si ∧ qt+1 = Sj | O1O2…OT ,λ )

γt(i)  and εt(i,j)  can be computed efficiently   ∀i,j,t
(Details in Rabiner paper)

Expected number of transitions 
out of state i during the path

Expected number of transitions from 
state i to state j during the path
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HMM 
estimation

( ) ( )
( ) ( )

( )

( ) path during j into and i ofout  ns transitioofnumber  expected,

path during i state ofout  ns transitioofnumber  expected
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=new
ija )|( 1 itjt sqsqP ==+We want new estimate of
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=new
ija )|( 1 itjt sqsqP ==+We want new estimate of
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=new
ija )|( 1 itjt sqsqP ==+We want new estimate of

∑
=

→

→
= N

k
T

old

T
old

OOOki

OOOji

1
21

21

,,,| ns transitio# Expected

,,,| ns transitio# Expected

L

L

λ

λ

∑∑

∑

= =
+

=
+

==

==
= N

k

T

t
Titkt

T

t
Titjt

OOOsqsqP

OOOsqsqP

1 1
21

old
1

1
21

old
1

),,,|,(

),,,|,(

L

L

λ

λ

Copyright © Andrew W. Moore Slide 74

=new
ija )|( 1 itjt sqsqP ==+We want new estimate of
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EM for HMMs
If we knew λ we could estimate EXPECTATIONS of quantities 

such as
Expected number of times in state i
Expected number of transitions i → j

If we knew the quantities such as
Expected number of times in state i
Expected number of transitions i → j

We could compute the MAX LIKELIHOOD estimate of
λ = 〈{aij},{bi(j)}, πi〉

Roll on the EM Algorithm…
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EM 4 HMMs
1. Get your observations  O1 …OT

2. Guess your first λ estimate λ(0), k=0

3. k = k+1

4. Given O1 …OT, λ(k) compute
γt(i) , εt(i,j)      ∀1 ≤ t ≤ T,      ∀1 ≤ i ≤ N,      ∀1 ≤ j ≤ N

5. Compute expected freq. of state i, and expected freq. i→j

6. Compute new estimates of aij, bj(k), πi accordingly.  Call 
them λ(k+1)

7. Goto 3, unless converged.

• Also known (for the HMM case) as the BAUM-WELCH 
algorithm.



41

Copyright © Andrew W. Moore Slide 81

Bad News

Good News

Notice

• There are lots of local minima

• The local minima are usually adequate models of the 
data.

• EM does not estimate the number of states. That must 
be given.

• Often, HMMs are forced to have some links with zero 
probability. This is done by setting aij=0 in initial estimate 
λ(0)

• Easy extension of everything seen today: HMMs with 
real valued outputs
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Bad News

Good News

Notice

• There are lots of local minima

• The local minima are usually adequate models of the 
data.

• EM does not estimate the number of states. That must 
be given.

• Often, HMMs are forced to have some links with zero 
probability. This is done by setting aij=0 in initial estimate 
λ(0)

• Easy extension of everything seen today: HMMs with 
real valued outputs

Trade-off between too few states (inadequately 
modeling the structure in the data) and too many 
(fitting the noise).

Thus #states is a regularization parameter.

Blah blah blah… bias variance tradeoff…blah 
blah…cross-validation…blah blah….AIC, 
BIC….blah blah (same ol’ same ol’)
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What You Should Know
• What is an HMM ?
• Computing (and defining) αt(i)
• The Viterbi algorithm
• Outline of the EM algorithm
• To be very happy with the kind of maths and 

analysis needed for HMMs
• Fairly thorough reading of Rabiner* up to page 266* 

[Up to but not including “IV. Types of HMMs”].
*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, 
pp.257--286, 1989.

http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf?arnumber=18626

DON’T PANIC: 
starts on p. 257.


