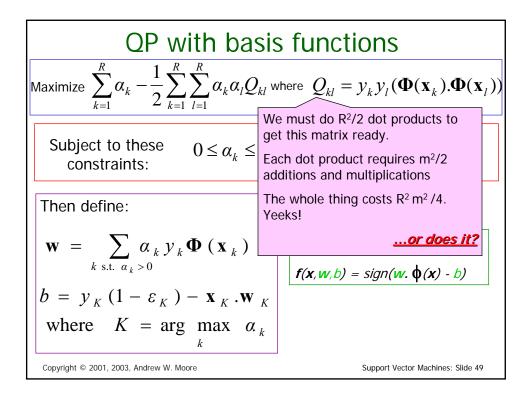
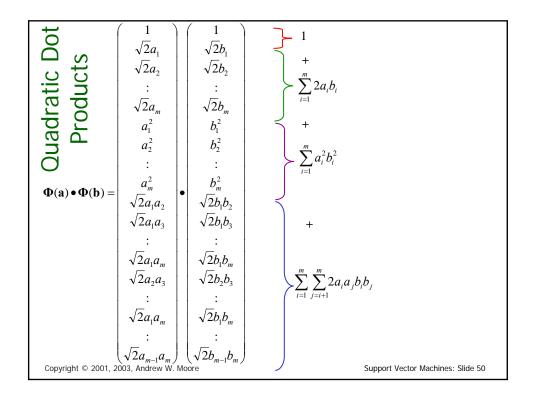
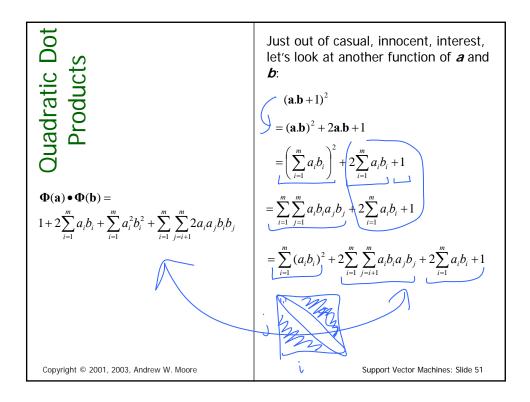
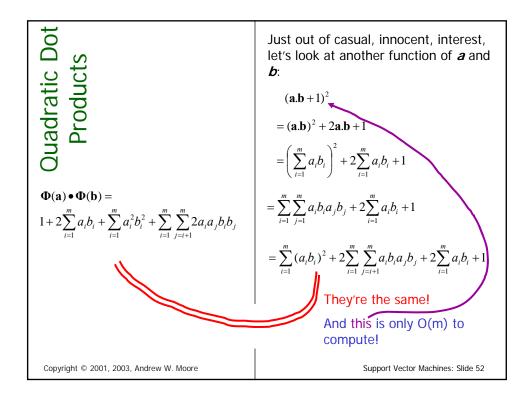


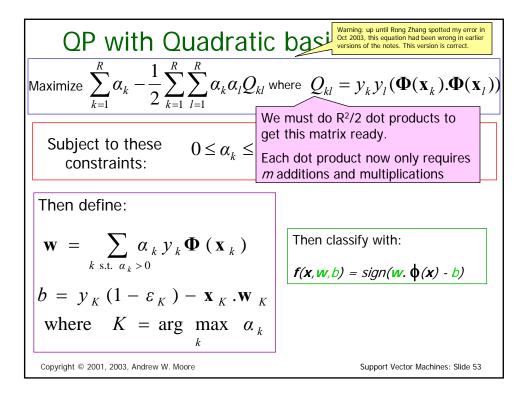
OP with basis functionsWarning: up until Rong Zharg spotted my error in
Cet 2003, this equation had been wrong in earlier
versions of the notes. This version is correct.Maximize
$$\sum_{k=1}^{R} \alpha_k - \frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_k \alpha_l Q_{kl}$$
 where
 $Q_{kl} = y_k y_l (\Phi(\mathbf{x}_k) . \Phi(\mathbf{x}_l))$ Subject to these
constraints: $0 \le \alpha_k \le C \quad \forall k$ $\sum_{k=1}^{R} \alpha_k y_k = 0$ Then define:
 $\mathbf{w} = \sum_{k \text{ s.t. } \alpha_k > 0} \alpha_k y_k \Phi(\mathbf{x}_k)$
 $b = y_K (1 - \varepsilon_K) - \mathbf{x}_K . \mathbf{w}_K$
where
 $K = \arg \max_k \alpha_k$ Then classify with:
 $f(\mathbf{x}, \mathbf{w}, b) = sign(\mathbf{w}, \mathbf{\phi}(\mathbf{x}) - b)$



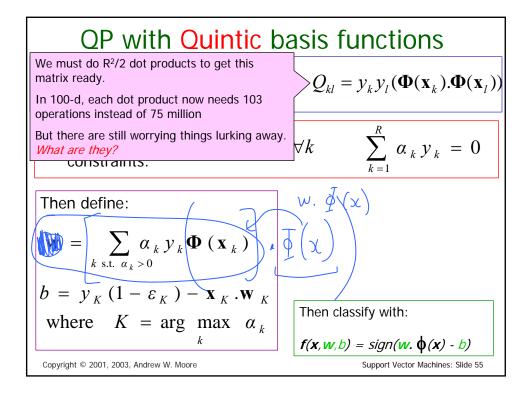


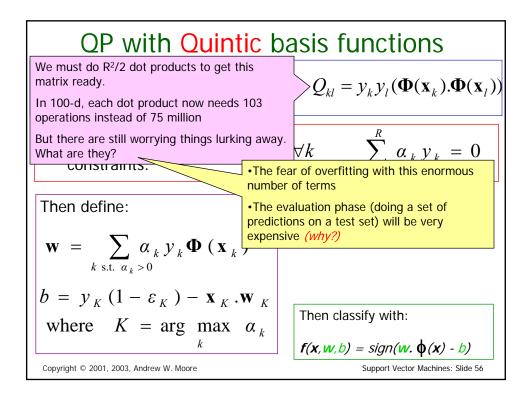


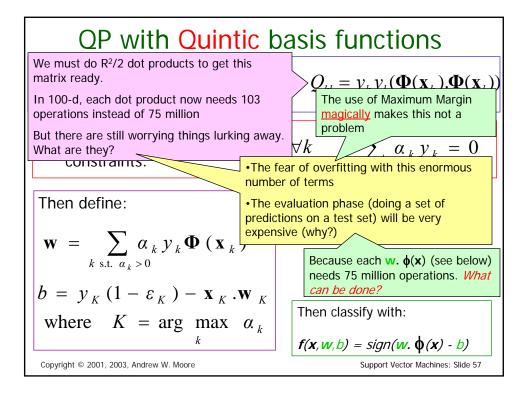


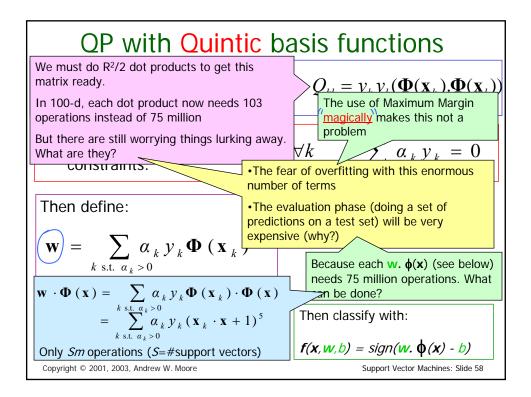


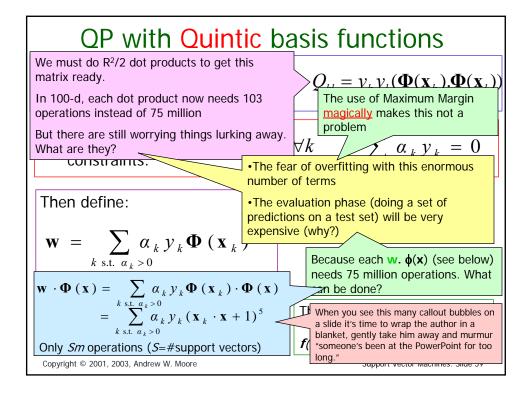
Higher Order Polynomials						
Poly- nomial	ф <i>(х)</i>	Cost to build Q_{kl} matrix tradition ally	Cost if 100 inputs	φ <i>(a).</i> φ <i>(b)</i>	Cost to build <i>Q_{k/}</i> matrix sneakily	Cost if 100 inputs
Quadratic	All <i>m²/2</i> terms up to degree 2	m² R² /4	2,500 <i>R</i> ²	(a . b +1) ²	m R² / 2	50 <i>R</i> ²
Cubic	All <i>m³/6</i> terms up to degree 3	m ³ R ² /12	83,000 <i>R</i> ²	(a . b +1) ³	m R² / 2	50 <i>R</i> ²
Quartic	All <i>m⁴/24</i> terms up to degree 4	m ⁴ R ² /48	1,960,000 R ²	(a . b +1) ⁴	m R ² / 2 (50 <i>R</i> ²
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 54						

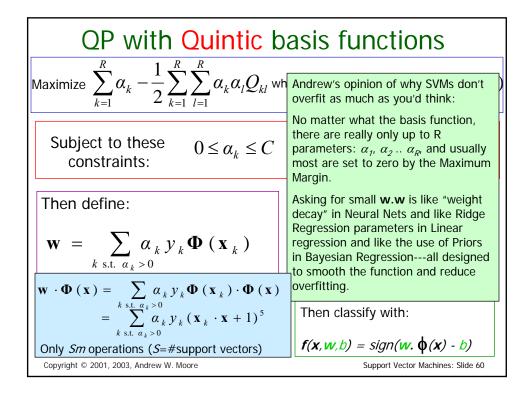


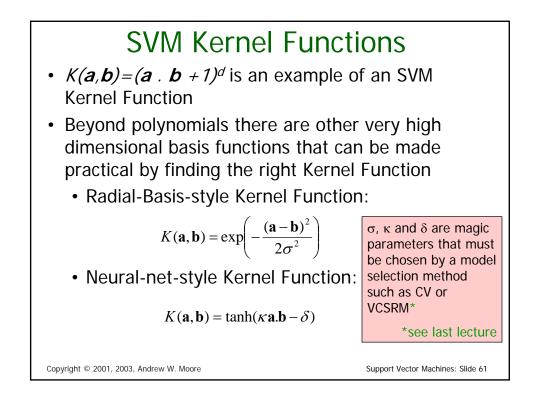


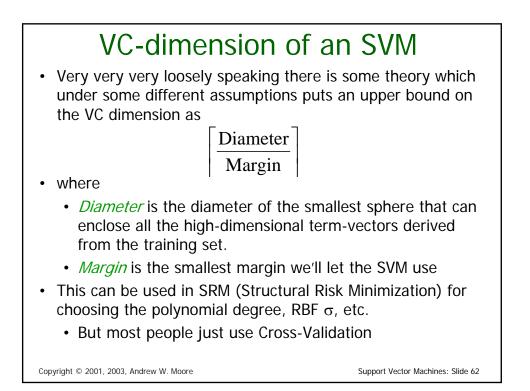


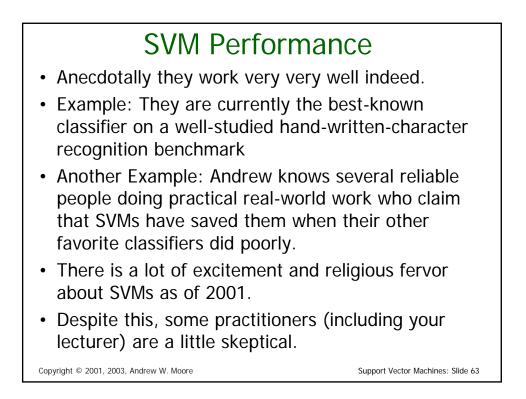


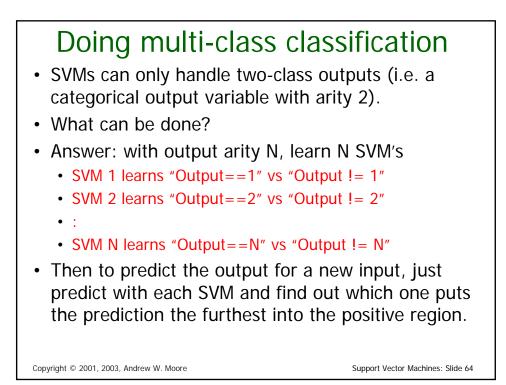


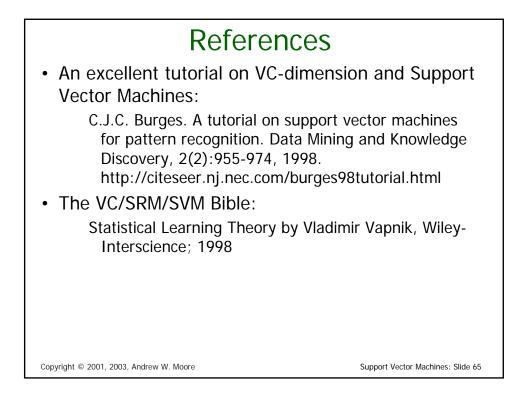












What You Should Know

- Linear SVMs
- The definition of a maximum margin classifier
- What QP can do for you (but, for this class, you don't need to know how it does it)
- How Maximum Margin can be turned into a QP problem
- How we deal with noisy (non-separable) data
- How we permit non-linear boundaries
- How SVM Kernel functions permit us to pretend we're working with ultra-high-dimensional basisfunction terms

Copyright © 2001, 2003, Andrew W. Moore

Support Vector Machines: Slide 66