
10-701/15-781 Machine Learning: Assignment 1

• The assignment is due September 27, 2005 at the beginning of class.

• Write your name in the top right-hand corner of each page submitted. No paperclips, folders, etc.

• If you have any questions, email questions-10701@autonlab.org.

• This assignment consists of five questions totalling 100 points.

• Each student must hand in an writeup. See the web page for the collaboration policy.

Q1 Decision Trees and Overfitting [20 pts]

Consider the following training data and the following decision tree learned from this data using the ID3
algorithm (without any postpruning).

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Outlook
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Humidity

Normal

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

High
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1. Show that the choice of the Wind attribute at the second level of the tree is correct, by showing that
its information gain is superior to the alternative choices.

2. Add one new example to the above data set, so that the learned tree will contain additional nodes.

3. Is it possible to add new examples to the above training set, which are consistent with the above tree, to
produce a larger training set such that ID3 will now learn a tree whose root node is not Outlook?. (We
say an example is consistent with the above tree if the tree classifies the example correctly). Justify
your answer by explaining informally why this is impossible, or explaining the new data you would
add.

4. Any decision tree can be re-expressed as a set of rules, with one rule for each leaf (Mitchell pp.71-72).
The preconditions of the rule correspond to the sequence of attribute tests along the path from the
tree root to the leaf. For example, the leftmost leaf in the above tree corresponds to the rule

IF (Outlook = sunny AND Humidity=High) THEN PlayTennis=No

Write the rules for the remaining leaves. Note this set of rules produces classifications that are identical
to the above tree, over the training data and over any other possible instance.

5. It is possible to translate any tree into a set of rules that represents an equivalent classifier. Is it
possible to translate any set of rules into an equivalent tree? Explain how or give a counterexample.

6. In class we discussed post-pruning the tree using reduced-error pruning over a validation data set, to
avoid overfitting. Consider the alternative of converting the tree to its equivalent rules, then pruning
the rules. In particular, let’s consider the pruning each rule independently, by iterating the following
steps:

(a) Determine which rule precondition would, if removed, produce the greatest accuracy improvement
over the validation set. (the “accuracy” of the rule is the number of correct predictions it makes,
divided by the number of predictions it makes).

(b) If removing this precondition improves validation set accuracy, then remove it and iterate, else
stop the pruning of this rule

Consider the two pruning strategies (pruning the tree, versus pruning the equivalent rule set). Is it
the case that these two pruning strategies produce equivalent pruned classifiers (i.e., do the pruned
tree and the pruned rules make equivalent classifications over all possible instances?). Explain why or
when not.

Q2 Entropy, Conditional Entropy, and Information Gain [25 pts]

Properties of Entropy
Given two discrete random variables X and Y which take on values {v1, . . . , vn} the entropy is

H(X) = −
n∑

i=1

p(X = vi) log p(X = vi)

The specific conditional entropy is

H(Y |X = vk) = −
n∑

i=1

p(Y = vi|X = vk) log p(Y = vi|X = vk)
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and can be viewed as the expected number of bits needed to encode a sample from Y given that we know
X = vk. The average conditional entropy is

H(Y |X) =
n∑

k=1

p(X = vk)H(Y |X = vk)

and can be viewed as the expected number of bits needed to encode a sample from Y given X. The joint
entropy

H(X,Y ) = −
∑

i

∑
j

p(x, y) log p(x, y)

and can be viewed as the expected number of bits needed to jointly encode a sample from (X,Y ). An
important property of joint entropy is the chain rule

H(X,Y ) = H(X) +H(X|Y ) = H(Y ) +H(Y |X)

The information gain is

IG(Y |X) = H(Y )−H(Y |X)
IG(X|Y ) = H(X)−H(X|Y )

and can be viewed as the expected number of bits saved when encoding a sample from Y given that both
sender and receiver already have X. An important property to remember is that IG(X|Y ) = IG(Y |X).

Q2.1 Entropy Inequalities [10 pts]

1. Given a random variable X and any deterministic function g(X) we claim that H(g(X)) ≤ H(X) with
the following justification:

H(X, g(X)) = H(X) +H(g(X)|X)
= H(X) (1)

H(X, g(X)) = H(g(X)) +H(X|g(X))
≥ H(g(X)) (2)

Thus H(X) = H(X, g(X)) ≥ H(g(X)).

(a) Is the claim correct ?

(b) If the claim is not correct, explain the mistake in steps 1 and 2. If the claim is correct, explain
why. (Answer should be no more than two sentences long. You do not have to prove anything
given as a property of entropy).

2. For which of the following functions does H(g(X)) = H(X), where X is stochastic, discrete, and
strictly positive ?

(a) g(X) = aX + b assuming a, b > 0

(b) g(X) = log(X)

(c) g(X) = 0

(d) g(X) = 2.23
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(c) Encoding 3

Figure 1: Encoding 1 and 2 represent the same underlying distribution, encoding 3 does not

Q2.2 Derivation of Entropy [15 pts]

The equation for entropy

Hn(p1, . . . , pn) = −
∑

i

pi log pi

Is a rather non-obvious definition for entropy. In this question we will propose some desirable properties for
entropy as a measure of uncertainty, and then show that entropy must be within a multiplicative factor of
−

∑
i log pi log pi.

A1. Hn should be continuous in pi and symmetric in its arguments.

A2. If pi = 1/n then Hn should be a monotonically increasing function of n. If all events are equally likely,
then having more events means being more uncertain.

A3. If a choice among N events is broken down into successive choices, then entropy should be the weighted
sum of the entropy at each stage. For example, In encoding 1, we draw from (a, b, c) with probabilities
(1/2, 1/3, 1/6) respectively. In encoding 2, we first draw from {a, {b, c}}. If the set {b, c} is chosen we
then select from b or c with probabilities 2/3 and 1/3.

Let ψn(pi, . . . , pn) be any function which respects axioms A1-A3. Let A(n) = ψn(1/n, . . . , 1/n).

1. The entropy of the distribution represented by encoding 1 is

H(1/2, 1/3, 1/6) = −
[
1
2 log 1

2 + 1
3 log 1

3 + 1
6 log 1

6

]
= 1.46

The entropy of distribution represented by encoding 2 is

H( 1
2 ,

1
2 ) + 1

2H( 2
3 ,

1
3 ) = 1.46

What is the entropy of the encoding 3, as shown in figure 1(c) ? (Use axiom A3, like we did for
encoding 2) ?

2. Prove that A(sm) = mA(s) [Hint: We are dealing with sm equiprobable events, use A3]

We choose another set of tn equiprobable events where n is chosen so that sm ≤ tn ≤ sm+1. By taking
logarithms and rearranging

m

n
≤ log t

log s
≤ m

n
+

1
n

=⇒
∣∣∣∣mn − log t

log s

∣∣∣∣ ≤ 1
n

= ε (3)
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3. Explain why A(sm) ≤ A(tn) ≤ A(sm+1). (Answer should be one or two sentences).

By using the results of questions 2 and 3 it is easy to show that

A(sm) ≤ A(tn) ≤ A(sm+1) =⇒ mA(s) ≤ nA(t) ≤ (m+ 1)A(s) =⇒
∣∣∣∣mn − A(t)

A(s)

∣∣∣∣ < 1
n

= ε (4)

By combining equations 3 and 4∣∣∣∣A(t)
A(s)

− log t
log s

∣∣∣∣ < 2ε =⇒ A(t) = K log t, (K > 0 because of A2) (5)

Now consider a set of N equally likely events. For any partition of these events, S1, S2, . . . , Sk let pi = |Si|/N .
We propose the following two level encoding. First, choose a subset according to the probabilities (p1, . . . , pk).
Then sample uniformly from the chosen set. By equation 5 we know that A(N) = K logN . By axiom A3
and the two stage encoding we also know that A(N) = ψk(p1, . . . , pk) +K

∑
i pi log ni. Therefore

K logN = ψk(p1, . . . , pk) +K
∑

i

pi log |Si|

ψk(p1, . . . , pk) = K

[
logN −

∑
i

pi log |Si|

]

= K

[
logN

∑
i

pi −
∑

i

pi log |Si|

]

= −K
∑

i

pi log
|Si|
N

= −K
∑

i

pi log pi

Q3 Probability [25 pts]

1. Using only the axioms of probability show that p(A|B,A) = 1.

2. Using only the axioms of probability show that p(A,B|C) = p(A|C)p(B|C) only holds when A or B is
marginally independent of C, i.e. P (A|B,C) = P (A|C) or P (B|A,C) = P (B|C).

3. You have two bags. The first bag contains 11 white marbles and 4 black marbles. The second bag
contains 8 white marbles and 5 black marbles. One bag is chosen uniformly at random, and then a
marble is selected from the bag. The marble selected is white. What is the probability that it came
from the first bag ?

4. We uniformly choose X between 0 and 1. Then we choose Y between 0 and X. Thus the expression
for p(x) is

p(x) =

{
1 0 ≤ x ≤ 1
0 otherwise

(a) Give the expression for p(y|x)
(b) Give the expression for p(y)

(c) Give the expression for p(x|y)
(d) If the values chosen for X and Y are used to form a rectangle, what is the expected area of that

rectangle ?
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Q4 Gaussians [20 pts]

Given the following model for IQ and test scores S

IQ ∼ N(100, 152)

S|IQ ∼ N(IQ, 102)
s1 = 130

we derived the posterior density IQ|S = s1 in class. The snobbish parent, upon discovering their daughter
is seen as slightly less intelligent by Bayesians, decides to make her take the test again.

1. Let the daughter’s score on the first and second tests be S1 and S2 respectively. What is the posterior
density of her score on the second test, given the evidence of her score on the first test. Formally,
calculate the mean and variance of the distribution p(S2|S1 = 130).

2. The snobbish parent bets his neighbor $100 that his daughter will improve her score on the second
test. How much money can he expect to win (or lose) ?

Q5 Maximum Likelihood and Maximum a Posteriori [10 pts]

A food inspection officer at a chocolate factory is asked to measure the number of insect parts in chocolate
bars. Fifteen chocolate bars are independently chosen and analyzed. The number of insect parts measured
in each bar are {x1 . . . x15} = {2, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 2, 1}. The Poisson distribution is used to model
the number of insect parts in a chocolate bar, X.

p(x;λ) =
e−λλx

x!
, x = 0, 1, 2, . . .

For this question, do not refer to textbooks other than Mitchell. Everything you need to know about the
Poisson and Gamma distributions to solve this question has been provided.

1. Write down the log-likelihood of the data as a function of λ.

2. The maximum likelihood estimator of λ is

λ̂MLE =
1
n

n∑
i=1

xi

Compute λ̂MLE given the data.

3. Assume a Gamma(r = 2, α = 8) prior distribution on λ

p(λ) =
αr

Γ(r)
λr−1e−αλ λ > 0

If a random variable is Gamma(r, α) distributed then its expected value is r/α. If r > 1 the mode is
(r − 1)/α.

(a) How many insect parts do we expect to see in a chocolate bar before collecting the data ?
(b) What is the posterior PDF of λ ? Hint:∫ ∞

0

λ
P

xi+r−1e−λ(n+α) dλ

Looks a lot like the PDF of a Gamma distribution.
(c) Compute the maximum a posteriori estimate of λ given the data.
(d) If instead we assumed prior distribution λ ∼ Gamma(r = 4, α = 16), what would the MAP

estimate of λ be ?
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