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Nailve Bayes: What you should know

« Designing classifiers based on Bayes rule

Conditional independence
— Whatitis
— Why it’s important

Naive Bayes assumption and its conseguences

— Which (and how many) parameters must be estimated under
different generative models (different forms for P(X|Y) )

How to train Naive Bayes classifiers
— MLE and MAP estimates
— with discrete and/or continuous inputs



Generative vs. Discriminative Classifiers

Wish to learn f: X =2 Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes):

« Assume some functional form for P(X|Y), P(Y)
e This is the ‘generative’ model

« Estimate parameters of P(X|Y), P(Y) directly from training data

« Use Bayes rule to calculate P(Y|X= x;)

Discriminative classifiers:
 Assume some functional form for P(Y|X)
e This is the ‘discriminative’ model

« Estimate parameters of P(Y|X) directly from training data



e Consider learning f: X =2 Y, where
e X IS a vector of real-valued features, < X; ... X, >
Y is boolean
* We could use a Gaussian Naive Bayes classifier
e assume all X; are conditionally independent given Y
 model P(X; | Y =y,) as Gaussian N(uw,,,o)

 model P(Y) as Bernoulli (r)

* What does that imply about the form of P(Y|X)?
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Very convenient!
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Derive form for P(Y|X) for continuous X,

P(Y =1)P(X|Y =1)

P(Y =1|X) = P(Y =1)P(X|Y =1) 4+ P(Y =0)P(X|Y =0)
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1+ P(Y=1)P(XIY=1)

1

P(Y=0)P(X[Y=0
1 4 exp(In p%y:l%PgXIYZS)

1
1+ exp( (IN=T) 4[5 1n igi i%)

/

Z (Mo — Hil 4 M1;21 — P%;Qo)\
, 2 ’ 202
1 9 Ti /

P(Y =1|X) = . \

1+ exp(wg + X w; X;)




Very convenient!

1
1 + exp(wo + >; w; X;)

P(Y =1|X =< X1, ..Xp >) =

Implies
exp(wo + >2; w; X;)

P(Y =0|X =< Xq,..Xn>) =
( ‘ ! n>) 1 + exp(wo + >; w; X;)

Implies

P(Y = 0|X)

= exp(wo + > w; X;)
PY =11X) zﬁ: o linear
/ classification
implies POY = 01%) rule!
_ — X
"By = 1) o ik



Logistic function
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Y = 1/(1 + exp(-X))




Logistic regression more generally

 Logistic regression in more general case,
where Y €{Y; ... Yg} : learn R-1 sets of weights

for k<R
exp(wyo + i wi; X;)
P(Y = y|X) = :
i 1+ Zf”;ll exp(w;g + > w;; X;)
for k=R
1
P(Y = yg|X) =

1+ Y0 exp(wjo + S0y wjiX;)



Training Logistic Regression: MCLE

Choose parameters W=<w,, ... w> t0
maximize conditional likelihood of training data

1
1 + exp(wg + >°; wiX;)

where P(Y =0|X,W) =

exp(wo + > w; X;)

PY =1|X,W) = 1+ exp(wg + X; w; X;)

Training data D = {(x*,v1),...(xL vl
Data likelihood = [[P(x', Y'w)
[
Data conditional likelihood = ] P(¥!|x!, W)
[

W — argmax In [1P(YY X!, W)
[



Expressing Conditional Log Likelihood

(W) =InJ[PYIXL W) =Y InPyYxt,w)
[ [

1

PQT=01XW) = 1 + exp(wo + > w; X;)

exp(wo + > w; X;)

P(Y =11X,W) = 1 + exp(wo + X2; wiX;)

(w) = Y vhinpPyt=1x,w)+ @ -vHinP!=o0/x,w)
[
P(Y!=1|X! W)

Yiin InP(Y'=o0|X!, W
zl: P(Y!=0|X\, W) + ( | )

= Zyl(wo + ZwiX,f) —In(1 + exp(wg + ZwZXf))
[ 1 1



Maximizing Conditional Log Likelihood

1

P =0[X, W) = 1+ exp(wg + >; w; X;)

exp(wo + > w; X;)

(W) = In[[PYxt,w)
[

= Zyl<wo + Zwng) —In(1 + exp(wg + szle))
[ ? )

Good news: I(W) is concave function of W

Bad news: no closed-form solution to maximize (W)



Gradient Descent
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Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = In[[PYxt,w)
[
= ZYl(wo + Enjwz'Xf) — In(1 + exp(wo + En:wz'X%))
[ ) 7

ol(W)

6wi

=Y XNyl - Pyl = 11X\, W)
[

Gradient ascent algorithm: iterate until change < ¢
For all i, wi —w; + 1Y XH(Y - P(Y! = 1x!, W))
l

repeat




That's all M(C)LE. How about MAP?

« One common approach is to define priors on W
— Normal distribution, zero mean, identity covariance

* Helps avoid very large weights and overfitting
« MAP estimate

W «— arg mmz;x In P(W\{(YZ,XZ>})

W «— arg max P(W)In HP(YZ|XZ, W)
l



MLE vs MAP

e Maximum conditional likelihood estimate
W «— arg max In HP(YZ\XZ, W)
[

wi —w; +n Y X[ (Y =PV = 1|x", W)
[

 Maximum a posteriori estimate

W «— arg max P(W) In HP(YZ|XZ, W)
l

wj — w; —nw;+n Y Xj(Y = P(Y' = 1X", W)
[




Nailve Bayes vs. Logistic Regression

_ L _ . [Ng & Jordan, 2002]
 Generative and Discriminative classifiers

o Asymptotic comparison (# training examples =2 infinity)
 when model correct

« when model incorrect
* Non-asymptotic analysis
e convergence rate of parameter estimates

e convergence rate of expected error

« Experimental results



Nailve Bayes vs Logistic Regression

Consider Y and X; boolean, X=<X; ... X,>

Number of parameters:
« NB: 2n +1
e LR: n+1

Estimation method:
 NB parameter estimates are uncoupled
LR parameter estimates are coupled



What is the difference asymptotically?

Notation: let €(h 4 ) denote error of hypothesis learned via
algorithm A, from m examples

« If assumed naive Bayes model correct, then
E(th's,oo) — G(hGen,oo)

o If assumed model incorrect
E(hDis,oo) < E(hGen,oo)

Note assumed discriminative model can be correct even when
generative model incorrect, but not vice versa



Rate of covergence: logistic regression

Let hp; o, b€ logistic regression trained on m examples in n
dimensions. Then with high probability:

G(ths m) < e(ths oo) =+ O(\/n log m>

Implication: iIf we want e(hp;; ) < e(hpis co) + €0

for some constant €q, it suffices to pick m = Q(n)

—> Convergences to its classifier, in order of n examples

(result follows from Vapnik’s structural risk bound, plus fact
that VCDim of n dimensional linear separators is n )



Rate of covergence: naive Bayes

Consider first how quickly parameter estimates converge toward
their asymptotic values.

Then we’ll ask how this influences rate of convergence toward
asymptotic classification error.



Rate of covergence: naive Bayes parameters

Let any €1, > 0 and any [ > 0 be fixed. As-
sume that for some fixed pg > 0, we have that

po <ply=T) < 1—py. Let m = O((1/€%) log(n/s)).
Then with probability at least 1 —9, after m ex-
amples:

1. For discrete inputs, |p(x;ly = b) — p(x;|ly =
b)| < €1, and |p(y = b) —p(y = b)| < €1, for
all 1, b.

2. For continuous inputs, |i;,—p—Hijy=sl < €1,
and |62 — 02| < €1, for all i, b.
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Fipure 1: Results of 15 experiments on datasets from the UCT Machine Learnin,
repogitory. Plots are of generalization error vs. m (averaged over 1000 randor
train/test splits). Dashed line is logistic regression; solid line is naive Bayes.,



What you should know:

e Logistic regression
— Functional form follows from Naive Bayes assumptions

— But training procedure picks parameters without the
conditional independence assumption

— MLE training: pick W to maximize P(Y | X, W)
— MAP training: pick W to maximize P(W | X,Y)
 ‘regularization’

o Gradient ascent/descent
— General approach when closed-form solutions unavailable

 Generative vs. Discriminative classifiers
— Bias vs. variance tradeoff



