Logistic Regression

Required reading:

• Mitchell draft chapter (see course website)

Recommended reading:

- Bishop, Chapter 3.1.3, 3.1.4
- Ng and Jordan paper (see course website)

Machine Learning 10-701

Tom M. Mitchell
Center for Automated Learning and Discovery
Carnegie Mellon University

September 29, 2005

Naïve Bayes: What you should know

- Designing classifiers based on Bayes rule
- Conditional independence
 - What it is
 - Why it's important
- Naïve Bayes assumption and its consequences
 - Which (and how many) parameters must be estimated under different generative models (different forms for P(X|Y))
- How to train Naïve Bayes classifiers
 - MLE and MAP estimates
 - with discrete and/or continuous inputs

Generative vs. Discriminative Classifiers

Wish to learn f: $X \rightarrow Y$, or P(Y|X)

Generative classifiers (e.g., Naïve Bayes):

- Assume some functional form for P(X|Y), P(Y)
 - This is the 'generative' model
- Estimate parameters of P(X|Y), P(Y) directly from training data
- Use Bayes rule to calculate P(Y|X= x_i)

Discriminative classifiers:

- Assume some functional form for P(Y|X)
 - This is the 'discriminative' model
- Estimate parameters of P(Y|X) directly from training data

- Consider learning f: X → Y, where
 - X is a vector of real-valued features, < X₁ ... X_n >
 - Y is boolean
- We could use a Gaussian Naïve Bayes classifier
 - assume all X_i are conditionally independent given Y
 - model $P(X_i | Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma)$
 - model P(Y) as Bernoulli (π)

What does that imply about the form of P(Y|X)?

- Consider learning f: X → Y, where
 - X is a vector of real-valued features, < X₁ ... X_n >
 - Y is boolean
 - assume all X_i are conditionally independent given Y
 - model $P(X_i | Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 - model P(Y) as Bernoulli (π)

What does that imply about the form of P(Y|X)?

$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

Very convenient!

$$P(Y = 1 | X = \langle X_1, ... X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 0|X = < X_1, ...X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} = exp(w_0 + \sum_i w_i X_i)$$

implies
$$\ln \frac{P(Y=0|X)}{P(Y=1|X)} = w_0 + \sum_i w_i X_i$$

linear classification rule!

Derive form for P(Y|X) for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}$$

$$= \frac{1}{1 + \exp(\ln \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)})}$$

$$= \frac{1}{1 + \exp((\ln \frac{1 - \pi}{\pi}) + \sum_{i} \ln \frac{P(X_{i}|Y = 0)}{P(X_{i}|Y = 1)})}$$

$$\sum_{i} \left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}} X_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}\right)$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_{0} + \sum_{i=1}^{n} w_{i}X_{i})}$$

Very convenient!

$$P(Y = 1 | X = \langle X_1, ... X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 0|X = < X_1, ...X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} = exp(w_0 + \sum_i w_i X_i)$$

implies
$$\ln \frac{P(Y=0|X)}{P(Y=1|X)} = w_0 + \sum_i w_i X_i$$

linear classification rule!

Logistic function

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

Logistic regression more generally

• Logistic regression in more general case, where $Y \in \{Y_1 \dots Y_R\}$: learn R-1 sets of weights

for k < R

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^n w_{ki} X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^n w_{ji} X_i)}$$

for k=R

$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

Training Logistic Regression: MCLE

 Choose parameters W=<w₀, ... w_n> to maximize conditional likelihood of training data

where
$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

- Training data $D = \{\langle X^1, Y^1 \rangle, \dots, \langle X^L, Y^L \rangle\}$
- Data likelihood = $\prod_{i} P(X^{l}, Y^{l}|W)$
- Data conditional likelihood = $\prod_{l} P(Y^{l}|X^{l}, W)$

$$W \leftarrow \arg\max_{W} \ \ln\prod_{l} P(Y^{l}|X^{l},W)$$

Expressing Conditional Log Likelihood

$$l(W) \equiv \ln \prod_{l} P(Y^{l}|X^{l}, W) = \sum_{l} \ln P(Y^{l}|X^{l}, W)$$

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_{0} + \sum_{i} w_{i}X_{i})}$$

$$P(Y = 1|X, W) = \frac{exp(w_{0} + \sum_{i} w_{i}X_{i})}{1 + exp(w_{0} + \sum_{i} w_{i}X_{i})}$$

$$l(W) = \sum_{l} Y^{l} \ln P(Y^{l} = 1 | X^{l}, W) + (1 - Y^{l}) \ln P(Y^{l} = 0 | X^{l}, W)$$

$$= \sum_{l} Y^{l} \ln \frac{P(Y^{l} = 1 | X^{l}, W)}{P(Y^{l} = 0 | X^{l}, W)} + \ln P(Y^{l} = 0 | X^{l}, W)$$

$$= \sum_{l} Y^{l} (w_{0} + \sum_{i}^{n} w_{i} X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} X_{i}^{l}))$$

Maximizing Conditional Log Likelihood

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(W) \equiv \ln \prod_{l} P(Y^{l}|X^{l}, W)$$

$$= \sum_{l} Y^{l}(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}))$$

Good news: l(W) is concave function of W

Bad news: no closed-form solution to maximize l(W)

Gradient Descent

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Maximize Conditional Log Likelihood: Gradient Ascent

$$l(W) \equiv \ln \prod_{l} P(Y^{l}|X^{l}, W)$$

$$= \sum_{l} Y^{l}(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}))$$

$$\frac{\partial l(W)}{\partial w_i} = \sum_{l} X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$

Gradient ascent algorithm: iterate until change < ε

For all
$$i$$
,
$$w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$
 repeat

That's all M(C)LE. How about MAP?

- One common approach is to define priors on W
 - Normal distribution, zero mean, identity covariance
- Helps avoid very large weights and overfitting
- MAP estimate

$$W \leftarrow \arg\max_{W} \ln P(W|\{\langle Y^l, X^l \rangle\})$$

$$W \leftarrow \arg\max_{W} \ P(W) \ln\prod_{l} P(Y^{l}|X^{l},W)$$

MLE vs MAP

Maximum conditional likelihood estimate

$$W \leftarrow \arg\max_{W} \ln\prod_{l} P(Y^{l}|X^{l}, W)$$

$$w_{i} \leftarrow w_{i} + \eta \sum_{l} X_{i}^{l} (Y^{l} - \widehat{P}(Y^{l} = 1|X^{l}, W))$$

Maximum a posteriori estimate

$$W \leftarrow \arg\max_{W} \ P(W) \ \ln\prod_{l} P(Y^{l}|X^{l}, W)$$

$$w_{i} \leftarrow w_{i} - \eta \lambda w_{i} + \eta \sum_{l} X_{i}^{l} (Y^{l} - \hat{P}(Y^{l} = 1|X^{l}, W))$$

Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

- Generative and Discriminative classifiers
- Asymptotic comparison (# training examples → infinity)
 - when model correct
 - when model incorrect

- Non-asymptotic analysis
 - convergence rate of parameter estimates
 - convergence rate of expected error

Experimental results

Naïve Bayes vs Logistic Regression

Consider Y and X_i boolean, $X = \langle X_1 ... X_n \rangle$

Number of parameters:

• NB: 2n +1

• LR: n+1

Estimation method:

- NB parameter estimates are uncoupled
- LR parameter estimates are coupled

What is the difference asymptotically?

Notation: let $\epsilon(h_{A,m})$ denote error of hypothesis learned via algorithm A, from m examples

• If assumed naïve Bayes model correct, then

$$\epsilon(h_{Dis,\infty}) = \epsilon(h_{Gen,\infty})$$

If assumed model incorrect

$$\epsilon(h_{Dis,\infty}) \le \epsilon(h_{Gen,\infty})$$

Note assumed discriminative model can be correct even when generative model incorrect, but not vice versa

Rate of covergence: logistic regression

Let $h_{Dis,m}$ be logistic regression trained on m examples in n dimensions. Then with high probability:

$$\epsilon(h_{Dis,m}) \le \epsilon(h_{Dis,\infty}) + O(\sqrt{\frac{n}{m}\log\frac{m}{n}})$$

Implication: if we want $\epsilon(h_{Dis,m}) \leq \epsilon(h_{Dis,\infty}) + \epsilon_0$ for some constant ϵ_0 , it suffices to pick $m = \Omega(n)$

 \rightarrow Convergences to its classifier, in order of n examples (result follows from Vapnik's structural risk bound, plus fact that VCDim of n dimensional linear separators is n)

Rate of covergence: naïve Bayes

Consider first how quickly parameter estimates converge toward their asymptotic values.

Then we'll ask how this influences rate of convergence toward asymptotic classification error.

Rate of covergence: naïve Bayes parameters

Let any $\epsilon_1, \delta > 0$ and any $l \geq 0$ be fixed. Assume that for some fixed $\rho_0 > 0$, we have that $\rho_0 \leq p(y=T) \leq 1-\rho_0$. Let $m = O((1/\epsilon_1^2)\log(n/\delta))$. Then with probability at least $1-\delta$, after m examples:

1. For discrete inputs, $|\hat{p}(x_i|y=b) - p(x_i|y=b)| \le \epsilon_1$, and $|\hat{p}(y=b) - p(y=b)| \le \epsilon_1$, for all i, b.

2. For continuous inputs, $|\hat{\mu}_{i|y=b} - \mu_{i|y=b}| \le \epsilon_1$, and $|\hat{\sigma}_i^2 - \sigma_i^2| \le \epsilon_1$, for all i, b.

₽0.3

Some experiments from UCI data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learnin repository. Plots are of generalization error vs. m (averaged over 1000 randor train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

E0.2

§0.4

What you should know:

- Logistic regression
 - Functional form follows from Naïve Bayes assumptions
 - But training procedure picks parameters without the conditional independence assumption
 - MLE training: pick W to maximize P(Y | X, W)
 - MAP training: pick W to maximize P(W | X,Y)
 - · 'regularization'
- Gradient ascent/descent
 - General approach when closed-form solutions unavailable
- Generative vs. Discriminative classifiers
 - Bias vs. variance tradeoff