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Last time: PAC Learning

1. Finite H, assume target functionc € H

Pr[(3h € H)s.t.(errorirgin(h) = O)A(errorgye(h) > ¢€)] < |H|e™ ™

T

Suppose we want this to be at most 6. Then m examples suffice:

m > 2(In|H| + In(1/5))

2. Finite H, agnostic learning: perhaps ¢ not in H

with probability at least (1-6) every h in H satisfies

In|H| 4+ In %
2m

errortrue(h) < errortrain(h> + J



What iIf H 1s not finite?

e Can’t use our result for finite H

* Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!



Shattering a Set of Instances

Definition: a dichotomy of a set S is a
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

Instance space X




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3




Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-5)?

le., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-6) approximately (g) correct

m > ~(41092(2/8) + 8VC(H) 1095(13/c))

Compare to our earlier results based on |H|:

m > %(In(l/é) +in|H])



VC dimension: examples

Consider X = R, want to learn ¢c:X->{0,1}
What is VC dimension of o
 Open intervals:

H1: if £ > a then y =1 else y =

H2: if x >a then y=1 else y
or, if x > a then y =0 else y

0
0
1
Closed intervals:

H3: ifa<xz<btheny=1¢else y=20

H4: ifa<x<btheny=1e¢else y=20
or, ifa<x<btheny=0e¢elsey=1

O



VC dimension: examples
Consider X = R, want to learn ¢c:X->{0,1}

What is VC dimension of o o X
 Open intervals:

H1l: if x > a then y =1 else y = VC(H1)=1

H2: if x >a then y=1 else y
or, if x > a then y =0 else y

0
0 VC(H2)=2
1

e Closed intervals:
H3: ifa<z<btheny=1elsey=0 VC(H3)=2

H4: ifa<xz<btheny=1e¢else y=0 VC(H4)=3
or, ifa<x<btheny=0e¢elsey=1



VC dimension: examples

Consider X = 2, want to learn c:X—->{0,1}

What is VC dimension of lines in a plane?
e H={((w-x+h)>0 2> y=1)|w eR? b e R}

T



VC dimension: examples

Consider X = 2, want to learn c:X—->{0,1}

What is VC dimension of
e H={((wx+b)>0 2> y=1)|w eR? b e R}
— VC(H1)=3
— For linear separating hyperplanes in n dimensions,
VC(H)=n+1



For any finite hypothesis space H,
give an upper bound on VC(H) in terms of |H|



More VC Dimension Examples

Decision trees defined over n boolean features
F:<Xy, ..X>>Y

Decision trees defined over n continuous features
Where each internal tree node involves a threshold test (X; > c)

Decision trees of depth 2 defined over n features

Logistic regression over n continuous features? Over n
boolean features?

How about 1-nearest neighbor?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-8) approximately (&) correct?

m > 2(41092(2/8) + 8VC(H) 1092(13/¢))
€
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 2, any learner L,
any 0 <e<1/8,and any 0 < 06 <0.01. Then there exists a distribution D
and target concept in C, such that if L observes fewer examples than
Vo) —1

32¢

1
max |—1log(1/6),
€

Then with probability at least §, L outputs a hypothesis with errorp(h) > €



Agnostic Learning: VC Bounds
[Schoélkopf and Smola, 2002]

With probability at least (1-6) every h € H satisfies

VC(H)(In VC(H) +1)+1In?

m

errorirye(h) < errortmin(h)—l‘d
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Structural Risk Minimization .

Which hypothesis space should we choose?
* Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

J VCH)(In ;20 +1) +In4

m

errorirye(h) < erroryqgin(h)-+

* unfortunately a somewhat loose bound...



Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before
convergence”’

Let’s consider similar setting to PAC learning:

e Instances drawn at random from X according to
distribution D

e Learner must classify each instance before
receiving correct classification from teacher

e Can we bound the number of mistakes learner
makes before converging?



Mistake Bounds: Find-S

Consider Find-S when H = conjunction of boolean
literals

FIND-S:

e Initialize ~ to the most specific hypothesis
LA AN LN,

e For each positive training instance x
— Remove from h any literal that is not
satisfied by z

e Qutput hypothesis h.

How many mistakes before converging to correct h?



Mistake Bounds: Halving Algorithm

1. Initialize VS € H

2. For each training example,

e remove from VS every
hypothesis that

e Learn concept using version space misclassifies this example

Consider the Halving Algorithm:

CANDIDATE-ELIMINATION algorithm

e Classify new instances by majority vote of
version space members

How many mistakes before converging to correct h?
e ... in worst case?

e ... in best case?



Optimal Mistake Bounds

Let M4(C) be the max number of mistakes made
by algorithm A to learn concepts in C'. (maximum
over all possible ¢ € €', and all possible training
sequences)

My(C) = max My(c)

Definition: Let C' be an arbitrary non-empty
concept class. The optimal mistake bound for
C, denoted Opt(C), is the minimum over all
possible learning algorithms A of M4(C).
Opt(C) = M4(C)

111111 .
A€learning algorithms

VC(C) £ Opt(C) £ Myaiving(C) < loge(|C]).




Weighted Majority Algorithm

a; denotes the i prediction algorithm in the pool A
of algorithms. w; denotes the weight associated with
a;.

— For all 7 mnitialize w; + 1

— For each training example (z, ¢(x))

* Initialize ¢y and ¢; to 0 when B=0,

+ For each prediction algorithm a; equivalent fo
the Halving

-If a;(z) = 0 then gy < qo + w; algorithm...

If a;(z) =1 then ¢ + g1 + w;
* If ¢1 > qo then predict ¢(z) =1
If gy > q; then predict ¢(x) =0
If ¢1 = gy then predict 0 or 1 at random for
c()
* For each prediction algorithm a; in A do
If a;(z) # c(x) then w; + Pw;



Weighted Majority Even algorithms

that learn or
change over time...

[Relative mistake bound for
WEIGHTED-MAJORITY| Let D be-any sequence of
training examples, let A be any set of n prediction
algorithms, and let £ be the minimum number of
mistakes made by any algorithm in A for the
training sequence D. Then the number of mistakes
over D made by the WEIGHTED-MAJORITY

algorithm using (§ = % is at most

2.4(k + log, n)



What You Should Know

Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples provided at random

Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error

— For ANY consistent learner (case where ¢ € H)

— For ANY “best fit” hypothesis (agnostic learning, where perhaps ¢ not in H)

VC dimension as measure of complexity of H

Quantitative bounds characterizing bias/variance in choice of H
— but the bounds are quite loose...

Mistake bounds in learning

Conference on Learning Theory: http://www.learningtheory.org



General Hoeffding Bounds

 When estimating parameter 0 € [a,b] from m examples

_2me2
P(10 - E[0]] > ¢) < 20~

 When estimating a probability 6 € [0,1], so

P10 — E[f]] > ¢) < 2¢2m€’

 And if we're interested in only one-sided error

P((E[f] — ) > ¢) < e~ 2m€



