Problem Based Benchmarks: and
their role in parallel algorithms

Guy Blelloch
Carnegie Mellon University

Also: Jeremy Fineman, Phil Gibbons (Intel),
Julian Shun, Harsha Vardham Simhadri, ...

Alenex 2012

Outline

* The challenge with parallel algorithms
* The problem based benchmark suite
* How they do on modern multiprocessors

16 core processor

amazon Com Hello. Sign in to get personalized recommendations. New customer? Start here.
Your Amazon.com 3 ! Today's Deals = Gifts & Wish Lists | Gift Cards

LY B Electronics

>omputers & Accessories Brands | Best Sellers | Laptops, Tablets & Netbooks | Desktops & Servers | Computer Accessories & Peripherals | Computer Parts & (

Amd Opteron (sixteen-core) Model 6274

by AMD
Be the first to review this item | E-tike) (0)

Price: $792.99

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock--order soon.

4 new from $714.03

- g

-
. ‘:

s

'.g.’(

RN TG

Alenex 2012

64 core blade servers (S6K)
(shared memory)

amazon.com Hello. Sign in to get personalized recommendations. New customer? Start here.
7 Your Amazon.com | § ¥ Today's Deals | Gifts & Wish Lists | Gift Cards

Search

>omputers & Accessories Brands | Best Sellers ‘ Laptops, Tablets & Netbooks ‘ Desktops & Servers ‘ Computer Accessories & Peripherals ‘ Computer Parts & (

Amd Opteron (sixteen-core) Model 6274
by AMD i
Be the first to review this item | E-tike) (0)

price: $792.99 X 4 —

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock--order soon.

4 new from $714.03

Alenex 2012

1024 “cuda” cores

amazoncom Hello. Sign in to get personalized recommendations. New customer? Start here.
Your Amazon.com 4 ! Today's Deals @ Gifts & Wish Lists = Gift Cards

L 120 + Bl Electronics H

All Electronics Brands Best Sellers Audio & Home Theater Camera & Photo CarE

EVGA GeForce GTX 590 Classified .
3DVI/Mini-Display Port SLI Ready Lil
03G-P3-1596-AR

by EVGA

Price: $924.56

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock--order soon.

5 new from $749.99 2 used from $695.00

Alenex 2012

PCWorld » Phones

Recommend: ELike <113 [J 171 | +7 < 16 B 1« Email 44 Comments Print

Quad-Core Phones: What to Expect in
2012

Revolutionary a year ago, dual-core mobile processors are now standard; next,
chipmakers say, quad-core processors will support mobile multitasking comparable

to the performance of a desktop computer.

By Ginny Mies, PCWorld Dec 11,2011 8:30 pm

Alenex 2012 7

Different Architectures

Multicore (shared memory)
GPUs

Distributed memory

FPGAS

Different Programming Approaches

* transactions

e futures

* nested parallelism

* map-reduce
 CUDA/GPU programming
e data parallelism

e PRAM

* bulk synchronization

Different Programming Approaches

e threads

* message passing

» parallel I/0 models

e partitioned global address space
e coordination languages

e concurrent data structures

e events

But....

How well do these work on standard
problems?

How do they compare?
What kind of algorithms work best?
How easy are they to program?

Outline

* The challenge with parallel algorithms
> The problem based benchmark suite
* How they do on modern multiprocessors

Problem Based Benchmarks

* Define a set of benchmarks in terms of Input/
Output behavior on specific inputs, and use
them to compare solutions.

1] |0
\/ TR
ST < I~
[/ /) LA
7 [~ e i
f 1"‘/' - ol
>+
I

Alenex 2012 In put

13

Problem Based Benchmarks

* Judge based on:
— Performance and scalability
— Ability to reason about performance
— Quality of code
— Generality over inputs
— Platform independence
Some aspects can be judged qualitatively, others
aspects will be at the eye of the beholder.
Therefore making code public is very important.

The PBBS effort

Benchmarks with following characteristics
— Well known and understood
— Concisely described
— Implementable in under 1000 lines of code
— Broad representation of domains
— Correctness or quality of output easily measured
— Independent of machine type

Many Existing Benchmarks

But none we know of match the spec

* Code Based : SPEC, Da Capo, PassMark, Splash-2,
PARSEC, fluidMark

e Application Specific: Linpack, BioBench, BioParallel,
MediaBench, SATLIB, CineBench, MineBench, TCP,
ALPBench, Graph 500, DIMACS challenges

e Method Based: Lonestar

* Machine analysis: HPC challenge, Java Grande, NAS,
Green 500, Graph 500, P-Ray, fluidMark

Status

About 15 benchmarks defined with supporting
code

Sequential implementations
Multicore implementations
Will make public in February

Preliminary Benchmarks |
-

Sequences * Comparison Sorting
* Removing Duplicates
* Dictionary
Graphs * Breadth First Search
Graph Separators
* Minimum Spanning Tree
* Maximal Independent Set
Geometry/ * Delaunay Triangulation and Refinement
Graphics * Convex Hulls
* Ray Triangle Intersection (Ray Casting)

Micropolygon Rendering

Alenex 2012 18

Preliminary Benchmarks Il

Machine * All Nearest Neighbors

Learning Support Vector Machines
K-Means

Text * Suffix Arrays

Processing g4t Distance
String Search

Science * Nbody force calculations

Phylogenetic tree
Numerical * Sparse Matrix Vector Multiply

Sparse Linear Solve

Alenex 2012

Each Benchmark Consists of:

A precise specification of the problem
Specification of Input/Output file formats
A set of input generators.

A weighting on the inputs

Code for testing the results

Baseline sequential code

Baseline parallel code(s)

Example Input

Sorting:
— Random floats (uniform)
— Random floats (exponential bias)
— Almost sorted

— Strings generated from trigram probability and
randomly permuted

— Structures with float key and 3 additional fields

Outline

* The challenge with parallel algorithms
* The problem based benchmark suite

> How they do on modern multiprocessors
— Using 32-core Intel Nehalem
— What parallel algorithms work

Algorithmic Models

PRAM
BSP
Nested Parallelism with Work and Span

— Compose work by summing
— Compose span by taking the max

Parallel Cache Oblivious Model

— Count Sequential Cache misses
— Can be used to bound parallel cache misses

How do the problems do on
a modern multicore

32
28
24
20
16
12

WT1/T32
Tseq/T32

AN .
QSQ . (\% N\ Q} ,J’)Q' o\ ’b\\\ \ct;g \"’QJ N 3
SR R R R~ S AN R &
S F &S &R o
N\ @’b Q/’b Q O %Q:b
Q)K

24

Divide and Conquer

Sorting : Sample sort

Nearest neighbors : building quad-oct trees
Triangle-ray intersect : k-d trees

N-body simulation: Callahan-Kosaraju

Sorting : Sample Sort

Sort(A.)
Sort(A.) S
——>__ Sort(A.) .
m m
QOrT(Am))
m
sort b

A.
AL
—> A
Alll
m
Sample
Q.
Q.
S,
Divide
S using P

Alenex 2012

26

Sorting : Sample Sort

Send to |

buckets | E————

» Finally, sort buckets.

» Depth(n) = O(log?(n))

» Work(n) = O(n log n)

» Q4(n; M,B) = O((n/B)(logs)(n/B))

Alenex 2012

27

W T1/T32

" Tseq/T32

Alenex 2012

28

Sort Performance, More Detail
_MM

Cores

Uniform 1 15.8 1.06 4.22 .82 20.2
Exponential A1 10.8 .79 2.49 .53 13.8
Almost Sorted 1 3.28 1.11 1.76 27 5.67
Trigram Strings 2 58.2 4.63 8.6 1.05 30.8
Strings 2 82.5 7.08 28.4 1.76 49.3
Permuted

Structure 3 17.6 2.03 6.73 1.18 26.7
Average 36.4 3.24 10.3 97 28.0

All inputs are 100,000,000 long.
All code written run on Cilk++ (also tested in Cilk+)
All experiments on 32 core Nehalem (4 X x7560)

Alenex 2012 29

Speculative Execution

Several efficient sequential algorithms are greedy loops
that insert/process items one at a time, but with
dependences:

= Maximal independent Set (over vertices)
= Maximal Matching (over edges)

* Spanning Tree (over edges)

* Delaunay Triangulation (over points)

Maximal Independent Set

Sequential algorithm:

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 1OX X 5
o
2
o 1
X .
: %9
4 @ ® 6
% 3

Maximal Independent Set

Sequential algorithm:

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out

Very efficient: most edges not even visited, simple loops
About 7x faster than sorting m edges

Maximal Independent Set

Same algorithm: with parallel speculation

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 1OX X 5
o
2
o 1
X .
: %9
4 @ ® 6
% 3

Maximal Independent Set

same algorithm: with speculation on prefix

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 10

112]/314/5/6/7 8/9l10

Alenex 2012

34

Maximal Independent Set

same algorithm: with speculation on prefix

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 10

1123 1a/5]6 78010

Alenex 2012

35

Maximal Independent Set

same algorithm: with speculation on prefix

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 10

112/314/5/6/7]819l10

Alenex 2012

36

Maximal Independent Set

same algorithm: with speculation on prefix

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 10

11234 5067 819l10

Alenex 2012

37

Maximal Independent Set

same algorithm: with speculation on prefix

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 10,

11234 5067 819l10

Alenex 2012

38

MIS Parallel Code

struct MISStep {
bool reserve(int i) {
int d = V[1i].degree;
flag = IN;
for (int j = 0; j < d; j++) {
int ngh = V[i].Neighbors[]];
if (ngh < 1) {
if (Fl[ngh] == IN) { flag = OUT; return 1;}
else if (Fl[ngh] == LIVE) flag = LIVE; } }
return 1; }

bool commit(int i) { return (Fl[i] = flag) != LIVE;}};

void MIS(FlType* Fl, vertex* V, int n, int psize)
speculative for(MISStep(Fl, V), 0, n, psize);}

Maximal Independent Set

Costs:
— Span = O(log3 n)
Expected case over all initial permutations
— Work = O(m)
if prefix size = O(n/d

Determininistic :

max)

— result only depends on initial permutation of
vertices

W T1/T32

" Tseq/T32

Alenex 2012

41

Spanning Tree

Sequential algorithm:
for each (u,v) in E
u’ = find(u)
v/’ = find(v)
if (u’ != v'’) union(u’,v’)

Spanning Tree

struct STStep {
bool reserve(int i) {
u = F.find(E[i].u);
v = F.find(E[i].V);
if (u == v) return 0;
if (u > v) swap(u,v);
R[v].reserve(i); return 1;}

bool commit(int i) {
if (R[v].check(i)) { F.link(v, u); return 1;}

else return 0; }};

void ST(res* R, edge* E, int m, int n, int psize) {
disjointSet F(n);
speculative for(STStep(E, F, R), 0, m, psize);}

Delaunay Triangulation/Refinement

* Add points in parallel but detect conflicts

Alenex 2012 44

Dictionary
Using hashing:

— Based on generic hash and comparison

— Problem: representation can depend on ordering.
Also on which redundant element is kept.

— Solution: Use history independent hash table
based on linear probing...representation is
independent of order of insertion

— Use write-min on collision
6 /, 11 3 9 8 5

Alenex 2012

Breadth First Search (BFS)

Goal: generate the same BFS (spanning) tree as
the sequential Q based algorithm.

Breadth First Search (BFS)

Sequential algorithm:

Alenex 2012

47

Breadth First Search (BFS)

Another possible tree:

Alenex 2012

48

Breadth First Search (BFS)

Solution:
— Maintain Frontier and priority order it
— Use writeMin to choose winner.

Alenex 2012

49

Delaunay Triangulation/Refinement

* Incremental algorithm adds one point at a
time, but points can be added in parallel if

they don’t interact.
* The problem is that the output will depend on
the order they are added.

Delaunay Triangulation/Refinement

* Adding points deterministically

Alenex

Pa

Po

Py

Pt
Pz
M
P 1o
Q
013 P12

P1

2012

P2 Pa

Pes

Ps

P

51

Delaunay Triangulation/Refinement

* Adding points deterministically

P P2 P3

Alenex 2012 52

Delaunay Triangulation/Refinement

* Adding points deterministically

Alenex 2012 53

Performance on 32 Core Intel Nehalem

32
28
24
20
16
12

mT1/T32
" Tseq/T32

<
: >
R >
.o Q NG o S
\»Q\\o \Q%Q '5“\ R fo&& ® {\Q’QQO e"”&
& & T8 ¢

Some Conclusions from Experiments

* Multicores work quite well...but there are
some issues with memory bandwidth

* Most problems parallelize well.
* Cost models are reasonably accurate
* Parallel code does not need to be complicated

* Need a mix of parallelization techniques

Open Questions

How do the benchmarks do on other
machines....other models?

Are there better sequential implementations
Are there better parallel implementations

More benchmarks — perhaps ones that don’t
parallelize well (e.g. max flow?).

Back to the benchmarks

* Need for standardized “problem based”
penchmarks for comparing approaches.

Particularly important for parallel algorithms,
out also useful for sequential algorithmes.

* With adequate framework, should be possible

for anyone to submit new benchmarks and
solutions.

