Parallel Algorithms and
Big Data Fur Alle

Guy Blelloch,
and lots of others

Why Parallelism?

Hello. Sign in to get personalized recommendations. New customer? Start here
Your Amazon.com

amazoncom

4 ! Today's Deals = Gifts & Wish Lists = Gift Cards

Search

>omputers & Accessories Brands | Best Sellers | Laptops, Tablets & Netbooks | Desktops & Servers | Computer Accessories & Peripherals

Computer Parts & (

Amd Opteron (sixteen-core) Model 6274

by AMD
Be the first to review this item | E-tike) (0)

Price: $792.99

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock--order soon.

4 new from $714.03

-l
g |
gtk BE\C
s, wa
IC 2015 — -

s

64 core blade servers ($6K)
(shared memory)

amazon.com Hello. Sign in to get personalized recommendations. New customer? Start here.
il Your Amazon.com | i | Today's Deals | Gifts & Wish Lists | Gift Cards

Il Departments {4 Search

>omputers & Accessories Brands | Best Sellers ‘ Laptops, Tablets & Netbooks | Desktops & Servers ‘ Computer Accessories & Peripherals ‘ Computer Parts & (

Amd Opteron (sixteen-core) Model 6274

by AMD
Be the first to review this item | ELLike) (0)

price: $792.99 X 4 -

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock--order soon.

4 new from $714.03

4992 "cuda” cores

Nvidia Tesla K80 24GB GPU Accelerator passive cooling 2x Kepler
GK210 900-22080-0000-000

by NVIDIA
Yryryryrsr v 29 customerreviews | 11 answered questions

Price: $4,295.95 + $11.55 shipping

Note: Not eligible for Amazon Prime.

In Stock.

Ships from and sold by eServer PRO.

Estimated Delivery Date: Aug. 27 - Sept. 1 when you choose Expedited at checkout.

» Nvidia Tesla K80 GPU: 2x Kepler GK210

» Memory size (GDDRS) : 24GB (12GB per GPU)

» CUDA cores: 4992 (2496 per GPU)

» Memory bandwidth: 480 GB/sec (240 GB/sec per GPU)

» 2.91 Tflops double precision performance with NVIDIA GPU Boost - See more at:
http://lwww.nvidia.com/object/tesla-servers.html#sthash.IF5LVwFq.dpuf

4 new from $4,135.00

Upgrading to a Solid-State Drive?
Roll over image to zoom in Learn how to install an SSD with Amazon Tech Shorts. Learn more

IC 2015 4

-

-

Samsung Galaxy S IV to feature Exynos 28nm quad-core

processor?

Written by Andre Yoskowitz @ 01 Nov 2012 18:02

It has been a few weeks but there is a
new rumor regarding the upcoming
Samsung Galaxy S IV.

According to reports, Samsung will pack
next year's flagship device with its "Adonis"
Exynos processor, a quad-core ARM 15
beast that uses efficient 28nm tech.

Samsung is supposedly still testing the
application processor, but mass production
is scheduled for the Q1 2013 barring any
delays.

Forget Quad-Core: Intel Working on 48-
Core Smartphone and Tablet Processors

By Todd Haselton on October 31, 2012 in Hardware

IC 2015

UDOO : Quad Core

IC 2015 7

Parallel machines have replaced sequential
machines, but parallel algorithms have not yet
replaced sequential algorithms. Why?

It is not because they are not efficient or cost
effective.

PN N N VU NV W)WY

32 Cores off the shelf machine

32
28

WT1/T32
" Tseq/T32

24

20
16

12

Alenex zorz -

Parallel machines have replaced sequential
machines, but parallel algorithms have not yet
replaced sequential algorithms. Why?

More likely because Parallel Algorithms are
viewed as hard, messy, and theory does not
match practice.

Why are Sequential Algorithms
so Successful?

e exactly pred“untimes?
e are good for highly”\ing optimized codes?
* will impress our friends? Maybe

1Oct 15 KIT 2015

11

Why are Sequential Algorithms
so Successful?

. Well defined and simple cost model which is
“good enough” for asymptotic comparisons

. Simple pseudocode and small step to real code
that can be easily compiled and run to get
reasonably efficient code.

. Good for explaining core ideas, and why they
are useful

. Sequential algorithms are elegant

Quicksort (AHU78)

procedure QUICKSORT(S):
if S contains at most one element then return S
else
begin
choose an element a randomly from S;
let S;, S, and S; be the sequences of
elements in S less than, equal to,
and greater than a, respectively;
return (QUICKSORT(S,) followed by S,
followed by QUICKSORT(S;))
end

Page 13

My Focus

Parallel algorithms should be equally elegant,

simple, efficient in practice, and efficient in

theory.

* Our core algorithms-complexity course at
CMU taught to all Sophomores now uses
parallelism from the start.

Quicksort (Nesl)

function quicksort(S)
if (#S <= 1) then S
else let
a S[rand (#S)] ;
S1 = {e in S e < a};
S2 = {e in S e = a};
S3 {e in S e > a};
R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1l];

Page 15

Quicksort (nested parallelism)

* Analyze in terms or Work (W) and Depth (D)

Work = O(n Ig n)
Parallelism = W/D = O(n/ Ign)

' Time = W/P + D
Depth = O(lg? n) P = # processors

IC 2015 Page 16

Rest of Talk

* Sequential Iterative Algorithms
* Ligra: A graph processing framework

Sequential Iterative Algorithms

forifrom 1ton
do something;

Work from SPAA13, SODA15

1 Oct 15

KIT 2015

18

Sequential Iterative Algorithms

forifrom 1ton
ali] = bli] + 1;

s this parallel?

parallelFor i from 1 to n
ali] = bli] + 1;

IIIIIIII

Sequential Iterative Algorithms

forifrom1ton
swap(A[rand(i)],Ali])

s this parallel?

KIT 2015

Sequential Iterative Algorithms

forifrom1lton

* swap(A[rand(i)],Ali])

forifrom1ton
SearchTreelnsert(T,Ali])

S[1..n] =0

% |forifrom1ton

if for all uin N(V[i]), S[u]=0
then S[v] =1

KIT 2015

Sequential Iterative Algorithms

forifrom1tom
u = F.find(E[i].u)
v = F.find(E[i].v)
if (u !=v) F.union(u,v)

Others:
* List contraction
* Tree contraction
* Maximal Matching

1Oct 15 KIT 2015

Sequential Iterative Algorithms

Why do we care if parallel?
— Simple parallel code
— Perhaps fast algorithms
— Intellectual curiosity
— Determinism

How do we analyze?

Iteration Dependence Graph

(O (W)
Sequential iterative algorithm
2 &
foriin{0,...,n-1}
do something; ORO
O

* Each iterate is a vertex

* | 2 j means iterate i must execute before iterate |
* Can execute in parallel if respecting dependencies
* Graph is dependent on input data

Iteration Dependence Graph

(O (W)
Sequential iterative algorithm
2 &
forifrom1ton (3) (a)
do something;
O

1. what is depth of the graph?
2. can we easily detect dependences?

1Oct 15 KIT 2015

25

Random Permutation [Durstenfeld, Knuth]

forifromntol
H[i] = rand(i)
forifromntol
swap(A[H(i)],Ali])

lterate 0 1 2 3 4 5 6 7
H= 0 0 1 3 1 2 3 1
A = d b

UL

10Oct 15 KIT 2015 26

s this parallel?

lterate 0 1 2 3 4 5 6 7
H= 0 0 1 3 1 2 3 1
A= g h

VL VSV

10Oct 15 KIT 2015

27

s this parallel?

lterate 0 1 2 3 4 5 6 7
H= 0 0 1 3 1 2 3 1
A= a b C d e f g h

A U

* “Swap chains” have sequential dependence

10Oct 15 KIT 2015

s this parallel?

lterate 1 2 3 4 5 6 7
H= 0 1 3 1 2 3 1
A= a b C d e f g h

e “Swap chains” have sequential dependence

* Each location that is the target of multiple
swaps has sequential dependence

* Can execute multiple iterates in parallel as
long as dependencies are respected

1Oct 15 KIT 2015

Random Permutation Iteration Depth

lterate

H =
A =

0 1 2 3 4 5 6 7
0 0 1 3 1 2 3 1
a b C d e f g h

e

Dominance Forest

Dependence Forest

Linked Dependence Tree

10Oct 15

KIT 2015

30

Random Permutation Iteration Depth

lterate 0 1 2 3 4 5 6 7 8
= 0 0 1 3 1 2 3 1 ?
= a b C d e f g h i

= Each value of H[8] corresponds to
a unique location in binary tree

= All possible locations equally
likely

= Corresponds to construction of a
random binary search tree!

10Oct 15 KIT 2015 31

lteration Depth

Height of a random binary search tree on n
nodes is B(log n) w.h.p. [Devroye ‘86]

Therefore, iteration depth of random
permutation is O(log n) w.h.p.

Can also show that linear work, even if every
node tries on every step

Not best: O(log* n) depth w.h.p. [Hagerup ‘91]

1 Oct 15

Detecting Dependences

forifrom1ton
H[i] = rand(i)
parallelForifrom 1ton

R[H(i)] =i; R[i] = i; &= Priority write

if R[H(i)] == i and R[i] ==
then swap(A[H(i)],A[i])
else “try again”

KIT 2015

33

Performance

Times for random permutation on 1 billion elements

1000 ¢ | | | | T E
D -]
o) | i
c L 4
3
@ 100 e E
L N]
o) - T .
£ - T]
> 10 T 4
E E _______________________________ E
S ~ parallelRandPerm ------------ i
o - serialRandPerm 1

1 | | | | | |
1 2 4 8 16 32 40

Number of threads

3x slower on 1 core
Ox faster on 40 cores

Maximal Independent Set

Sequential algorithm:

for i in 1 ton : S[i] = Undecided

for 1 in 1 to n
if for all j in N(V[i]), v < u, S[]J] = Out
then S[]j] = In
else S[J] = Out

1Oct 15 KIT2015

Maximal Independent Set

Sequential algorithm:

for i in 1 ton : S[i] = Undecided

for i in 1 to n

if for all j in N(V[i]), v < u, S[]J] = Out
then S[]j] = In
else S[J] = Out

Very efficient: most edges not even visited, simple loops
About 7x faster than sorting m edges

Maximal Independent Set

Same algorithm: with parallel speculation
for i in 1 ton : S[i] = Undecided
for 1 in 1 to n
if for all j in N(V[i]), v < u, S[]J] = Out
then S[]j] = In

else S[J] = Out 10

1Oct 15 KITZ015

Iteration Depth/Performance

For random ordering of vertices: O(log? n)
— Non trivial, for arbitrary degree
— O(log n) for constant degree

Work is O(m) if using prefixes
Dependences easy to detect.

12x speedup on 40 cores over sequential
algorithm

MIS Parallel Code

struct MISStep {
bool reserve(int i) {
int d = V[i].degree;
flag = IN;
for (int j = 0; j < d; Jj++) {
int ngh = V[i].Neighbors[j];
if (ngh < i) {
if (Fl[ngh] == IN) { flag = OUT; return 1;}
else if (Fl[ngh] == LIVE) flag = LIVE; } }
return 1; }

bool commit(int i) { return (Fl[i] = flag) != LIVE;}};

void MIS(FlType* Fl, vertex* V, int n, int psize)
speculative for (MISStep(Fl, V), 0, n, psize);}

Maximal Independent Set

Costs:

— Span = O(log3 n)
Expected case over all initial permutations
— Work =0(m)
if prefix size = O(n/d

max)

Determininistic :

— result only depends on initial permutation of
vertices

Part 2: Ligra

A Graph Processing Framework
— For shared memory
— Best for frontier-based algorithms
— Space and Time efficient
— Programming efficiency
— Asymptotic bounds can be analyzed

Library of Congres: Country
Studias

How Salf Works
‘Acromym Finder
n e CatlogBarlebycoms Sk

[octionary.com) Element of Style (1918)
g ,,.,[.
< s b wesel N LR ks e
“ . C T
. (@ \ —

ka,ﬂmxh o

Viahingon oy MSNEC.
s Tadsy Gosgle Tmsge Seareh)

¥ahoo Newstewt 3, Anghes Times

Tesi2henln 25 Homsgsge T o e
alcome o BaseZD Oh o Local Guide, Ohia. Hello : Welcome:
Project - Free Software. Bk Yagved "Google News;

e e o o ST v ﬂt-;*;,gwf e
and GFOL - GNU Project- ol New Vork post il Blogger: 104

(Telegrap! eoh Hoe Page -
avler

sy

(The 014 Fmess Alnansel Pedis

(TR o ene..."“'r".:e‘
lonGNUPages " "Uin (6SP)

- e
(mumm“ I:jéf,ﬁﬁﬁ crestve conmens e
T ——

Softure Foundstion (FSF)
etk - omem o 0
Tely Paper Honey INDEX)
[Singapore Tavelsnd ot
Gude

(Aboutmedi Homepage

J—a—w....x oy i e O ey ars G vl

Internet Time.

TWeather - Travel - History la 5u

! Infoportall o e

i
- o Gt
st iR e e i
i vialcome to ikt = Tafoportsl The Source Tof 5 onte
. At apr
s vt ; s
i ener el .
p B oo
R ey
e - (T e AP
g ot [b et et oy
il ree Docomentation Licanse) fe_ VIKIpEdI3ped Ha(FSF). GNU Project | o B Acesssbil
w‘,u by o Lz P 25 (FSE). i st Bogeco ¥
oot i e sl s L1c:
l..lupmzl—,..]j:_uml' Anfopor —— 7 ThefreeSoft
gty
st A7 : s e
LY
ol [
“Kantaklinsen T 10/ 1
Informationen 20 K afsrgE ot
Bac
Jisfopertal ‘Welcome to SUSE LINUX)

4 Python Language Websice)
Klingeliifae

T

Heveeas) (The GINP)

KIT 2015

Breadth-first Search (BFS)

 Compute a BFS tree rooted at source r containing all
vertices reachable from r

Frontier r |
cr

T~/
<7
@&
Q‘

- Can process each frontier in parallel

| o scRace conditions, load balancing KIT 2015

BFS Abstractly: Frontier Based

Operate on a subset of vertices

Map computation over subset of edges in parallel
Return new subset of vertices

(Map computation over subset of vertices in parallel)

BFS visits every vertext once, but in general can visit many
times. Synchronous.

BN e

Breadth-first search Bellman-Ford shortest paths
Betweenness centrality Graph eccentricity estimation
Connected components PageRank

Delta stepping Diameter estimation

Can we build an abstraction for these types of algorithms?

Ligra

Graph
- Operate on a subset of vertices <— VertexSubset
- Map computation over subset of edges in parallel }
and return new subset of vertices EdgeMap
- (Map computation over subset of vertices in parallel) Y

Other graph processing frameworks: Pregel/Giraph,
GraphlLab, Pegasus, Knowledge Discovery Toolbox, GraphChi,
Parallel BGL, and many others...

1Oct 15 44 KIT 2015

Ligra Framework

&

}

’e VertexSubset
bool f(v){
data[v] = data[v] + 1;
e return (data[v] == 1);

VertexSubset

1Oct 15 45 KIT 2015

Ligra Framework

VertexSubset @ @ @

bool update(u,v){...} - EdgeMap - bool cond(v){...}

vertexsubset | (1) (&) ()) ()

Why edge based?
e Parallel over the edges

» Sparse/dense (discussed later)

10Oct 15 46 KIT 2015

Breadth-first Search in Ligra

parents = {-1, ..., -1}; //-1 indicates “unvisited”

procedure UPDATE(s, d):
return compare_and_swap(parents[d], -1, s);

procedure COND(i):
return parents[i] == -1; //checks if “unvisited”

procedure BFS(G, r): frontier

parents[r] =r;
frontier = {r}; //VertexSubset

while (size(frontier) > 0):
frontier = EDGEMAP(G, frontier, UPDATE, COND);

1Oct 15 47 KIT 2015

EdgeMap: Sparse and Dense

else:

procedure EDGEMAP(G, frontier, Update, Cond):
if (|frontier| + sum of out-degrees > threshold) then:
return EDGEMAP_DENSE(G, frontier, Update, Cond);

return EDGEMAP_SPARSE(G, frontier, Update, Cond);

" 4

Loop through outgoing edges of
frontier vertices in parallel

Loop through incoming edges of
“unexplored” vertices (in parallel),
breaking early if possible

* First used by Beemer for BFS, but Ligra shows that useful for a

wide variety of algorithms

Frontier Size + Num. Outgoing Edges

Frontier Size + Num. Outgoing Edges

1e+09 ¢
le+08 F—
1e+07 E
1e+06 F
100000 E
10000 E

BES on rMat24

=l T T T T

3 Threshold -+
L1 1 Il 1 1 1 | |

2 4 6 8 10 12 14 16

Iteration number

(a) BES

Connected Components on rMat24

T T T T T —

= oome 3

o g 3

F Connected Components \'\-\\ 3

3 Threshold - e
1 1 1 Il 1 1 1
2 - 6 8 10 12

Iteration number

(d) Connected Components

10Oct 15

Frontier Plots

Frontier Size + Num. Outgoing Edges
:

1e+09
1e+08
le+07
le+06
100000
10000
1000
100

Frontier Size + Num. Outgoing Edges

Betweenness Centrality (forward phase) on rMat24

T T T T T T

=

T T T T

N

Betweenness Centrality ——

T

Threshold -+~
1 1 1

1

2 4 6 8 10 12 14 16 18
Iteration number
(b) Betweenness Centrality
PageRank-Delta on rMat24
E T T T T T 3
i N j
[e: “'_ =
[PageRank-Delta ‘
i Threshold -]
1] 1 1 1
5 10 15 20 25 30

Iteration number

(e) PageRank-Delta

49

Frontier Size + Num. Outgoing Edges

Frontier Size + Num. Outgoing Edges

le+09
le+08
le+07
le+06
100000
10000
1000

10

le+08
le+07
le+06

Radii Estimation on rMat24

T T T

Iteration number

(f) Bellman-Ford

KIT 2015

E o/ 3
E /'/ 4
-/ |
4 3
F Radii Estimation e E
F Threshold - ~g
C 1 1 | L2775
5 10 15 20
Iteration number
(c) Radii Estimation
Bellman-Ford on rMat24
E T = T T 3
: / . ;
o B ;
E/ s T
g, Bellman-Ford E
F Threshold - ™3
E 1 I | | b
5 10 15 20 25

40-core running time (seconds)

Benefit of Sparse/Dense Traversal

Twitter graph (41M vertices, 1.5B edges)

10
9
8
7 W Sparse
6
5
4
3 ® Sparse/Den
5 se
1 -
0 -

BFS Betweenness Connected Eccentricity
Centrality Components Estimation

1Oct 15 50 KIT 2015

Ligra Performance

Twitter graph (41M vertices, 1.5B edges)
w244 S€C
(64 x 32-cores) onds

(o))}

-cores)

92}
|

B Graphlab

I

M Ligra (40-core machine)

Running time (seconds)
w

2 —
17 M Hand-written Cilk/OpenMP
0 - (40-core machine)
Page Rank (1 BFS Connected
iteration) Components

« Ligra performance close to hand-written code

e Faster than distributed-memory on per-core basis

e Several shared-memory graph processing systems subsequently
developed: Galois [SOSP “13], X-stream [SOSP “13], PRISM [SPAA “14],
1J?c01|9/mer [PPOPP 115], Ringo [S|G|V|QD {15] KIT 2015

Space relative to Ligra 40-core time relative to Ligra
1.4

1.3

1.2

Wligra 1.1
1 -

0.9 1

® Ligra+ 0.8 1

0.7 -
0.6 -
© & & & & S
&K Q,QQ@ Q3 e 8 Qf(o
\@@ O<QQ Q(bg \\((\(b
o S of

* Cost of decoding on-the-fly?

* Memory bottleneck a bigger issue as graph algorithms
are memory-bound

1Oct 15 52 KIT 2015

