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Abstract. Process analyses are becoming more and more standard in research on computer-supported 
collaborative learning. This paper presents the rational as well as results of an evaluation of a tool called 
TagHelper, designed for streamlining the process of multi-dimensional analysis of the collaborative learning 
process. In comparison with a hand-coded corpus coded with a 7 dimensional coding scheme, TagHelper is able 
to achieve an acceptable level of agreement (Cohen's Kappa of .7 or more) along 6 out of 7 of the dimensions 
when we commit only to the portion of the corpus where the predictor has the highest certainty. In 5 of those 
cases, the percentage of the corpus where the predictor is confident enough to commit a code is at least 88% of 
the corpus. Consequences for theory-building with respect to automatic corpus analysis are formulated. Potential 
applications as a support tool for process analyses, as real-time support for facilitators of on-line discussions, 
and for the development of more adaptive instructional support for computer-supported collaboration are 
discussed. 
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PROBLEM BACKGROUND 
Increasingly, research in CSCL addresses quantitative process analysis through multi-dimensional coding 

schemes (e.g., Fischer, Bruhn, Gräsel, & Mandl, 2002; Lally & De Laat, 2002). The process of collaboration is 
seen as a mediator between the computer-supported instructional settings and cognitive processes. Often only 
detailed process analyses reveal plausible interpretations of the effects of CSCL environments (Weinberger, 
2003). Conducting detailed process analyses involves applying categorical coding schemes along multiple 
dimensions, each of which indicate something different about the text segment’s function within the 
collaborative discourse. For example, Lally and De Laat (2002) code for activities along six dimensions 
including cognitive, meta-cognitive, affective, design, discourse maintenance, and direct instruction. Multi-
dimensional coding schemes like these encode much more information than frameworks in which each text 
segment is coded with a single category.  However, while single dimensional analyses can be expedited by 
requiring participants to select contribution openers that are indicative of contribution function, this is not 
practical with multi-dimensional coding. Furthermore, applying multi-dimensional categorical coding schemes 
by hand is extremely time intensive for three reasons. First, developing the coding schemes themselves in such a 
way that human coders can apply them reliably is a lengthy process requiring much iteration. Second, 
sophisticated coding schemes may require a high skill level and intensive training before coders can apply a 
well-designed coding scheme with high reliability. Thus, training time for learning a new coding scheme is 
another source of time expense involved in this type of research. Finally, applying coding schemes as part of the 
analysis process itself is a tedious and time consuming process. Surprisingly, although structured editors often 
support this work, other times it is done by pen and paper. We therefore conducted a study to find out the degree 
to which automatic classification technology can be successfully used to automate the challenging task of multi-
dimensional quantitative process analysis.  

In this paper we present results of an evaluation study of the TagHelper technology for supporting and 
streamlining the process of multi-dimensional analysis of the collaborative learning process. We begin by 
contextualizing our technological explorations within a high profile CSCL environment. We then review related 
work and explain how our work is unique and complementary to previous automatic analysis work within the 
CSCL community. We then describe our exploration process and the details of our evaluation. We conclude 
with discussion and current directions. 



MOTIVATION 
The main question addressed in this paper is the extent to which automatic classification technology can be used 
to automate the task of multi-dimensional quantitative process analysis. Addressing this question, we first 
present a promising approach to this challenging task - TagHelper technology. Then we report on major results 
of an evaluation study of TagHelper in the context of a high profile CSCL project. In this project, a multi-
dimensional coding scheme is applied to massive amounts of discourse data in order to examine the process of 
collaboration under different instructional conditions.  

Within the context of this project, a series of experimental studies were conducted that aimed to address the 
question of how computer-supported collaboration scripts could foster argumentative knowledge construction in 
online discussions. Argumentative knowledge construction is based on the perspective of cognitive elaboration, 
the idea that learners acquire knowledge through argumentation with one or more learning partners (Baker, 
2003; Dillenbourg, 2004). Computer-supported collaboration scripts apply on specific dimensions of 
argumentative knowledge construction, e.g., a script for argument construction could support learners to ground 
and warrant their claims (Kollar, Fischer, & Hesse, 2003; Stegmann, Weinberger, Fischer, & Mandl, 2004) or a 
social collaboration script can support conflict orientation (Weinberger, 2003). These and other computer-
supported collaboration scripts were varied experimentally (see Stegmann et al., 2004; Weinberger, 2003; 
Weinberger, Fischer, & Mandl, submitted for more detailed process analyses).  These studies were conducted in 
three waves. The first wave took place in the winter of 2000/2001, the second in the winter of 2002/2003, and 
the third in the winter of 2003/2004. The complete process analysis comprises about 200 discussions of about 
600 participants with altogether more than 17,000 coded text segments. Trained coders categorized each 
segment using a multi-dimensional coding scheme (see below). 

Three groups of about six coders, one group for each wave, were trained to apply the coding scheme to the 
collected corpus. One and the same trainer advised the analysts during all of the three waves. Each coder 
received a booklet with a detailed description of the coding scheme including all coding rules and examples for 
each category to ensure coding reliability. The training consisted of a combination of group meetings, dyadic 
practice, and individual practice. At regular intervals the reliability of the coding was computed by means of 
Cohen’s Kappa.  Discrepancies were then discussed and resolved. Between the training and the coding itself, 
one quarter of the total duration of the research project was used for the coding of collaborative processes. In 
particular, the training for each group of coders requires about several weeks, or about 500 working hours 
completely dedicated to the training process. The coding itself took about one month per wave, or about 1200 
working hours.  

Obviously a fully-automatic or even semi-automatic system, which could support coding of natural language 
corpus data, e.g., from computer-supported text-based communication, would facilitate and potentially improve 
quantitative process analyses in multiple ways. First of all, the number of working hours could be dramatically 
reduced for both training and coding. The role of the analysts could be reduced to simply checking the automatic 
coding and making corrections if necessary. Thus, the level of expertise of the coders could potentially be 
reduced, which would further reduce the cost. The coding itself would be faster.  As learning processes could be 
analyzed promptly, even on the fly, facilitators could quickly identify specific deficits of collaborative learners 
as they are interacting and offer specific instructional support at key points. 

OVERVIEW OF EXISTING TECHNOLOGY 
Richards (1999), Soller & Lesgold (2000) and Goodman et al. (to appear) present work on automatically 

modeling the process of collaborative learning by detecting sequences of speech acts that indicate either success 
or failure in the collaborative process. The automatic analysis presented in this previous CSCL work builds upon 
an already completed categorical analysis of the text. These analyses can be thought of as meta-analyses with 
respect to the type of analysis we speak of. In contrast, the analysis that we present in this paper is based on the 
raw text contributed by the participants in the collaborative learning scenarios. What is different about our 
approach is that we start with the raw text and detect features within the text itself that are diagnostic of different 
local aspects of the collaboration. Thus, rather than presenting a competing approach, we present an approach 
that is complementary to that presented in prior work. 

Currently there is a wide range of corpus analysis tools used to support corpus analysis work either at a very 
low level (e.g., word frequency statistics, collocational analyses, etc.) or at a high level (e.g., exploratory 
sequential data analysis once a corpus has been coded with a categorical coding scheme), but no tools to support 
the time consuming task of doing the categorical behavioral coding or content analysis, although much 
applicable technology developed in the language technologies community is already in existence. Content 
analysis includes both categorical analyses as well as more detailed, bottom-up analyses where spontaneous, 
informal observations about verbal behavior are recorded. In this paper we address the problem of streamlining 
the categorical type of protocol analysis.  



 
Figure 1. Abbreviated overview of some existing corpus analysis tools and technology 

 
Currently, the only existing tools to support categorical content analysis are structured editors similar to Nb 

(Flammia & Zue, 1995) and MATE (McKelvie et al., 2000) or a wide variety of XML editors. We are exploring 
the application of state-of-the-art dialogue act tagging and text classification technology to enable fully and 
semi-automatic coding.  

Applying Language Technology to a Previously Unexplored Application 
Applying a categorical coding scheme can be thought of as a text classification problem where a computer 

decides which code to assign to a text based on a model that it has built based on regularities found from 
examining “training examples” that were coded by hand and provided to it. A number of such statistical 
classification and machine learning techniques have been applied to text categorization, including regression 
models (Yang & Pedersen, 1997), nearest neighbor classifiers (Yang & Pedersen, 1997), decision trees (Lewis 
& Ringuette), Bayesian classifiers (Dumais et al., 1998), Support Vector Machines (Joachims, 1998), rule 
learning algorithms (Cohen & Singer, 1996), relevance feedback (Rocchio, 1971), voted classification (Weiss et 
al., 1999), and neural networks (Wiener et al., 1993).  While these approaches are different in many technical 
respects that are beyond the scope of this paper to describe, they are all used in the same way. A wide range of 
such machine learning algorithms are available in the Minorthird text-learning toolkit (Cohen et al, 2004), which 
we use as a resource for the work reported here. Minorthird is a software package that includes a wide range of 
configurable machine learning algorithms that can be used for text classification experimentation. 

Within the computational linguistics community, a very common type of categorical coding scheme applied 
to text is that of speech acts or dialogue acts (Chu-Caroll, 1998; Reithinger & Klessen, 1997). Classifying 
spoken utterances into dialogue acts or speech acts has been a common way of characterizing utterance function 
since the 1960s.  We argue that the same basic technology has the potential to achieve a much broader impact by 
becoming more accessible outside the computational linguistics community as well as using a broader range of 
coding schemes.  One example of a community where this technology could have a major impact is the CSCL 
research community where large quantities of natural language data are being collected and analyzed 
painstakingly by hand.  

Unfortunately, existing text classification technology is largely inaccessible to CSCL researchers who need 
and want semi-automatic tagging support because they do not have the background to apply it effectively to 
their analysis tasks.  They are largely unaware of the wide range of alternative text classification techniques that 
are available, and furthermore, they do not possess the technical skills required to predict which available 
approaches are likely to be most appropriate for their task or to tune an appropriate technique once selected.   

Bridging the Gap Between Language Technology and CSCL Research 
The goal of our current work is to bridge the gap found in existing corpus analysis tools used by CSCL 

researchers for analyzing corpus data.  In this paper we focus on the highly accurate text classification 
technology that enables some categorical corpus analysis work to be done totally automatically. In other work 
we have developed and tested an easy-to-use adaptive coding interface (Rosé et al., submitted). The easy-to-use 
TagHelper interface displays its automatic predictions about the analysis of each span of text to the analyst in 
the form of an adaptive menu-based interface.  The system’s predictions are visible to the analyst as he scans the 
page and modifies only the codes that he disagrees with by making an alternative selection. 



Rosé et al. (submitted) have evaluated TagHelper’s novel adaptive interface for facilitating content analysis 
of corpus data in comparison with an otherwise identical non-adaptive interface in terms of speed, validity, and 
reliability of coding.  Since deciding to disagree with a predicted code and then choosing a new code takes 
longer than selecting a code from scratch, the advantage in coding speed for automatic predictions depends upon 
the accuracy with which predictions can be made. In order to break even with speed, a prediction accuracy of at 
least 50% is required. 50% prediction accuracy leads to an increase in reliability and validity of coding.  In an 
evaluation with novice analysts in (Rosé et al., submitted), the top 30% of novice coders working with the 
automatic predictions achieved an average pairwise Kappa agreement measure of .71 in comparison with .54 in 
the unsupported coding condition (P < .05).  Novice agreement with a gold standard was marginally higher (P < 
.1) across the whole population of coders. A gold standard corpus is a corpus that has been coded with a coding 
scheme, and the codes have been verified to be reliable. Thus, using automatic coding support, acceptable 
reliability and validity of coding can be achieved with novice coders using very little training. TagHelper can be 
quickly adapted for a new coding scheme and domain by providing only a small corpus of example texts 
encoded in XML and a simple specification of the structure of the coding scheme.   

METHOD 
In this paper, we examine the feasibility of TagHelper for supporting fully automatic analyses of the 

processes of argumentative collaborative knowledge construction.  In this work, a human was required to 
optimize the selection and tuning of an appropriate machine learning algorithm.  However, once a model was 
trained on the data using the selected technique, TagHelper was used to code data in a fully-automatic way. 

Coding scheme for argumentative knowledge construction 
In this section we describe a coding scheme that was applied in a project with more than 600 students of 
Educational Science at the Ludwig-Maximillians university of Munich, who participated in groups of three in 
multiple studies. Students in all experimental conditions had to work together in applying theoretical concepts to 
three case problems and jointly prepare an analysis for each case by communicating via web-based discussion 
boards. They were asked to discuss the three cases against the background of attribution theory (Weiner, 1985) 
and to jointly compose at least one final analysis for each case, i.e. they usually drafted initial analyses, 
discussed them, and wrote a final analysis. The cases portrayed typical attribution problems of university 
students, e.g., a student interpreting his failure on an important test. All groups collaborated in three discussion 
boards – one for each case. The discussion boards provided a main page with an overview of all message 
headers, which were graphically represented in a discussion thread structure. Learners could read the full text of 
all messages, reply to the messages, or compose and post new messages. In the replies, the original messages 
were quoted with ">" as in standard newsreaders and e-mail programs. 

The purpose of our analysis was to model the process of argumentative knowledge construction.  
Argumentative knowledge construction must be evaluated on multiple process dimensions (Weinberger & 
Fischer, in press). These dimensions are derived from different theoretical approaches and focus on different 
concepts of argumentative knowledge construction. The main concepts are (1) epistemic activity, formal quality 
of argumentation, which includes (2) microlevel and (3) macrolevel, and (4) social modes of interaction (with a 
sub-dimension for (5) reaction). In accordance with the theoretical approach, the number of categories differs 
between dimensions from 2 (e.g., reaction) to 35 (e.g., epistemic). For experimental reasons, there is also a (6) 
treatment check dimension and a (7) quoted dimension. 

On the (1) epistemic dimension (see table 1), argumentative knowledge construction processes are to be 
analyzed with respect to the questions of how learners work on the learning task, e.g., what content they are 
referring to or applying. One important distinction on the epistemic process dimension is to what extent learners 
work on the task or digress off task (Cohen, 1994). In order to solve a problem, learners may need to construct a 
problem space, construct a conceptual space, and construct relations between the conceptual and problem 
spaces. With the construction of the problem space, learners are to acquire an understanding of the problem they 
are supposed to work on. Therefore, learners select and relate individual components of the problem case 
information. The construction of the conceptual space serves to communicate an understanding of a theory. 
Learners connect individual theoretical concepts or distinguish them from another. The construction of relations 
between conceptual and problem space indicates to what extent learners are able to apply theoretical concepts 
adequately. In particular, learners may apply theoretical concepts that are to be learned, apply concepts 
stemming from prior knowledge or also apply wrong concepts.  

On the formal dimension of argumentation, the processes of argumentative knowledge construction can be 
examined on both a micro- and a macrolevel of representation that indicate how learners construct single 
arguments and how learners connect arguments into sequences. In contrast to the epistemic dimension, the 
formal dimension of argumentative knowledge construction is not as concerned with what learners are 
contributing, but how they construct arguments and argumentation sequences in order to make their point. 

 



 
Table 1: Categories of epistemic dimension of argumentative knowledge construction 
Category Description 
Construction of 
problem space  

Retelling or rephrasing of the problem that the learners work on. Learners relate case 
information to case information. Aims to foster understanding of particularities of the 
problem.  

Construction of 
conceptual space  

Retelling or rephrasing the theory learners are supposed to apply. Learners relate 
theoretical concepts and explain theoretical principles to foster understanding of a 
theory.  

Construction of 
adequate relations 
between conceptual 
and problem space  

Applying the relevant theoretical concepts adequately to solve a problem. Learners 
relate theoretical concepts to case information. A number of concept-case-relations 
may need to be constructed to adequately solve a complex problem (ca. 30 concept-
case-relations for each case problem of the Munich study)  

Construction of 
inadequate relations 
between conceptual 
and problem space 

Applying theoretical concepts inadequately to the case problem. Learners may select 
the wrong concepts or may not apply the concepts according to the principles of the 
given theory.  

Construction of 
relations between 
prior knowledge and 
problem space 

Applying concepts that stem from prior knowledge rather than the new theoretical 
concepts that are to be learned.  

Non-epistemic 
activities 

Digressing off-topic.  

On the (2) microlevel, an individual argument consists of a claim, which can be grounded with a warrant 
and/or specified by a qualifier (Toulmin, 1958; Toulmin, Rieke, & Janik, 1984). The warrant contains a 
justification for the claim based on grounds. The qualifier limits the validity of the statement and can be 
sometimes represented implicitly in the structure of an argument, e.g., indicated by “perhaps”. We regard the 
frequent use of warrants and qualifiers in an argument as an indicator for high argumentative skill (see table 2).  

On the (3) macrolevel, argumentation sequences can be examined with respect to how learners connect 
single arguments and create an argumentation pattern together (Leitão, 2000). The analysis typically focuses on 
the rhetorical function of individual expressions in a sequence of contributions. Central concepts are argument, 
counterargument and reply/integration (see table 3).  
 
Table 2: Categories of microlevel of formal dimension of argumentative knowledge construction  
Category Explanation 
Simple claim Expressing a claim without qualifying the claim or providing grounds that warrant the 

claim. 
Qualified claim Expressing a claim without giving grounds, but limiting the validity of the claim 

(with qualifier). 
Grounded claim Explaining a claim without limiting its validity, but providing grounds that warrant 

the claim. 
Grounded and 
qualified claim 

Expressing a claim and grounds that warrant the claim as well as limiting the validity 
of the claim. 

 
Table 3: Categories of macrolevel of formal dimension of argumentative knowledge construction 
Category Description 
Argument  Statement put forward in favor of a specific proposition. 
Counterargument  An argument opposing a preceding argument, favoring an opposite proposition. 
Integration (reply) Statement that aims to balance a preceding argument and counterargument. 
Question  
(non argumentative) 

Seeking information. 

Planning  
(non argumentative) 

Coordinating technical moves within the CSCL environment.. 

Evaluation  
(non argumentative) 

Assessing the value of arguments or the group work. 

 
The (4) social modes dimension (see table 4) indicates to what degree or in what ways learners refer to the 

contributions of their learning partners. On this dimension, a number of social modes of co-construction and 



their relations to individual knowledge construction have been identified (Fischer et al., 2002). Learners may 
explicate their knowledge, e.g., by contributing a new analysis of a problem case. Externalizations are discourse 
moves that neither refer to preceding contributions of peers nor aim to elicit information from the learning 
partners. Learners may use the learning partner as resource and seek information (elicitation) in discourse from 
the learning partners in order to solve a problem case. Learners need to build at least a minimum consensus 
regarding the learning task in a process of negotiation in order to improve collaboration (Clark & Brennan, 
1991). There are different styles of reaching consensus, however. Quick consensus building means that learners 
accept the contributions of their learning partners not in terms of taking over his or her perspective, but in order 
to be able to continue the discourse (Clark & Brennan, 1991). Recent approaches towards collaborative learning 
stress that collaborative learners may eventually establish and maintain shared conceptions of a subject matter 
(integration-oriented consensus building). Learners approximate and integrate each other’s perspective, 
synthesize their ideas, and jointly try to make sense of a task (Nastasi & Clements, 1992). Conflict-oriented 
consensus building has been considered an important component in the socio-cognitive perspective upon 
collaborative learning (Doise & Mugny, 1984; Teasley, 1997). By facing a critique, learners may be pushed to 
test multiple perspectives or find more and better arguments for their positions (Chan, Burtis, & Bereiter, 1997).  

In addition, any segment following an elicitation from another learning partner was coded on an explicit 
dichotomous (5) sub-dimension of reaction (no reaction vs. reaction). If a learner responded to an elicitation, 
e.g., by answering to a question, this response has been coded as reaction 

 
Table 4: Categories of social modes dimension of argumentative knowledge construction (SOC) 
Category Description 
Externalisation  Articulating thoughts to the group. 
Elicitation Questioning the learning partner or provoking a reaction from the learning partner. 
Quick consensus 
building 

Accepting the contributions of the learning partners in order to move on with the task.

Integration-oriented 
consensus building 

Taking over, integrating and applying the perspectives of the learning partners. 

Conflict-oriented 
consensus building 

Disagreeing, modifying or replacing the perspectives of the learning partners. 

The (6) treatment check dimension indicates how learners interact with the instructional design. The 
computer-supported collaboration script approach is often implemented with the help of prompts. These prompts 
support collaboration of learners and become part of the corpus data. This dimension considers how learners 
make use of prompts. Learners could use the prompts in the intended manner, e.g., write a counterargument 
when they are asked to write a counterargument. But learners could also ignore the prompt, i.e., write nothing in 
response to the prompt. If learners are prompted to write a counterargument but wrote an argument, it would be 
an unintended use of prompt. Obviously, this dimension could only be applied if prompts are part of the 
instruction. Prompts within the corpus data will be only analyzed on this single dimension. 
 
Table 5: Categories of treatment check dimension of argumentative knowledge construction  
Category Description 
Intended use of 
prompt 

Reacting to this prompt like intended. 

Ignoring prompt Ignoring prompt. The action isn’t connected with the prompt.  
Unintended use of 
prompt 

Using prompt, but not like intended. 

 
The dichotomous (7) quoted dimension is a primary technical dimension (not quoted vs. quoted). As already 
mentioned before, in the replies, the original messages were quoted with ">" as in standard newsreaders and e-
mail programs. Quoted text within the corpus data then will be only analyzed on this single dimension. 

Experimental Process 
We used the Minorthird text-learning toolkit (Cohen et al, 2004), which contains a large collection of 
configurable machine learning algorithms that can be applied to text classification tasks, as a framework in 
which to conduct our research. Because Minorthird includes a wide range of text classification algorithms that 
all operate over text coded in the same format, it is a convenient test environment for experimentation. We used 
as a gold-standard corpus as set of 1255 separate text segments coded with the multi-dimensional coding scheme 
described in the previous section. As described above, the coding scheme is composed of 7 dimensions, named 
epistemic, microlevel of argumentation, macrolevel of argumentation, social modes, reaction, treatment check, 
and quoted respectively. Each of these dimensions has a set of 2 or more categories associated with it. For 



example, macrolevel of argumentation has 7 (six theoretical and one “rest” category) such categories, whereas 
microlevel of argumentation has 5 (four theoretical and one “rest” category), and epistemic has 35 (thirty-four 
theoretical and one “rest” category). The “rest” categories comprise prompts and quoted text. Every text 
segment in the gold standard corpus is labeled with a category for each of the 7 dimensions. Our 
experimentation followed a typical pattern for corpus based research, which we describe in this section. In other 
words, we form hypotheses about what might work based on our understanding of the coding scheme and our 
experience with the machine learning algorithms. We then run experiments with those algorithms and use the 
results to deepen our understanding of the representation and the interaction between the machine learning 
techniques and the data. We then revise our hypotheses and run additional experiments. We experimented with a 
range of techniques in a semi-directed manner. It is this semi-directed experimentation process that we are 
working towards automating in our continued research. We believe that if we could automate this process, we 
will have found the final piece of the puzzle that is required to make this technology fully accessible to CSCL 
researchers so that it could be applied to new problems without the aid of an experienced computational linguist. 

We began our experimentation by testing a non-binary classifier called K-Nearest Neighbors to assign a 
category to each text for each of the seven dimensions. The difference between a binary classifier and a non-
binary classifier is that binary classifiers can only distinguish between two categories (i.e., positive examples 
versus negative examples), a non-binary classifier can in theory make any number of distinctions (e.g., the 35 
types of epistemological categories). Since the majority of the 7 dimensions that are part of our coding scheme 
contain more than two distinctions, a non-binary classifier was the most straightforward approach to use as a 
baseline. We tested this approach using what is called a cross-validation evaluation methodology. What this 
means is that we divided our gold-standard corpus into 10 equal subsets of coded spans of text. For each of 
these 10 subsets of data, we trained a model from the other nine subsets and tested on the selected subset so that 
we were always testing on a different set of data than what we trained on. Each of these rounds of training and 
testing are referred to as an iteration. So there are 10 iterations of training and testing for a 10-fold cross-
validation evaluation such as this.  This process is important for obtaining an accurate measure of how well a 
trained model will perform on additional data since it keeps a separation between data used for training the 
model and data used for testing the model. Once we had a measure of performance over each of the 10 subsets 
of data, we averaged those in order to obtain an estimate for the whole set. Cross-validation evaluations are 
standard practice in machine learning research. We went through this process separately for each of the 7 
dimensions. The results are presented in Table 5. The non-binary classifier only achieved an acceptable level of 
agreement with the gold standard in the case of reaction, achieving a Kappa of .81. 

 
Table 5: Performance of Non-binary classifier over data 

Name of Dimension Number of Categories Kappa 
epistemic 35 .51 
microlevel of argumentation 4 .54 
macrolevel of argumentation 7 .54 
Social modes 21 .35 
reaction 3 .81 
Treatment check 4 0 
Quoted  2 .63 

 
To assess the learnability of each of the categories along the 7 dimensions, we then began to experiment with 

binary classifiers. There is a much wider range of non-binary classifiers to choose from. For each category along 
each dimension we computed a Kappa value for a wide range of binary classifiers, each of which was given the 
task if distinguishing example texts that are assigned the corresponding category along its associated dimension 
and those that are not. We noticed that some categories were much easier to predict than others. Normally, it 
was the categories for which there were more than 25 examples in the corpus. Thus, we hypothesized that an 
approach where we cascaded the binary classifiers so that we first applied the most accurate classifiers and then 
the less accurate classifiers only if the accurate ones did not predict a positive match would be more accurate. 

Again we adopted a cross-validation methodology. This time it was necessary to select on each iteration of 
the 10-fold cross-validation evaluation, not only a testing set, but also a validation set on which to determine the 
rank ordering of the individual binary classifiers. This is so that the set used for rank ordering the binary 
classifiers is not either the same set that they were trained over, nor the same set they will be tested over. This 
ensures both optimal training and most accurate testing. Thus, on each iteration, we trained a separate binary 
classifier for each category associated with each dimension over 8 subsets of data. We then tested the accuracy 
of these classifiers on the validation set. For each dimension, we rank ordered the binary classifiers according to 
their accuracy over the validation set. We then applied them in rank order over the test set, selecting as an 
assigned code the first binary classifier that indicated a positive match for an example text. We computed the 
accuracy of the cascaded classifier over each of the 10 test sets using this approach and then averaged the results 



as in the first experiment with non-binary classifiers. The assumption here is that if one classifier gives a higher 
Kappa value over the validation set, then it will most likely be more reliable in terms of predicting correct labels 
over the testing set, hence it is more probable that its prediction is correct instead of the classifier with a lower 
Kappa. The best results we obtained were with the Voted Perceptron Learning algorithm, which gives better 
results with our data in general than the other classification techniques such as DecisionTrees, NaiveBayes 
approach, SVM Learning, etc. In the next section we present our current best results. 

OUTCOMES 
Since the results for the reaction dimension were already acceptable with non-binary classification, we restricted 
our experimentation to the remaining 6 dimensions. In all cases we achieved a significant increase over the non-
binary classification result except in the case of the epistemic dimension.  We first present the Kappa we achieve 
over the whole corpus using the cascaded approach. We then present the Kappa we achieve if we use a more 
conservative approach, only assigning a category to the portion of the corpus where our performance over the 
validation set was highest. The task was accomplished by eliminating the least accurate binary classifiers from 
the cascaded model one by one until an acceptable Kappa was achieved. In that column we present the best 
Kappa we were able to achieve and the percentage of the corpus it was computed over. For example, for the 
macrolevel of argumentation we are able to achieve a Kappa of .83 over 92% of the corpus, leaving 8% of the 
corpus uncoded.  In the case where this conservative classifier is used, a human coder only needs to code 8% of 
the corpus by hand since the accuracy over the automatically coded portion of the corpus is acceptable. 

Table 7: The table compares the accuracy computed in terms of Cohen’s Kappa between the gold standard 
codes and 3 approaches to automatic classification  

Name of Dimension Kappa for Non-binary 
Classification 

Kappa for Cascaded Binary 
Classification Over Whole 

Set 

Kappa for Cascaded 
Binary 

Classification Over 
Partial Set 

Epistemic .51  .49 .52 (43% of corpus) 
Microlevel of 
argumentation 

.54  .76 .83 (92% of corpus) 

Macrolevel of 
argumentation 

.54  .67 .7 (88% of corpus) 

Social modes .35  .55 .68 (50% of corpus), 
.75 (25% of corpus) 

Treatment check 0  .73 .85 (97% of corpus) 
Quoted .63  .98 .98 (100% of corpus) 

 
Although the knowledge that is brought to bear on the coding process for the 7 different dimensions has 

different requirements (for example, in terms of how much context is required or what the distinctions mean 
about the student’s contribution), in all cases except the epistemic dimension the same procedure lead to a 
classifier that achieved a significantly higher level of agreement with the gold standard than the non-binary 
classifier.  Thus, this evaluation demonstrates that the cascaded binary classifier has some generality. 

We plan to continue experimenting with alternative classification approaches for the social modes and 
epistemic dimensions. Similar to our previous explorations where we clustered examples according to similarity 
of coding across the 7 dimensions of our coding scheme, we are now exploring the possibility of clustering the 
coded text segments according to similarity of vocabulary distributions within text segments.  We predict that 
within clusters of similar texts, there will be a smaller number of categories for each dimension than over the 
whole set. Thus, we predict that training a classifier over just the examples within clusters will be more accurate. 

DISCUSSION 
We have presented and evaluated technology for streamlining the process of multi-dimensional analysis of 

the collaborative learning data. We have argued that such technology could potentially have a tremendous 
impact on this increasingly important part of CSCL research. Beyond this community a wide range of other 
behavioral researchers including social scientists, psychologists, and other learning scientists and education 
researchers collect, code, and analyze large quantities of natural language corpus data as an important part of 
their research.  

One important outcome from this research is that even sophisticated coding schemes such as the 7 
dimensional coding scheme discussed here that requires several weeks of intensive training for a human to apply 
reliably can be largely automated. 4 of the 7 dimensions (i.e., macrolevel of argumentation, reaction, treatment 
check, and quoted) can be applied fully automatically with an acceptable level of accuracy, as measured using a 



cross validation methodology over our gold standard coded corpus. Significant portions of the additional two 
dimensions (microlevel of argumentation and social modes) can be applied fully automatically to a significant 
portion of the data, thus cutting down the number of examples that must be coded by a human (an 88% 
reduction in the case of microlevel of argumentation dimension and a 25% reduction in the case of social modes 
dimension). While the results with epistemic dimension were lower, and the Kappa value over the whole set of 
data was only .51, the percent agreement was 80% over the portion of the corpus that received a committed 
code. This is 30% higher than the break even point for time savings with checking and correcting automatically 
coded examples according to Rosé and colleagues (submitted). Thus, even with this level of accuracy, the 
automatic category predictions can lead to a significant reduction in coding time on the epistemic dimension. 

Another important outcome from this research is that the cascaded binary classification approach, which we 
explore, has some generality across multiple dimensions of our coding scheme although they are quite different 
in terms of the types and numbers of distinctions that must be made. Thus, it is an approach that is likely to be 
reused successfully with other coding schemes and eventually be part of an eventual approach to automatic 
selection and tuning of machine learning approaches to applying categorical coding schemes. 

Beyond improvements to the data analysis that is central to our process, automatic coding technology would 
also enable new kinds of instructional interventions. For example, automatic on-line analysis of chat interactions 
could provide instructors with the capability to monitor the progress of multiple interactions occurring in 
parallel, indicating where the instructor’s intervention is most needed, and even what the specific needs are that 
should be addressed. Further ahead, a fully automatic system could also enable automatic adaptive interventions 
for collaborative learning. Those interventions would be more flexible/adaptive than current static interventions. 
For example, a collaboration script for argument construction could be strategically applied when learners do 
not ground and warrant their claims and it could be faded out carefully when learners develop internal cognitive 
scripts that guide their argumentative knowledge construction. Such a system could prevent effects like over-
scripting (Dillenbourg, 2004) or negative interaction effects between scripts (Kollar & Fischer, 2004). 
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