
From System F to Typed Assembly Language

GREG MORRISETT

Cornell University

DAVID WALKER

Cornell University

KARL CRARY

Carnegie Mellon University

and

NEAL GLEW

Cornell University

We motivate the design of a typed assembly language �TAL� and present a type�preserving transla�
tion from System F to TAL� The typed assembly language we present is based on a conventional
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system ensures that well�typed programs cannot violate these abstractions� In addition� the typing
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�� INTRODUCTION

Compilers that manipulate statically typed intermediate languages have compelling
advantages over traditional compilers that manipulate untyped program represen�
tations� An optimizing compiler for a high�level language such as ML may make
as many as �� passes over a single program� performing sophisticated analyses and
transformations such as CPS conversion� closure conversion� unboxing� subsump�
tion elimination� or region inference� Many of these optimizations require type
information in order to succeed� and even those that do not� often do bene�t from
the additional structure supplied by a typing discipline� Moreover� the essence of
many of these program transformations can be speci�ed by the corresponding type
translation� Types provide concise and yet precise documentation of the compila�
tion process that can be automatically veri�ed by a type checker� In practice� this
technique has been invaluable for debugging new transformations and optimiza�
tions �Tarditi et al� 	

�� Morrisett et al� 	

�
�

Today a small number of compilers work with typed intermediate languages in
order to realize some or all of these bene�ts �Leroy 	

�� Peyton Jones et al� 	

��
Birkedal et al� 	

�� Tarditi et al� 	

�� Lindholm and Yellin 	

�� Shao 	

��
Dimock et al� 	

�
� However� in all of these compilers� there is a conceptual line
where types are lost� For instance� the TIL�ML compiler preserves type information
through approximately ��� of compilation� but the remaining ��� is untyped� We
show how to recode the untyped portions of a compiler to maintain type information
through all phases of compilation and� in so doing� extend the paradigmof compiling
with typed intermediate languages to compiling with typed target languages�

The target language in this paper is a strongly typed assembly language �TAL�
based on a generic RISC instruction set� The type system for TAL is surprisingly
standard� supporting tuples� polymorphism� existential packages� and a restricted
form of function pointer� yet it is su�ciently powerful that we can automatically
generate well�typed code from high�level ML�like languages�

The TAL framework admits most conventional low�level optimizations such as
global register allocation� copy propagation� constant folding� and dead code elim�
ination� Except for a small number of atomic code patterns� TAL also supports
code motion optimizations such as instruction scheduling� common subexpression
elimination� and loop invariant removal� Some more advanced implementation tech�
niques are not supported by the simple typed assembly language we present here�
including run�time code generation� intensional polymorphism� and array bounds
check elimination� In Section � we discuss how to extend the type system presented
here to support such techniques�

TAL not only allows us to reap the bene�ts of types throughout a compiler� but it
also enables a practical system for executing untrusted code safely and e�ciently�
For example� as suggested by the SPIN project �Bershad et al� 	

�
� operating
systems could allow users to download TAL extensions into the kernel� The kernel
would typecheck the TAL extension� thereby ensuring that it never accesses hidden
resources within the kernel� always calls kernel routines with the right number and
types of arguments� and so forth� After the typechecker has veri�ed the extension�
the kernel can safely assemble it and dynamically link it in� Such a TAL�based
system has a number of advantages� Currently� SPIN requires that extensions be
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written in a single high�level language �Modula��� and use a single trusted compiler
�along with cryptographic signatures� in order to ensure their safety� In contrast�
a kernel based on a typed assembly language could support extensions written in
a variety of high�level languages using a variety of untrusted compilers� since the
safety of the resulting assembly code can be checked independently of the source
code or the compiler� Furthermore� critical inner loops could be hand�written
in assembly language in order to achieve better performance� TAL could also be
used to support extensible web�browsers� extensible servers� active networks� or any
other extensible system where security� performance� and language independence
are desired� Of course� while type safety implies many important security properties
such as memory safety� neither SPIN nor TAL can enforce other important security
properties� such as termination� that do not follow from type safety�
Another framework for verifying safety properties in low�level programs� pro�

posed by Necula and Lee� is called proof�carrying code �PCC� �Necula and Lee
	

�� Necula 	

�� 	

�
� Necula and Lee encode the relevant operational content
of simple type systems using extensions to �rst�order predicate logic� and auto�
matically verify proofs of security properties such as memory safety �Necula 	

�
�
Because Necula and Lee use a general�purpose logic� they can encode more expres�
sive security properties and permit some optimizations that are impossible in TAL�
TAL� on the other hand� provides compiler writers with a higher�level set of ab�
stractions than PCC� These abstractions make compiling languages with features
such as higher�order functions and data types simpler� In order to do the same� a
PCC programmer must build such abstractions from the low�level logical primitives
and it is not always obvious how to obtain a compact logical encoding of these lan�
guage constructs that preserves the necessary security properties� Another bene�t
of the TAL abstractions is that they make it possible to automatically reconstruct
the proof of type safety� TAL binaries can be more compact than PCC binaries
because they do not need to contain a complete proof� Clearly� however� the ideal
system contains both the compiler support and compact annotations of TAL and
the �exibility of PCC� We leave this long�term goal to future research� here we focus
on the theoretical framework for automatic compilation of high�level languages to
type�safe assembly language�

�� OVERVIEW

The goals of this work are twofold� �rst� to de�ne a type system for a conventional
assembly language� and to prove its soundness� and� second� to demonstrate the
expressiveness of the resulting language by showing how to automatically compile
a high�level language to type�correct assembly code� In this section� we give a brief
overview of our typed assembly language and the structure of our compiler�

��� TAL

The primary goal of the TAL type system is to provide a fully automatic way to
verify that programs will not violate the primitive abstractions of the language� In
a conventional untyped assembly language� all values are represented as word�sized
integers and the primitive operations of the language apply to any such values� That
is� in an untyped assembly language� there is only one abstraction� the machine
word� In contrast� TAL provides a set of built�in abstractions� such as �word�
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sized� integers� pointers to tuples� and code labels� for each of which only some
operations are applicable� For example� arithmetic is only permitted on integer
values� dereferencing is only permitted for pointer values� and control�transfer is
only permitted for code labels� We say that a program becomes stuck if it attempts
to perform an unpermissible operation� Hence� the primary goal of the TAL type
system is to ensure that well�typed programs do not become stuck�
Because TAL treats integers as a separate abstraction from pointers or code

labels� and because arithmetic is only permitted on integers� it is possible to show
that in addition to never becoming stuck� a well�typed TAL program satis�es a
number of important safety policies relevant to security� For instance� it is possible
to conclude that programs cannot manufacture pointers to arbitrary objects� or
that programs cannot jump to code that has not been veri�ed�
In addition to providing a set of built in abstractions� TAL provides a set of

type constructors that may be used by programmers or compilers to build new
abstractions� For example� in the functional language compiler that we sketch�
closures �a high�level language abstraction� are encoded as TAL�level abstractions
using the existential type constructor� In the high�level language� it is impossible
for a program to apply any primitive operation to a closure except for function
application� For instance� it is impossible for a program to inspect the environment
of the closure� At the TAL level� closures are represented as a pair of a label �to
some code� and an environment data structure �intended to hold the free variables
of the code�� We use an existential type to hide the type of the environment data
structure and to connect it to the code� The resulting object prevents malicious
or faulty code from reading the environment� or passing anything but the closure�s
environment to the closure�s code�
In other work� we have extended the type system to support many more abstrac�

tions� such as modules �Glew and Morrisett 	



 and the run�time stack �Morrisett
et al� 	

�
� Here� we have attempted to keep the type system simple enough that
the formalism may be understood and proven sound� yet powerful enough that we
can demonstrate how a high�level ML�like language may be compiled to type�correct
TAL code automatically�
The typed assembly language we present here is based on a conventional RISC�

style assembly language� In particular� all but two of the instructions are standard
assembly operations� In an e�ort to simplify the formalism� we have omitted many
typical instructions� such as a jump�and�link� that may be synthesized using our
primitives� Figure 	 gives an example TAL program that� when control is trans�
ferred to the label l main� computes � factorial and then halts with the result in
register r�� The code looks and behaves much like standard assembly code� except
that each label is annotated with a code pre�condition that associates types with
registers� The pre�condition speci�es that� before control can be transferred to the
corresponding label� the registers must contain values of the speci�ed types� Hence�
before allowing a jump to l fact as in l main� the type�checker ensures that an
integer value resides in register r��

��� A Type�Preserving Compiler

In order to motivate the typing constructs in TAL and to justify our claims about
its expressiveness� we spend a large part of this paper sketching a compiler from a
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l main�

code� 
fg� � entry point
mov r���

jmp l fact

l fact�

code� 
fr�	intg� � compute factorial of r�
mov r��r� � set up for loop
mov r���

jmp l loop

l loop�

code� 
fr�	int�r�	intg� � r�	 the product so far�
� r�	 the next number to be multiplied

bnz r��l nonzero � branch if not zero
halt�int
 � halt with result in r�

l nonzero�

code� 
fr�	int�r�	intg�
mul r��r��r� � multiply next number
sub r��r��� � decrement the counter
jmp l loop

Fig� �� A TAL program that computes � factorial

variant of the polymorphic lambda�calculus to TAL� Our compiler is structured as
�ve translations between six typed calculi�

�F �
conversion
CPS

�K �
conversion
Closure

�C �
Hoisting

�H �
Allocation

�A �
generation
Code

TAL

Each calculus is a �rst�class programming language in the sense that each trans�
lation operates correctly on any well�typed program of its input calculus� The
translations do not assume that their input is the output from the preceding trans�
lation� This fact frees a compiler to optimize code aggressively between any of the
translation steps� The inspiration for the phases and their ordering is derived from
SML�NJ �Appel and MacQueen 	

	� Appel 	

�
 �which is in turn based on the
Rabbit �Steele Jr� 	
��
 and Orbit �Kranz et al� 	
��
 compilers� except that our
compiler uses types throughout compilation�
The rest of this paper proceeds by describing each of the languages and trans�

lations in our compiler in detail� We give the syntax and static semantics of each
language as well as type�preserving translations between them� The middle calculi
��K� �C� �H� and �A� have many features in common� Therefore� we only describe
�K in full and each successive calculus is de�ned in terms of its di�erences from the
preceding one�
We begin by presenting the compiler�s source language� �F� in Section �� Section �

describes the �rst intermediate language� �K� and gives a typed CPS translation
to it based on Harper and Lillibridge �	

�
� The CPS translation �xes the order
of evaluation and names intermediate computations� Section � presents �C and
gives a typed closure translation to it based on� but considerably simpler than�
that of Minamide et al� �	

�
� The Closure translation makes the construction of
functions� environments and closures explicit� thereby rendering all data structures
explicit� This is followed by a simple hoisting translation that lifts the �now closed�
code to the top level�
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Section � presents �A� in which the allocation and initialization of data struc�
tures is made explicit� and gives a translation from �H to �A� At this point in
compilation� the intermediate code is essentially in a lambda�calculus syntax for
assembly language �following the ideas of Wand �	

�
�� Section � presents the
formal details of our typed assembly language� We show type safety for TAL� and
also de�ne a translation from �A to TAL� Finally� in Section � we discuss exten�
sions to TAL to support additional language constructs and optimizations� We also
describe our current implementation of TAL and discuss some directions for future
investigation�

�� SYSTEM F

The source language for our compiler� �F� is a variant of System F �Girard 	
�	�
	
��� Reynolds 	
��
 �the polymorphic ��calculus� augmented with integers� prod�
ucts� and recursion on terms� The syntax for �F appears below�

types �� � ��� � j int j �� � �� j ���� j h�� i
annotated terms e ��� u�

terms u ��� x j i j �xx�x���������e j e�e� j ���e j e�� 
 j
h�ei j �i�e� j e� p e� j if��e�� e�� e��

primitives p ��� � j � j �
type contexts � ��� ��� � � � � �n
value contexts  ��� x����� � � � � xn��n

Integers� the only base type� are introduced by integer literals �i�� operated on by by
arithmetic primitives p� and eliminated by a conditional expression if�� The term
if��e�� e�� e�� evaluates to e� when e� evaluates to zero� and otherwise evaluates to

e�� We use the notation �E to refer to a vector of syntactic objects drawn from
the syntactic class E� For example� h�ei is shorthand for a tuple he�� � � � � eni� The
elimination form for tuples� �i�e�� evaluates to the ith �eld of the tuple e� Recursive
functions are written �x x�x���������e� where x is the name of the recursive function
and may appear free in the body� x� is its argument �with type ���� and e is
its body �with type ���� Polymorphic functions are written ���e� where � is the
abstracted type and e is the body of the polymorphic function� For example� the
polymorphic identity function may be written as ��� �xid�x������x� Instantiation
of a polymorphic expression e is written e �� 
� As usual� we consider types and
expressions that di�er only in the names of bound variables to be identical� We
write the capture�avoiding substitution of E for X in E� as E��E	X
�
We interpret �F with a conventional call�by�value operational semantics �which

is not presented here�� The static semantics �given in Figure �� is speci�ed as a set
of inference rules for concluding judgments of the form �� �F e � � � where � is a
context containing the free type variables of  � e� and � �  is a context that assigns
types to the free variables of e� and � is the type of e� A second judgment � �F �
asserts that type � is well�formed under type context �� In later judgements� we
will use � to denote an empty type or value context�
To simplify the presentation of our translations� we use type�annotated terms �e��

which are unannotated terms �u� marked with their types� This decision allows us
to present our translations in a simple� syntax�directed fashion� rather than making
them dependent on the structure of typing derivations� The typing rules ensure that
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� �F �
�FTV ���� ��

�� � �F u 	 �

�� � �F u� 	 �

�� � �F x 	 �
���x� � ��

�� � �F i 	 int

� �F �� � �F �� ���� x	�� � ��� x�	�� �F e 	 ��

��� �F �xx�x�	���	���e 	 �� � ��
�x�x� �� ��

�� � �F e� 	 ��� �� ��� �F e� 	 ��
��� �F e�e� 	 ��

�� �� � �F e 	 �

��� �F ���e 	 ����
�� �� ��

� �F � ��� �F e 	 ���� �

��� �F e�� 
 	 � �����


�� � �F ei 	 �i

��� �F he�� � � � � eni 	 h��� � � � � �ni

��� �F e 	 h��� � � � � �ni

��� �F �i�e� 	 �i
�� � i � n�

�� � �F e� 	 int ��� �F e� 	 int

��� �F e� p e� 	 int

��� �F e� 	 int ��� �F e� 	 � ��� �F e� 	 �

��� �F if��e�� e�� e�� 	 �

Fig� 
� Static Semantics of �F

all annotations in a well�formed term are correct� In the interest of clarity� however�
we will omit the type annotations in informal discussions and examples�
As a running example� we will consider compiling a term that computes � facto�

rial�

��x f�n�int��int� if��n� 	� n� f�n � 	��� ��

	� CPS CONVERSION

The �rst compilation stage is conversion to continuation�passing style �CPS�� This
stage names all intermediate computations and eliminates the need for a control
stack� All unconditional control transfers� including function invocation and return�
are achieved via function call� The target calculus for this phase is called �K�

types �� � ��� � j int j ����
������ void j h��� � � � � �ni
annotated values v ��� u�

values u ��� x j i j �x x���
�x����� � � � � xn��n��e j h�vi
primitives p ��� � j � j �
declarations d ��� x � v j x � �i v j x � v� p v�
terms e ��� let d in e

j v��� 
��v�
j if��v� e�� e��
j halt�� 
v

type contexts � ��� ��� � � � � �n
value contexts  ��� x����� � � � � xn��n

Code in �K is nearly linear� it consists of a series of let bindings followed by a func�
tion call� The exception to this is the if� construct� which forms a tree containing
two subexpressions�
In �K there is only one abstraction mechanism ��x�� which abstracts both type
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� �K �
�FTV ���� ��

�� � �K u 	 �

�� � �K u� 	 �

��� �K x 	 �
���x� � ��

�� � �K i 	 int

�� �� �K �i ��� ���� ��� x	����
����� � � � � �n�� void � x�	��� � � � � xn	�n� �K e

��� �K �x x���
�x�	��� � � � � xn	�n��e 	 ����
����� � � � � �n�� void
��� �� � 	 x� �x �� ��

�� � �K vi 	 �i

��� �K hv�� � � � � vni 	 h��� � � � � �ni

��� �K v 	 � ���� x	� �K e

��� �K let x � v in e
�x �� ��

�� � �K v 	 h��� � � � � �ni ���� x	�i �K e

��� �K let x � �i v in e
�x �� � 	 � � i � n�

�� � �K v� 	 int ��� �K v� 	 int ���� x	int �K e

��� �K let x � v� p v� in e
�x �� ��

� �K 	i ��� �K v 	 ����� � � � � �m
����� � � � � �n�� void ��� �K vi 	 �i��	���


�� � �K v�	�� � � � � 	m
�v�� � � � � vn�

�� � �K v 	 int ��� �K e� ��� �K e�

��� �K if��v� e�� e��

�� � �K v 	 �

��� �K halt�� 
v

Fig� �� Static Semantics of �K

and value variables� thereby simplifying the rest of the compiler� The corresponding
� and � types are also combined� We abbreviate �� 
������ void as ��� �� void � we
abbreviate �x f ���
�x����� � � � � xn��n��e as ����
�x����� � � � � xn��n��e� when f does not
appear free in e� and we omit empty type argument brackets in both the �x and �
forms and in applications�
In �K� unlike �F� functions do not return values� so function calls are just jumps�

The function notation !� void" is intended to suggest this fact� If control is to be
returned to the caller� the caller must pass the callee a continuation function for it
to invoke� Execution is completed by the construct halt�� 
v� which accepts a result
value v of type � and terminates the computation� Typically� this construct is used
by the top�level continuation�
Since expressions never return values� only typing judgments for values state

types� The new judgment ��  �K e indicates that the term e is well�formed under
type and value contexts � and  � Aside from these issues� the static semantics for
�K is standard and appears in Figure ��

	�� Translation

The CPS translation that takes �F to �K is based on that of Harper and Lillib�
ridge �	

�
 and appears in Figure �� The type translation is written K�� � 

� The
principal translation for terms� Kexp��e

� takes a continuation k� computes the value



From System F to Typed Assembly Language � 	

K���


def
� �

K��int


def
� int

K���� � ��


def
� �K����

�Kcont����

�� void

K������ 


def
� ���
��Kcont��� 

�� void

K��h��� � � � � �ni


def
� hK����

� � � � �K���n

i

Kcont��� 


def
� �K��� 

�� void

Kprog��u� 


def
� Kexp��u� 

��x	K��� 

�halt�K��� 


xK��� ���Kcont��� ��

Kexp��y� 

k
def
� k�yK��� ���

Kexp��i� 

k
def
� k�iK��� ���

Kexp����xx�x�	���	���e�� 

k
def
� k���xx�x�	K����

� c	Kcont����

��Kexp��e

cKcont ���� ���K��� ���

Kexp���u
��
� u��� �

� 

k
def
� Kexp��u

��
� 

��x�	K����

�

Kexp��u
��
� 

��x�	K����

�

x
K���� ��
� �x

K������
� � k��Kcont�������Kcont���� ��

Kexp������u� ��
�



k
def
� k�����
�c	Kcont��� 

��Kexp��u� 

cKcont��� ���K��� � ���

Kexp���u� �	
��
�



k
def
� Kexp��u� 

��x	K��� 

�xK��� ���K��	


�k��Kcont��� ��

Kexp��hu
��
� � � � � � u�nn i� 

k

def
� Kexp��u

��
� 

��x�	K����

� 
 
 


Kexp��u
�n
n 

��xn	K���n

�

k�hxK���� ��
� � � � � � x

K���n ��
n iK��� ����Kcont���n �� 
 
 
�Kcont���� ��

Kexp���i�u� ��
�



k
def
� Kexp��u� 

��x	K��� 

� let y � �i�x� in k�yK��� � ����Kcont��� ��

Kexp��e� p e�
� 

k

def
� Kexp��e�

��x�	int�

Kexp��e�

��x�	int�

let y � x� p x� in k�yint ��Kcont��int ���Kcont��int ��

Kexp��if��e�� e�� e��
� 

k

def
� Kexp��e�

��x	int�

if��xint �Kexp��e�

k�Kexp��e�

k��
Kcont��int ��

Fig� �� Translation from �F to �K

of e and hands that value to k� A second term translation for full programs�
Kprog��e

� calls the principal translation with a special top�level continuation that
accepts a �nal answer and halts� In the translation� the variables c and x are
assumed to be fresh in order to avoid variable capture�
An important property of the translation is that it translates well�formed �F

expressions to well�formed �K expressions�

Lemma �CPS Conversion Type Correctness�� If �� � �F e � � then �� � �K
Kprog��e

�

In this translation� and in those that follow� no particular e�ort is made to op�
timize the resulting code� A realistic compiler based on these type systems� such
as the one we discuss in Section �� would integrate optimizations into these trans�
lations� For instance� a realistic CPS�converter would eliminate !administrative"
redices and optimize tail recursion �Danvy and Filinski 	

�
�
The factorial example coded in �K is given below� This code would be obtained
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by Kprog�� � 

 in conjunction with two optimizations mentioned above�

��x f �n�int� k��int�� void ��
if��n� k�	��

let x � n� 	 in
f�x� ��y�int �� let z � n� y in k�z����

��� ��n�int�� halt�int
n�


� SIMPLIFIED POLYMORPHIC CLOSURE CONVERSION

The second compilation stage is closure conversion� which makes closures explicit�
thereby separating program code from data� This is done in two steps� The �rst
and main step� closure conversion proper� rewrites all functions so that they contain
no free variables� Any variables that appear free in a function must be taken as
additional arguments to that function� Those additional arguments are collected
in an environment that is paired with the �now closed� code to create a closure�
Function calls are performed by extracting the code and the environment from the
closure� and then calling that code with the environment as an additional argument�
In the second step� hoisting� the code blocks are lifted to the top of the program�

achieving the desired separation between code and data� Since those code blocks are
closed� hoisting can be done without di�culty� We begin with closure conversion
proper� the hoisting step is considered in Section ����
Although the operational explanation of closure conversion is quite simple� there

are a number of subtle issues involved in type�checking the resulting code� In the
absence of polymorphic functions� our approach to typing closure conversion is
based on Minamide et al� �	

�
� who observe that if two functions with the same
type but di�erent free variables �and therefore di�erent environment types� were
naively typed after closure conversion� the types of their closures would not be
the same� To prevent this� they use existential types �Mitchell and Plotkin 	
��

to abstract the types of environments� thereby hiding the fact that the closures�
environments have di�erent types�
In the presence of polymorphism� functions may have free type variables as well

as free value variables� and� just as for free value variables� closure conversion must
rewrite functions to take free type variables as additional arguments� Our approach
for dealing with this issue diverges from that of Minamide et al�� who desire a type�
passing interpretation of polymorphism in which types are constructed and passed
as data at run time� In such a type�passing interpretation� those additional type
arguments must be collected in a type environment� which is the type�level equiva�
lent of the value environment discussed earlier� Type environments necessitate two
complex mechanisms� abstract kinds� to hide the di�erences between type environ�
ments� and translucent types� to ensure that code blocks are called with the correct
type environments�
We propose a considerably simpler approach to polymorphic closure conversion�

To avoid the complexities of type environments� we adopt a type�erasure interpre�
tation of polymorphism as in The De�nition of Standard ML �Milner et al� 	

�
�
In a type�erasure interpretation� we need not save the contents of free type vari�
ables in a type environment� instead� we substitute them directly into code blocks�
Semantically� this amounts to making copies of code blocks in which the relevant
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Additional syntactic constructs	

types �� 	 		� � � � j ����

values u 		� � � � j v�� 
 j pack ���� v
 as ��
declarations d 		� � � � j ���x
 � unpack v

terms e 		� � � � j replace v���
��v� by v��v�

The typing rule for �xx���
�x�	��� � � � � xn	�n��e is replaced by	

�� �C �i ���x	����
���� � � � � �n�� void � x�	��� � � � � xn	�n �C e

��� �C �x x���
�xn	��� � � � � xn	�n��e 	 ����
���� � � � � �n�� void

The typing rule for v��� 
��v� is replaced by	

�� � �C v 	 ���� � � � � �n�� void ��� �C vi 	 �i

��� �C v�v�� � � � � vn�

Additional typing rules	

� �C 	 �� � �C v 	 ���� �

������ void

��� �C v�	
 	 ����

�����	��
�� void�

� �C �� ��� �C v 	 �������


�� � �C pack ���� v
 as ����� 	 �����

��� �C v 	 ���� ��� ��� ��� x	�� �C e

��� �C let ���x
 � unpack v in e
�� �� � 	 x �� ��

Shorthand	

v� 

def
� v

u����
���������void ��� �� 


def
� �u����

���������void �� 
���
��������������void ��� 


Fig� �� Changes from �K to �C

substitutions have been performed� However� as types will ultimately be erased�
these !copies" are represented by the same term at run time� resulting in no run�
time cost�
Formally this means that� in a type�erasure interpretation� we consider the par�

tial application of a function to a type argument to be a value� For example�
suppose v has the type ����� �

������ void where the type variables �� stand for the

function�s free type variables and the type variables �
 are the function�s ordinary
type arguments� If �� are the contents of those free type variables� then the partial
instantiation v���
 is considered a value and has type ���

���� ���	��
�� void � This
instantiation takes the place of the construction of a type environment�
The work of Minamide et al� arose from the TIL compiler �Morrisett et al� 	

�
�

which uses run�time type information to optimize data layout �Tarditi et al� 	

�
�
At �rst� it seems that a type�erasure semantics precludes these optimizations� How�
ever� recent work of Crary et al� �	

�� 	



 shows how to encode run�time type
information in a type�erasure language� Rather than manipulating types directly�
programs manipulate values that represent types� Using this device� the type envi�
ronment can become part of the value environment and closure conversion may be
performed in a similar fashion as described here� These mechanisms can be added
to TAL� and the optimizations above can be used in a compiler targeting it�
Figure � presents the di�erences between �C and �K� The principal di�erence is

that the body of a function must typecheck in a context containing only its formal
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arguments� In other words� code blocks must be closed� as desired� As discussed
above� we also make type instantiation a value form� Finally� we add existential
types �Mitchell and Plotkin 	
��
 to support the typing of closures� Note that in a
type�erasure interpretation� the type portion of an existential package �all but v of
pack ��� v
 as 	��� �� is erased at run time and hence the creation of such a package
has no run�time cost�


�� Translation

The closure conversion algorithm is formalized in Figure �� The translation for
types is denoted by C�� � 

� the only interesting rule of which is the one for function
types�

C������
����� � � � � �n�� void 

 � 	
�h����
��
� C����

� � � � � C���n

�� void � 
i

The existentially�quanti�ed variable 
 represents the type of the value environment
for the closure� The closure itself is a pair consisting of a piece of code instantiated
with types for its free type variables� and a value environment� The instantiated
code takes as arguments its original type and value arguments� as well as the value
environment� Closures are invoked by extracting the code and environment from
the closure and then applying the code to the environment and the function�s
arguments�
The term translation has three parts� one for terms� Cexp��� 

� one for declarations�

Cdec�� � 

� and one for values� Cval�� � 

� For uniformity with other translations� we also
provide a whole program translation �Cprog�� � 

�� which in this case simply invokes
the term translation� To avoid variable capture� the variables z and � are assumed
to be fresh�
Again� we may show that the translation preserves well�formedness of programs�

Lemma �Closure Conversion Type Correctness�� If �� � �K e then
�� � �C Cprog��e

�


�� Hoisting

After closure conversion� all functions are closed and may be hoisted out to the top
level without di�culty� In a real compiler� these two phases would be combined but
we have separated them here for simplicity� The target of the hoisting translation
is the calculus �H� in which �x is no longer a value form� Instead� code blocks are
de�ned by a letrec pre�x� which we call a heap in anticipation of the heaps of �A

and TAL� This change is made precise in Figure ��
Programs are translated from �C to �H by replacing all �x expressions with fresh

variables and binding those variables to the corresponding code expressions in the
heap� This translation� denoted by Hprog�� � 

� is straightforward to formalize� so we
omit the formalization in the interest of brevity�

Lemma �Hoisting Type Correctness�� If �� � �C e then �H Hprog��e

�

Some examples of closure conversion and hoisting appear in Figures � and 
�
Figure � gives the factorial example after closure conversion� hoisting� and few
simplifying optimizations �beta reduction and copy propagation�� To illustrate
polymorphic closure conversion we consider another example in Figure 
� the poly�
morphic� higher�order function twice that takes a function and composes it with
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C���


def
� �

C��int 


def
� int

C������
����� � � � � �n�� void 


def
� �
�h����
��
�C����

� � � � � C���n

�� void � 
i

C��h��� � � � � �ni


def
� hC����

� � � � � C���n

i

Cprog��e


def
� Cexp��e



Cexp��let d in e


def
� let Cdec��d

 in Cexp��e



Cexp��u� �	�� � � � � 	m
�v�� � � � � vn�


def
� let ��� z
 � unpack Cval��u

� 

 in

let zcode � ���z
h�code �	i� in

let zenv � ���zh�code �	i� in
�zcode�code �C��	�

� � � � � C��	m


�

�zenv	 � Cval��v�

� � � � �Cval ��vn

�
where
C��� 

 � ���h�code� �i

Cexp��if��v� e�� e��


def
� if��Cval��v

� Cexp��e�

� Cexp��e�

�

Cexp��halt�� 
v


def
� halt�C��� 


Cval��v



Cdec��x � v


def
� x � Cval��v



Cdec��x � �i�v�


def
� x � �i�Cval��v

�

Cdec��x � v� p v�


def
� x � Cval��v� 

 p Cval��v�



Cval��x
� 



def
� xC��� ��

Cval��i
� 



def
� iC��� ��

Cval��hv�� � � � � vni
� 



def
� hCval��v�

� � � � � Cval��vn

i

C��� ��

Cval����xx���
�x�	��� � � � � xn	�n��e�
� 



def
� �pack ��env � hvcode��

� venv i

h�code ��env i
 as C��� 

�C��� ��

where y��� � � � � � y�mm � FV ��xx���
�x�	��� � � � � xn	�n��e�
�
 � FTV ��xx���
�x�	��� � � � � xn	�n��e�
�env � C��h	�� � � � � 	mi



�rawcode � ���
� ��
���env �C����

� � � � � C���n

�� void
�code � ����
���env �C����

� � � � � C���n

�� void

vcode � ��x zcode��
� ��
�zenv 	�env � x�	C����

� � � � � xn	C���n

��

let x � pack ��env � hzcode�rawcode ��

� zenv �env ih�code ��env i

as C��� 

 in

let y� � ���zenv�env � in
���
let ym � �m�zenv�env � in Cexp��e

��rawcode

venv � hy�C������� � � � � ymC���m��i�env

Fig� �� Translation from �K to �C
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Syntax changes	

values u 		� delete �xx�x�	��� � � � � xn	�n��e
heap values h 		� code���
�x�	��� � � � � xn	�n��e
programs P 		� letrec x� �� h�� � � � � xn �� hn in e

The typing rule for �x is replaced by a heap value rule for code	

�� �H �i ��� ��� x� 	��� � � � � xn	�n� �H e

� �H code���
�x�	��� � � � � xn	�n��e 	 ����
���� � � � � �n�� void hval
�x�� � � � � xn �� ��

New typing rule	


 �H �i x�	��� � � � � xn 	 �n �H hi 	 �i hval 
�x�	��� � � � � xn 	 �n �H e

�H letrec x� �� h� � � � � � xn �� hn in e
�xi �� xj for i �� j�

Fig� �� Changes from �C to �H

letrec fcode �� �	 main factorial code block 	

code� 
�env 	hi� n	int� k	�k��

if��n� �	 true branch	 continue with � 	

let �
� kunpack 
 � unpack k in

let kcode � ���kunpack� in
let kenv � ���kunpack� in
kcode�kenv � ���
�	 false branch	 recurse with n� � 	

let x � n� � in
fcode�env � x� pack �hint� �ki� hcontcode� hn� kii
 as �k��

contcode �� �	 code block for continuation after factorial computation 	

code� 
�env 	hint � �ki� y	int��

�	 open the environment 	

let n � ���env � in
let k � ���env� in
�	 compute n� into z 	


let z � n � y in
�	 continue with z 	


let �
� kunpack 
 � unpack k in

let kcode � ���kunpack� in
let kenv � ���kunpack� in
kcode�kenv � z�

haltcode �� �	 code block for top�level continuation 	

code� 
�env 	hi� n	int�� halt�int
n

in

fcode�hi���pack �hi� hhaltcode� hii
 as �k�

where �k is ���h��� int�� void � �i

Fig� �� Factorial in �H

itself� The twice function contains two nested functions� twicef and oncef � each
of which contains the free type variable �� and therefore� after closure conversion�
� becomes part of the type environment for these functions� Consequently� the
type argument to twicecode is an ordinary type argument� but the type arguments
to the code blocks twicef code and oncef code stand for free type variables and are
instantiated appropriately whenever closures are formed from those code blocks�



From System F to Typed Assembly Language � 
�

�F source	
twice � ��� �f 	�� ���x	��f�fx�

�K source	
twice �

���
�f 	�f � c	��f �� void��
let twicef �

��x 	�� c�	���� void��
let oncef � ��z 	��� f �z � c�� in
f �x � oncef �

in

c� 
�twicef �

where �f � ��� ���� void�� void

�H translation	
letrec twicecode��
�env 	hi� f 	�f � c	����h���� �f�� void � ��i��

let twicef � pack �h�fi� htwicefcode ��
� hf ii
 as �f in �	 create closure 	

let ���� cunpack 
 � unpack c in
let ccode � ���cunpack� in
let cenv � ���cunpack� in

ccode�cenv � twicef �
twicefcode��
�env	h�f i� x 	�� c

�	��c��
let f � ���env� in
let oncef � pack �h�f � ��ci� honcefcode��
� hf � c

�ii
 as ��c in �	 create closure 	

let ���� funpack 
 � unpack f in
let fcode � ���funpack� in
let fenv � ���funpack� in

fcode�fenv � x � oncef �
oncefcode��
�env 	 h�f � ��ci� z 	 ���

let f � ���env� in
let c� � ���env � in
let ���� funpack 
 � unpack f in
let fcode � ���funpack� in
let fenv � ���funpack� in

fcode�fenv � z � c
��

in 
 
 


where �f � ����h���� �� ��c�� void � ��i
��c � ����h���� ��� void � ��i

Fig� �� Polymorphic Example
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Syntax changes	

types �� 	 		� � � � j replace h��i by h�
�� � � � � � �

n
n i

initialization �ags 
 		� � j �
values u 		� delete h�vi
declarations d 		� � � � j x � malloc��� 
 j x � v��i
� v�
heap values h 		� � � � j h�vi

The typing rule for projection is replaced by	

�� � �A v 	 h�
�� � � � � � �
nn i ���� x	�i �A e

��� �A let x � �i�v� in e
�x �� � 	 � � i � n 	 
i � ��

The typing rule for tuples is replaced by a heap value rule	


� � � vi 	 �i

� �A hv�� � � � � vni 	 h�
�
� � � � � � �

�
ni hval

New typing rules	

� �A �i ���� x	h��� � � � � � �
�
ni �A e

��� �A let x � malloc���� � � � � �n
 in e
�x �� ��

�� � �A v� 	 h�

�
� � � � � � �
nn i ��� �A v� 	 �i

���� x	h�
�� � � � � � �

i��
i�� � ��i � �


i��
i	� � � � � � �
nn i �A e

��� �A let x � v��i
� v� in e
�x �� � 	 � � i � n�

Shorthand	

let � in e
def
� e

let d� �d in e
def
� let d in let �d in e

Fig� ��� Changes from �H to �A

�� EXPLICIT ALLOCATION

The �H intermediate language still has an atomic constructor for forming tuples� but
machines must allocate space for a tuple and �ll it out �eld by �eld� the allocation
stage makes this process explicit� To do so� we eliminate the value form for tuples�
and introduce new declaration forms for allocating and initializing tuples� as shown
in Figure 	�� The creation of an n�element tuple becomes a computation that is
separated into an allocation step and n initialization steps� For example� if v� and
v� are integers� the pair hv�� v�i is created as follows �where types have been added
for clarity��

let x��hint
�� int�i � malloc�int� int


x��hint
�� int�i � x��	

 v�

x �hint�� int�i � x���

 v�
���

The !x� � malloc�int� int 
" step allocates an uninitialized tuple and binds x� to the
address of the tuple� The !�" superscripts on the types of the �elds indicate that
the �elds are uninitialized� and hence no projection may be performed on those
�elds� The !x� � x��	
 
 v�" step updates the �rst �eld of the tuple with the
value v� and binds x� to the address of the tuple� Note that x� is assigned a type
where the �rst �eld has a !	" superscript� indicating that this �eld is initialized�
Finally� the !x � x���

 v�" step initializes the second �eld of the tuple with v�
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and binds x to the address of the tuple� which is assigned the fully initialized type
hint�� int�i� Hence� both �� and �� are allowed on x�
The code sequence above need not be atomic� it may be rearranged or interleaved

with projections in any well�typed manner� The initialization �ags on the types en�
sure that a �eld cannot be projected unless it has been initialized� Moreover� a
syntactic value restriction ensures there is no unsoundness in the presence of poly�
morphism� Operationally� the declaration x�i

 v is interpreted as an imperative
operation� and thus at the end of the sequence� x�� x�� and x are all aliases for the
same location� even though they have di�erent types� Consequently� the initializa�
tion �ags do not prevent a �eld from being initialized twice� It is possible to use
monads �Wadler 	

�a� Launchbury and Peyton Jones 	

�
 or linear types �Girard
	
��� Wadler 	

�b� 	

�
 to ensure that a tuple is initialized exactly once� but we
have avoided these approaches in the interest of a simpler type system� The pres�
ence of uninitialized values also raises some garbage collection issues� in Section �
we discuss how our implementation deals with these issues�

��� Translation

The translation of types from �H to �A is simple� it amounts to adding initialization
�ags to each �eld of tuple types�

A��h��� � � � � �ni


def
� hA����



�
� � � � �A���n



�i

The term translation is formalized in Figure 		 as �ve translations� full programs
�Aprog���

�� heap values �Ahval���

�� expressions �Aexp���

�� declarations �Adec���

�� and
values �Aval�� � 

�� The focus of the translation is on the last rule� which generalizes
the informal translation of tuples given in the previous section� This rule returns the
sequence of declarations to allocate and initialize a tuple� Although the other �non�
tuple� values are more or less unchanged by the translation� they too must return
sequences of declarations needed to construct those values� Such sequences will
be empty unless the value in question contains a tuple� Similarly� the declaration
translation produces a sequence of declarations� To avoid variable capture� the
variable y is assumed to be fresh�

Lemma �Allocation Type Correctness�� If �H P then �A Aprog��P 

�

The factorial example after application of the explicit allocation translation ap�
pears in Figure 	��

�� TYPED ASSEMBLY LANGUAGE

The �nal compilation stage� code generation� converts �A to TAL� All of the major
typing constructs in TAL are present in �A and� indeed� code generation is largely
syntactic� To summarize the type structure at this point� there is a combined
abstraction mechanism that may simultaneously abstract a type environment� a
set of type arguments� and a set of value arguments� Values of these types may
be partially applied to type environments and remain values� There are existential
types to support closures and other data abstractions� Finally� there are n�tuples
with �ags on the �elds indicating whether the �eld has been initialized�
A key technical distinction between �A and TAL is that �A uses alpha�varying

variables� whereas TAL uses register names� which� like labels on records� do not
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A���


def
� �

A��int


def
� int

A������
����� � � � � �n�� void 


def
� ����
��A����

� � � � �A���n

�� void

A��h��� � � � � �ni


def
� hA����



�� � � � �A���n


�i

A������ 


def
� ���A��� 



Aprog��letrec x� �� h�� � � � � xn �� hn in e


def
� letrec x� �� Ahval��h�

� � � � � xn �� Ahval ��hn

 in Aexp��e



Ahval ��code���
�x�	��� � � � � xn	�n��e


def
� code���
�x�	A����

� � � � � xn	A���n

��Aexp��e



Aexp��let d in e


def
� letAdec��d

 in Aexp��e



Aexp��v�v�� � � � � vn�


def
� let �d� �d�� � � � � �dn in v��v��� � � � � v

�
n�

where h�d� v�i � Aval ��v

 and h�di� v
�
ii � Aval ��vi



Aexp��if��v� e�� e��


def
� let �d in if��v��Aexp��e�

�Aexp��e�

�

where h�d� v�i � Aval ��v



Aexp��halt�� 
v


def
� let �d in halt�A��� 


v�

where h�d� v�i � Aval ��v



Adec��x � v


def
� �d� x � v� where h�d � v�i � Aval ��v



Adec��x � �i�v�


def
� �d� x � �i�v

�� where h�d� v�i � Aval ��v



Adec��x � v� p v�


def
� �d�� �d�� x � v�� p v�� where h�di� v

�
ii � Aval ��vi



Adec�����x
 � unpack v


def
� �d� ���x
 � unpack v� where h�d� v�i � Aval ��v



Aval ��x
� 



def
� h�� xA��� ��i

Aval ��i
� 



def
� h�� iA��� ��i

Aval ���v�	
�
� 



def
� h�d� �v��A��	


�A��� ��i where h�d� v�i � Aval ��v



Aval ���pack ��� v
 as �
���

��




def
� h�d� �pack �A��� 

� v�
 as A��� �

�A��� �� ��i

where h�d� v�i � Aval ��v



Aval ��hu�
�� � � � � � un�ni� 



def
� h��d�� � � � � �dn� y� � malloc�A����

� � � � �A���n


�

y� � y
������
� ��
� v���

���

yn � y
���n��� �
n�� �n
� v�n��

y
A��� ��
n i

where h�di� v�ii � Aval��ui
�i 



and � �i� � hA����


�� � � � �A���i



��A���i	�


�� � � � �A���n



�i

Fig� ��� Translation from �H to �A
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letrec fcode �� �	 main factorial code block 	

code� 
�env 	hi� n	int� k	�k��

if��n� �	 true branch	 continue with � 	

let �
� kunpack 
 � unpack k in

let kcode � ���kunpack� in
let kenv � ���kunpack� in
kcode�kenv � ���
�	 false branch	 recurse with n� � 	

let x � n� � in
let y� � malloc�int� �k
 in
let y� � y���
� n in

let y� � y��

� k in �	 hn� ki 	

let y
 � malloc��hint� �ki� int�� void � hint � �ki
 in
let y� � y
��
� contcode in
let y� � y��

� y� in �	 hcontcode� hn�kii 	

fcode�env � x� pack �hint� �ki� y�
 as �k��

contcode �� �	 code block for continuation after factorial computation 	

code� 
�env 	hint � �ki� y	int��

�	 open the environment 	

let n � ���env � in
let k � ���env� in
�	 continue with n � y 	


let z � n � y in

let �
� kunpack 
 � unpack k in

let kcode � ���kunpack� in
let kenv � ���kunpack� in
kcode�kenv � z�

haltcode �� �	 code block for top�level continuation 	

code� 
�env 	hi� n	int�� halt�int
n

in

let y
 � malloc� 
 in �	 hi 	

let y� � malloc� 
 in �	 hi 	

let y� � malloc��hi� int�� void � hi
 in
let y�� � y���
� haltcode in
let y�� � y���

� y� in �	 hhaltcode� hii 	

fcode�y
� ��pack �hi� y��
 as �k�

where �k is ���h��� int�� void � �i

Fig� �
� Factorial in �A
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types �� 	 		� � j int j ����
�� j h�

�
� � � � � � �


n
n i j ����

initialization �ags 
 		� � j �
heap types � 		� f��	��� � � � � �n	�ng
register �le types � 		� fr�	��� � � � � rn	�ng
type contexts � 		� ��� � � � � �n

registers r 		� r� j r� j r� j 
 
 

word values w 		� � j i j �� j w�� 
 j pack ���w
 as � �

small values v 		� r j w j v�� 
 j pack ��� v
 as � �

heap values h 		� hw�� � � � � wni j code���
��I
heaps H 		� f�� �� h�� � � � � �n �� hng
register �les R 		� fr� �� w�� � � � � rn �� wng

instructions � 		� add rd� rs� v j bnz r� v j ld rd� rs�i
 j mallocrd���
 j movrd� v j
mul rd� rs� v j st rd�i
� rs j sub rd� rs� v j unpack��� rd
� v

instruction sequences I 		� �� I j jmpv j halt�� 

programs P 		� �H�R� I�

Fig� ��� Syntax of TAL

alpha�vary�� We assume an in�nite supply of registers� Mapping to a language with
a �nite number of registers may be performed by spilling registers into a tuple� and
reloading values from this tuple when necessary�
One of the consequences of this aspect of TAL is that a register calling convention

must be used in code generation� and that calling conventions must be made explicit
in the types� Hence TAL includes the type ����
�fr����� � � � � rn��ng� which is used
to describe entry points of code blocks and is the TAL analog of the �A function
type� ����
����� � � � � �n��void � The key di�erence is that we assign �xed registers to
the arguments of the code� Intuitively� to jump to a block of code of this type� the
type variables �� must be suitably instantiated� and registers r� through rn must
contain values of type �� through �n� respectively�
Another distinction between �A and TAL is that� while �A has one mechanism

�variables� for identifying values� TAL follows real machines and distinguishes be�
tween labels �which may be thought of as pointers� and registers� Registers may
contain only word values� which are integers or pointers� As in �A� tuples and code
blocks are large values and must be heap allocated� Heap objects are identi�ed by
labels� which may reside in registers� In this manner� TAL makes the layout of data
in memory explicit�
In the remainder of this section� we present the syntax of TAL �Section ��	�� its

dynamic semantics �Section ����� and its full static semantics �Section ����� Finally�
we present the translation from �A to TAL �Section �����

��� TAL Syntax

We present the syntax of TAL in Figure 	�� A TAL abstract machine state� or
program� is a triple consisting of a heap �H�� a register �le �R�� and a sequence of
instructions �I�� The heap is a mapping of labels ��� to heap values �tuples and
code blocks�� The register �le is a mapping of registers �r� to word values� Heaps�

�Indeed� the register �le may be viewed as a record� and register names as �eld labels�
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�H�R� I� ��� P where

if I � then P �

addrd� rs� v� I
� �H�Rfrd �� R�rs�  !R�v�g� I ��

and similarly for mul and sub

bnzr� v� I � �H�R� I ��
when R�r� � �

bnzr� v� I � �H�R� I ��������
�

when R�r� � i and i �� � where !R�v� � ���� 
 and H��� � code���
��I ��

jmpv �H�R� I �������
�

where !R�v� � ���� 
 and H��� � code���
��I �

ld rd� rs�i
� I
� �H�Rfrd �� wig� I ��

where R�rs� � � and H��� � hw�� � � � � wn��i with � � i � n

mallocrd���� � � � � �n
� I
� �Hf� �� h���� � � � � ��nig�Rfrd �� �g� I ��

where � �� H

movrd� v� I
� �H�Rfrd �� !R�v�g� I ��

st rd�i
� rs� I
� �Hf� �� hw�� � � � � wi��� R�rs�� wi	�� � � � � wn��ig�R� I ��

where R�rd� � � and H��� � hw� � � � � � wn��i with � � i � n

unpack��� rd
� v� I
� �H�Rfrd �� wg� I �����
�

where !R�v� � pack ���w
 as � �

Where !R�v� �

����
���

R�r� when v � r

w when v � w
!R�v���� 
 when v � v��� 


pack ��� !R�v��
 as � � when v � pack ��� v�
 as � �

Fig� ��� Operational Semantics of TAL

register �les� and their respective types are not syntactically correct if they repeat
labels or registers� When r appears in R� the notation Rfr �� wg represents the
register �le R with the r binding replaced with w� if r does not appear in R� the
indicated binding is simply added to R� Similar notation is used for heaps� register
�le types� and heap types�
Although heap values are not word values� the labels that point to them are� The

other word values are integers� instantiations of word values� existential packages�
and junk values �#��� which are used by the operational semantics to represent
uninitialized data� A small value is either a word value� a register� or an instantiated
or packed small value� We draw a distinction between word values and small values
because a register must contain a word� not another register� Code blocks are
linear sequences of instructions that abstract a set of type variables and state their
register assumptions� The sequence of instructions is always terminated by a jmp

or halt instruction� Expressions that di�er only by alpha�variation of bound type
variables are considered identical� as are expressions that di�er only in the order of
the �elds in a heap� a register �le� or a heap or register �le type�

��� TAL Operational Semantics

The operational semantics of TAL is presented in Figure 	� as a deterministic
rewriting system P ��� P � that maps programs to programs� Although� as dis�
cussed above� we ultimately intend a type�erasure interpretation� we do not erase
the types from the operational semantics presented here� so that we may more
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easily state and prove a subject reduction theorem �Lemma 	�� If we erase the
types from the instructions� then their meaning is intuitively clear and there is a
one�to�one correspondence with conventional assembly language instructions� The
two exceptions to this are the unpack and malloc instructions� which are discussed
below�
Intuitively� the ld rd� rs�i
 instruction loads the ith component �counting from ��

of the tuple bound to the label in rs� and places this word value in rd� Conversely�
st rd�i
� rs places the word value in rs into the ith position of the tuple bound to
the label in rd� The instruction jmp v� where v is a value of the form ���� 
� transfers
control to the code bound to the label �� instantiating the abstracted type variables
of that code with �� � The bnz r� v instruction tests the value in r to see if it is zero�
If so� control continues with the next instruction� otherwise control is transferred
to v as with the jmp instruction�
The instruction unpack��� rd
� v� where v is a value of the form pack �� �� v�
 as � �

is evaluated by substituting � � for � in the remainder of the sequence of instructions
currently being executed� and by binding the register rd to the value v

�� If types
are erased� the unpack instruction reduces to a simple mov instruction�
As in �A� malloc rd���� � � � � �n
 allocates a fresh� uninitialized tuple in the heap

and binds rd to the address of this tuple� Of course� real machines do not provide a
primitive malloc instruction� Our intention is that� when types are erased� malloc
is expanded into a �xed instruction sequence that allocates a tuple of the appro�
priate size� Because this instruction sequence is abstract� it prevents optimization
from re�ordering and interleaving these underlying instructions with the surround�
ing TAL code� However� this is the only instruction sequence that is abstract in
TAL�

��� TAL Static Semantics

The purpose of the static semantics is to specify when programs are well�formed
and to ensure that well�formed programs do not get stuck� As programs are closed
and self�contained� this is expressed by the judgment �TAL P � The well�formedness
of a program is de�ned by the well�formedness of its three components� the heap�
the register �le� and the instruction stream� Consequently� formation judgments
are required for heaps� register �les� and instruction sequences� which in turn re�
quire judgments for the various sorts of values and types� The static semantics for
TAL appears in Figures 	�$	� and consists of thirteen judgments� summarized in
Figure 	� and elaborated on below� The large number of judgments is a re�ection
more of the large number of syntactic classes� than of any inherent semantic com�
plexity� The static semantics is inspired by and follows the conventions of Morrisett
and Harper�s ���

gc �	

�
�
The �rst �ve judgments in Figure 	� specify the well�formedness conditions for

types and de�ne subtyping relationships� Four of the �ve judgments include a type
context that indicates which type variables are in scope� Heaps and heap types
must be closed� and as a result� their judgments do not include type contexts�
The subtyping judgments are not intended to support subtyping in the usual

generality� although they could be expanded to do so� Instead� they are used to
allow the forgetting of information� The judgment � �TAL �� � ��� for instance�
makes it possible to forget that a �eld of a tuple has been initialized� This is used
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Judgment Meaning

� �TAL � � is a well�formed type
�TAL � � is a well�formed heap type
� �TAL � � is a well�formed register �le type
� �TAL �� � �� �� is a subtype of ��
� �TAL �� � �� �� is register �le subtype of ��
�TAL H 	 � H is a well�formed heap of heap type �
� �TAL R 	 � R is a well�formed register �le of register �le type �
� �TAL h 	 � hval h is a well�formed heap value of type �
��� �TAL w 	 � wval w is a well�formed word value of type �
��� �TAL w 	 �
 w is a well�formed word value of �agged type �


�i�e�� w has type � or w is �� and 
 is ��
���� � �TAL v 	 � v is a well�formed small value of type �
���� � �TAL I I is a well�formed instruction sequence
�TAL P P is a well�formed program

Fig� ��� TAL Static Semantic Judgments

� �TAL � �TAL � � �TAL �

�type� FTV ��� � �

� �TAL �
�htype� � �TAL �i

�TAL f������ � � � � �n��ng

�rftype� � �TAL �i

� �TAL fr����� � � � � rn��ng

� �TAL �� � �� � �TAL �� � ��

�re�ex� � �TAL �

� �TAL � � �
�trans� � �TAL �� � �� � �TAL �� � ��

� �TAL �� � ��

��	
� � �TAL �i

� �TAL h�

�
� � � � � � �


i��
i�� � ��i � �


i��
i	� � � � � � �
nn i � h�
�� � � � � � �


i��
i�� � ��i � �


i��
i	� � � � � � �
nn i

�weaken�
� �TAL �i �for 
 � i � m�

� �TAL fr� � ��� � � � � rm � �mg � fr� � ��� � � � � rn � �ng
�m � n�

�TAL P �TAL H � � � �TAL R � �

�prog� �TAL H � � � �TAL R � � �� �� � �TAL I

�TAL �H�R� I�

�heap� �TAL � � �TAL hi � �i hval

�TAL f�� �� h�� � � � � �n �� hng � �
�� � f������ � � � � �n��ng�

�reg�
�� � �TAL wi � �i wval �for 
 � i � m�

� �TAL fr� �� w�� � � � � rm �� wmg � fr� �� ��� � � � � rn �� �ng
�m � n�

Fig� ��� Static Semantics of TAL �miscellaneous�
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� �TAL h 	 � hval ��� �TAL w 	 � wval ��� �TAL w 	 �
 ���� � �TAL v 	 �

�tuple�
�� 
 �TAL wi 	 �


i
i

� �TAL hw�� � � � �wni 	 h�

�
� � � � � � �
nn i hval

�code� �� �TAL � �� ��� � �TAL I

� �TAL code���
��I 	 ����
�� hval

�label� � �TAL � � � �

��� �TAL � 	 � wval
����� � � �� �int�

��� �TAL i 	 int wval

�tapp�word�
� �TAL � ��� �TAL w 	 ���� �

�� wval

��� �TAL w�� 
 	 ���

������
 wval

�pack�word� � �TAL � ��� �TAL w 	 � �����
 wval

�� � �TAL pack ��� w
 as ���� � 	 ���� � wval

�init� ��� �TAL w 	 � wval

��� �TAL w 	 �

�uninit� � �TAL �

��� �TAL �� 	 ��

�reg�val�
���� � �TAL r 	 �

���r� � �� �word�val� ��� �TAL w 	 � wval

���� � �TAL w 	 �

�tapp�val�
� �TAL � ���� � �TAL v 	 ���� �

���

���� � �TAL v�� 
 	 ���

�������


�pack�val� � �TAL � ���� � �TAL v 	 � �����


���� � �TAL pack ��� v
 as ���� � 	 ���� �

Fig� ��� Static Semantics of TAL �values�

in the subject reduction argument �Lemma 	� where it is sometimes necessary that
references to an initialized tuple be given the old uninitialized type� The register
�le subtyping judgment makes it possible to forget about the contents of some
registers� This makes it possible to jump to a code block when too many registers
are de�ned�
The rest of the judgments check the well�formedness of the term constructs�

Neither heaps nor register �les may contain free type variables so their judgments
do not include a type context� Since values in the heap are mutually recursive� the
heap�s own type is used while typing the heap� to make this sound we separately
require that heap types be well�formed� The next four judgments are for assigning
types to values� In addition to one judgment for each sort of value� there is a
judgment for assigning �agged types to word values� the junk value #� may not be
assigned any regular type� but it may be assigned the �agged type ��� Each sort
of value may contain references to the heap� and all but heap values may contain
free type variables� but only small values may contain registers� Consequently�
heap value formation requires only a heap type� word value formation adds a type
context� and small value formation adds a type context and a register �le type�
The central result is the type safety of TAL programs� well�formed programs

never get !stuck�" The well�formed terminal con�gurations of the operational se�
mantics have the form �H�Rfr� �� wg� halt�� 
�� All other terminal con�gurations
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���� � �TAL I

�s�arith�

�� �� � �TAL rs 	 int ���� � �TAL v 	 int
���� �frd	intg �TAL I

���� � �TAL arith rd� rs� v� I
�arith � fadd� mul�subg�

�s�bnz�

���� � �TAL r 	 int ���� � �TAL v 	 �� 
���

� �TAL � � �� ���� � �TAL I

���� � �TAL bnz r� v� I

�s�ld�
���� � �TAL rs 	 h�


�
� � � � � � �


n��
n�� i ���� �frd	�ig �TAL I

���� � �TAL ld rd� rs�i
� I
�
i � ��� � i � n�

�s�malloc�
� �TAL �i ���� �frd	h�

�
� � � � � � �

�
nig �TAL I

���� � �TAL mallocrd���� � � � � �n
� I

�s�mov� ���� � �TAL v 	 � ���� �frd 	 �g �TAL I

���� � �TAL mov rd� v� I

�s�sto�

���� � �TAL rd 	 h�

�
� � � � � � �


n��
n�� i ���� � �TAL rs 	 �i

���� �frd	h�

�
� � � � � � �


i��
i�� � ��i � �


i��
i	� � � � � � �


n��
n�� ig �TAL I

���� � �TAL st rd�i
� rs� I
�� � i � n�

�s�unpack� ���� � �TAL v 	 ���� ���� �� �frd	�g �TAL I

���� � �TAL unpack��� rd
� v� I
�� �� ��

�s�jmp� ���� � �TAL v 	 �� 
��� � �TAL � � ��

���� � �TAL jmpv

�s�halt� �� �� � �TAL r� 	 �

���� � �TAL halt�� 


Fig� ��� Static Semantics of TAL �instructions�

are considered stuck� Type safety follows from the usual Subject Reduction and
Progress theorems� Their proofs are given in the Appendix�

Theorem �Subject Reduction�� If �TAL P and P ��� P �� then �TAL P ��

Theorem �Progress�� If �TAL P � then either there exists P � such that P ���
P � or P is of the form �H�Rfr� �� wg� halt�� 
��

Corollary �Type Safety�� If �TAL P � then there is no stuck P � such that
P ���� P ��

��	 Code Generation

The translation from �A to TAL appears in Figures 	
 and ��� The type translation�
T���

 from �A to TAL is straightforward� The only point of interest is the translation
of function types� which must assign registers to value arguments�

T������
���� � � � � �n�� void 


def
� ����
fr��T����

� � � � � rn�T���n

g

The most interesting part of the term translation is the translation of declara�
tions� Informally� declarations are translated to instruction sequences as follows�
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T���


def
� �

T��int


def
� int

T������
����� � � � � �n�� void 


def
� ����
�fr�	T����

� � � � �rn	T���n

g

T��h�

�
� � � � � � �


ni
n 



def
� hT����




� � � � � �T���n



n i

T������ 


def
� ���T��� 



Tprog��letrec x� �� h� � � � � � xn �� hn in e


def
� �H�
� I�

where � � fx� �� ��� � � � � xn �� �ng
hHi� h�ii � T 	

hval ��hi



hHexp� Ii � T
	����
exp ��e



Hroot � f�� �� h�� � � � � � �n �� h�ng
H � HrootH� 
 
 
HnHexp

�i are distinct

T 	
hval ��code���
�x�	��� � � � � xn	�n��e



def
� hH�code���
��Ii

where � � fr�	T����

� � � � � rn	T���n

g
�� � �fx� �� r�� � � � � xn �� rng

hH�Ii � T 	������
exp ��e



T 	
hval ��hv�� � � � � vni



def
� h
� hT 	

val��v�

� � � � � T
	
val ��vn

ii

T 	
val ��x

� 


def
� ��x�

T 	
val ��i

� 


def
� i

T 	
val ���v�	
�

� 


def
� T 	

val ��v

�T��	




T
	
val ���pack ���� v
 as ���

� 


def
� pack �T����

� T

	
val ��v


 as T����



Fig� ��� Translation from �A to TAL �except expressions�

% x � v is mapped to mov rx� v�

% x � �i�v� is mapped to the sequence mov rx� v � ld rx� rx�i� 	
�

% x � v� p v� is mapped to the sequence mov rx� v� � arith rx� rx� v�� where arith
is the appropriate arithmetic instruction�

% ��� x
 � unpack v is mapped to unpack��� rx
� v�

% x � malloc��� 
 is mapped to malloc rx��� 
�

% x � v�i

 v� is mapped to the sequence�

mov rx� v � mov rtemp� v
� � st rx�i� 	
� rtemp

% v�v�� � � � � vn� is mapped to the sequence�

mov rtemp� v � mov rtemp�
� v� � � � � � mov rtempn

� vn �
movr�� rtemp�

� � � � � movrn� rtempn
� jmp rtemp

Note that the arguments cannot be moved immediately into the registers r�� � � � �
rn because those registers may be used in later arguments�

% if��v� e�� e�� is mapped to the sequence�

mov rtemp� v � bnz rtemp� ����
 � I�
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T 	����
exp ��let x � u� in e



def
� hH� �movr� T 	

val ��u
� 

� I�i

where hH�Ii � T
	fx��rg����fr�T��� ��g
exp ��e



r is fresh

T
	����
exp ��let x � �i�u

h�
��
� �������nn i� in e



def
� hH� �movr� T

	
val ��u

h�
��
� �������nn i

�

ld r� r�i� �
� I�i

where hH�Ii � T
	fx��rg����fr�T���i ��g
exp ��e



r is fresh

T 	����
exp ��let x � v� p v� in e



def
� hH� �movr� T 	

val ��v�

�
arithp r� r� T

	
val ��v� 

� I�i

where hH�Ii � T
	fx��rg����fr�intg

exp ��e


arith	 � add

arith� � sub

arith� � mul

r is fresh

T 	����
exp ��let ���x
 � unpack u���� in e



def
� hH� �unpack��� r
� T 	

val ��u
���� 

� I�i

where hH�Ii � T
	fx��rg��f�g��fr�T��� ��g
exp ��e



�� r are fresh

T 	����
exp ��let x � malloc���� � � � � �n
 in e



def
� hH� �mallocr�T����

� � � � � T���n


� I�i

where
hH�Ii � T 	fx ��rg����fr�hT���� ��

������T���n ��
�ig

exp ��e


r is fresh

T 	����
exp ��let x � uh�

��
� �������nn i�i
� v in e



def
� hH� �movr� T 	

val ��u
h�
��
� �������nn i

�

movr�� T 	
val ��v

�

st r�i� �
� r�� I�i
where
hH�Ii � T

	fx ��rg�����

exp ��e



�� � �fr	T��h�
�� � � � � � �

i��
i�� � ��i �

�

i��
i	� � � � � � �


n
n i

g

r� r� are fresh

T 	����
exp ��v�v�� � � � � vn�



def
� h
� �movr��� T

	
val ��v

�

movr��� T
	
val ��v�

� � � � �

movr�n� T
	
val ��vn

�

movr�� r��� � � �
movrn� r�n�
jmpr���i

where r�i are fresh and r�i �� fr�� � � � � rng

T 	����
exp ��if��v� e�� e��



def
� hH�H�f� �� hg� �movr� T 	

val ��v

�
bnzr� ���
� I��i

where hHi� Iii � T 	����
exp ��ei



h � code��
��I�
�� r are fresh

T 	����
exp ��halt�� 
v



def
� h
� �movr�� T 	

val ��v

�
halt�T��� 


�i

Fig� 
�� Translation of Expressions from �A to TAL
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where � is bound in the heap to code���
 �I�� the translation of ei is Ii� the free
type variables of e� are contained in ��� and  is the register �le type corresponding
to the free variables of e��

% halt�� 
v is mapped to the sequence movr�� v � halt�� 


The formal translation uses a mapping � that tracks what label or register is used
to implement each term variable� As discussed above� if� terms are implemented by
a conditional branch to a new code block representing the else�clause� These new
code blocks must be heap allocated� so translations of terms �and translations of
heap values� which can contain terms� must return an addition to the heap as well
as an instruction sequence� Also� the translation of terms must track the current
type context � and register �le type  in order to place that information into new
code blocks resulting from if� terms�

Lemma �Code Generation Type Correctness�� If �AP then
�TAL Tprog��P 

�

By composing the �ve translations �CPS conversion� closure conversion� hoisting�
allocation� and code generation�� we obtain a translation from �F to TAL� The type
correctness of the composite translation follows from the preceding type correctness
lemmas�

Corollary �Compiler Type Correctness�� If �F e � � then
�TAL �Tprog 
 Aprog 
 Hprog 
 Cprog 
 Kprog���e

�

��
 TAL Factorial

The factorial computation translated into TAL appears in Figure �	� To obtain the
code shown� a few standard optimizations were applied� in particular� a clever �but
automatable� register allocation and the removal of redundant moves� Were the
e�ciency of this version unsatisfactory� a more e�cient version could be obtained
by improving the �F source program �e�g�� by using tail recursion�� by optimizing
intermediate language programs �e�g�� by eliminating unnecessary closure creation��
or by hand�coding a highly optimized version directly in TAL� such as the one in
Figure 	�


� EXTENSIONS AND PRACTICE

The previous sections provide a theoretical basis for compiling high�level languages
to typed assembly language� In this section we discuss some issues that arise when
putting this technology into practice�


�� Implementation

In order to investigate the applicability of our approach to realistic modern pro�
gramming languages� we have implemented a version of TAL for the Intel ���bit
Architecture �IA��� �Intel 	

�
� and have compilers for a number of di�erent source
languages including a safe C�like language �Morrisett et al� 	



 and a higher�order�
dynamically�typed language �a subset of Scheme�� Compilers for Standard ML and
a small object�oriented language are also in development�
TALx��� the target language for our compilers� is a strongly�typed version of the

IA�� assembly language� Our type checker veri�es standard MASM assembly code
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�H� fg� I� where
H �

l fact�

code
 �fr��hi�r��int�r���kg�
bnz r��l nonzero

unpack 
��r���r� � zero branch� call k �in r�� with 

ld r	�r�
�� � project k code
ld r��r�
�� � project k environment
mov r���

jmp r	 � jump with fr� � env�r� � 
g
l nonzero�

code
 �fr��hi�r��int�r���kg�
sub r	�r��� � n� 

malloc r

int� �k� � create environment for cont in r


st r

���r� � store n into environment
st r

���r� � store k into environment
malloc r�
	
 ��fr��hint�� ��k i�r��intg� hint

�� ��k i� � create cont closure in r�

mov r��l cont

st r�
���r� � store cont code
st r�
���r
 � store environment hn� ki
mov r��r	 � arg �� n� 

mov r��pack 
hint�� ��k i�r�� as �k � abstract the type of the environment
jmp l fact � call fact�env� n� 
� l cont�

l cont�

code
 �fr��hint�� ��k i�r��intg� � r� contains �n � 
��
ld r��r�
�� � retrieve n

ld r	�r�
�� � retrieve k

mul r��r��r� � n
 �n� 
��
unpack 
��r	��r	 � unpack k

ld r��r	
�� � project k code
ld r��r	
�� � project k environment
jmp r� � jump to k with fr� � env�r� � n�g

l halt�

code
 �fr��hi�r��intg�
mov r��r�

halt
int� � halt with result in r�

and I �

malloc r�
 � � create an empty environment �hi�
malloc r�
 � � create another empty environment
malloc r�
	
 ��fr��hi�r��intg� hi� � create halt closure in r�

mov r	�l halt

st r�
���r	 � store halt code
st r�
���r� � store halt environment hi
mov r��� � load argument ���
mov r��pack 
hi�r�� as �k � abstract the type of the environment
jmp l fact � call fact�hi� ��l halt�

and �k � ���h	
 ��fr����r��intg�� ��i

Fig� 
�� Typed Assembly Code for Factorial
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in which type annotations and complex instructions such as malloc are assembly
language macros� The MASM assembler processes this annotated code as it would
any other assembly code� expanding the instruction macros as their de�nitions
dictate and erasing types as it translates the assembly code into concrete machine
instructions� We have also implemented our own assembler� and are extending it
to produced typed object �les� Such typed object �les include code�data segments
and a type segment similar to Necula and Lee�s code and proof segments in their
PCC binaries �Necula 	

�
� We have implemented a tool� that reads TALx�� �les�
type checks them� and assembles them into object �les or invokes MASM�
The TALx�� type system is based on the type system described in this paper

but enriched with a variety of standard constructs including �oats� sums� arrays�
references� recursive types� and higher�order type constructors� In order to deal
with �oating point values correctly in the presence of polymorphism� we use a kind
structure that distinguishes types of objects that are �� bits wide �such as pointers
and integers� from types of objects possibly of other sizes� If a polymorphic type
variable � has the ���bit kind� then objects of type � can be passed in general
purpose registers� and tuple o�sets may be computable for �elds appearing after
a �eld of type �� If� on the other hand� � has the more general kind !Type"� the
type checker cannot tell how large objects of type � are and these operations are
disallowed�
To support separate compilation and type�safe linking� we have also augmented

our typed assembly language with a module system �Glew and Morrisett 	



� A
TAL interface �le speci�es the types and terms that a TAL implementation �le
de�nes� The types may either be opaque to support information hiding and mod�
ularity� or transparent to allow information sharing and admit some cross�module
optimizations� Our system performs a series of checks to ensure that implementa�
tions are well�formed and that their interfaces are compatible and complete� Once
interface compatibility and completeness has been veri�ed� we assemble the code
as described above and invoke a standard untyped linker�
To deal with the creation and examination of exception packets TALx�� includes

a type tagging mechanism �Glew 	



� The basic idea is that freshly created heap
pointers may be associated with a type� and that a tag for an unknown type � can
be tested against a tag for a known type � � If the test succeeds� the unknown type
is re�ned to the known type� Using these tags� we implement an exception packet
as an existentially packaged pair containing a tag of the hidden type �serving as
the exception name� and a value of that type�
TALx�� also contains some support for compiling objects� The type system has a

more general notion of subtyping than this paper that includes the usual contravari�
ant rule for code� right�extension and depth subtyping for tuples� and a variance
mechanism for arrays and references� Furthermore� the type�tagging mechanism
can also be used to tag objects with their class� This mechanism provides us with
a way to implement down�casting� However� while TALx�� contains the neces�
sary constructs to admit some simple object encodings� we are still developing the
theoretical and practical tools we need to admit e�cient object encodings�
Although this paper describes a CPS�based compiler� all of the compilers we

have built use a stack�based compilation model� Both standard continuations and
exceptions are allocated on the stack and the stack is also used to store spilled tem�
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porary values� The details of our stack typing discipline are discussed in Morrisett
et al� �	

�
� The primary mechanisms are as follows� The size of the stack and
the types of its contents are speci�ed by stack types� and code blocks indicate stack
types describing the state of the stack they expect� Since code is typically expected
to work with stacks of varying size� functions may quantify over stack type vari�
ables� resulting in stack polymorphism� The combination of stack types and our
register typing discipline allows us to model almost any standard calling conven�
tion� Arguments� results� and continuations �or return addresses� may be placed
in registers� on the stack� or both� and the implementer may specialize conventions
for known functions for better register allocation�
Real machines also have a �nite amount of heap space� It is straightforward

to link TALx�� to a conservative garbage collector �Boehm and Weiser 	
��
 and
reclaim dead heap values� It is worth noting that our use of conservative collection
is sound� Conservative collectors make assumptions about the way pointers can be
used in programs that untyped assembly language programs can violate� However�
the TAL type system guarantees that these assumptions do hold because labels are
a strong abstraction� labels cannot be synthesized out of integers and operations like
pointer arithmetic are disallowed� TAL guarantees that other GC constraints hold
because values that disobey the constraints cannot be constructed� For example�
TAL disallows pointers into the middle of objects and ensures alignment constraints
are obeyed�
Support for an accurate collector would require introducing tags so that we may

distinguish pointers from integers� or else require a type�passing interpretation �Tol�
mach 	

�� Morrisett and Harper 	

�
� In the former case� we would have to ensure
that all values are properly tagged and fully initialized at every potential garbage
collection site� We believe that it is feasible to devise a type system to ensure these
constraints� but we have not seriously investigated this option�


�� Future Work

There remain several directions in which TAL could be improved� One of the most
important is to make array manipulation e�cient� In order to ensure safe access
to arrays� TALx�� uses complex instructions �which expand into three real instruc�
tions� that perform subscript and update operations after checking that the array
o�set is in bounds� These bounds checks cannot be eliminated in the current TAL
framework� As a result� array�intensive applications will su�er the same perfor�
mance penalties that they do in Java just�in�time compilers where there is no time
to perform analyses to eliminate the checks� However� Xi and Pfenning �	

�� 	


�
	



 have shown how to eliminate array bounds checks e�ectively using dependent
types� TALx�� can be extended with similar constructs� We have implemented
a prototype version in which these checks can be eliminated� but we have not yet
added compiler support for generating code with unchecked array subscripts�
Another important direction is to augment our compiler with data�layout opti�

mizations such as those used in the TIL compiler �Tarditi et al� 	

�
� As discussed
in Section �� such optimizations require programs to have the ability to analyze
types at run�time� which is not directly compatible with the type�erasure interpre�
tation adopted here� To make such optimizations permissible� we are augmenting
the TALx�� language so that TAL programs can construct values that represent
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types and analyze those values when necessary� following the work of Crary et
al� �	

�� 	



�
Although we believe our translations are operationally correct� we are still search�

ing for robust proofs of correctness� Similar CPS �Danvy and Filinski 	

�
 and
closure conversion �Minamide et al� 	

�
 translations have already been proven cor�
rect� but these results do not easily extend to languages that include recursive types
or objects� The principal problem is that these arguments are based on inductively
de�ned� type�indexed� logical relations between source and target language terms�
Extending this framework so that it supports recursive types or objects is di�cult
because the relations can no longer be constructed in a simple inductive fashion� A
syntactic proof of correctness seems possible �we have constructed such arguments
for the CPS and closure conversion phases�� but the proofs are overly speci�c to the
details of the translation� Moreover� security�conscious applications might require
translations that are not only operationally correct but also fully abstract� We hope
further research on the proof theory of similar systems will eventually allow us to
construct these arguments�
Other avenues of future research include extension of our type system to the

same level of generality as PCC through the use of a dependent type theory� an
investigation of the support required to compile Java classes and objects into TAL�
and an exploration of type�theoretic mechanisms for performing explicit memory
management�

�� SUMMARY

We have given a compiler from System F to a statically typed assembly language�
The type system for the assembly language ensures that source level abstractions
such as closures and polymorphic functions are enforced at the machine�code level�
Furthermore� although the type system may preclude some advanced optimiza�
tions� many common compiler�introduced� low�level optimizations� such as register
allocation� instruction selection� or instruction scheduling are largely una�ected�
Furthermore� programmers concerned with e�ciency can hand�code routines in as�
sembly� as long as the resulting code type checks� Consequently� TAL provides a
foundation for high�performance computing in environments where untrusted code
must be checked for safety before being executed�

APPENDIX

Lemma �Context Strengthening�� If � � �� then�

�� � If � �TAL � then �� �TAL �

�	 � If � �TAL �� � �� then �� �TAL �� � ���

Proof� Part 	 is immediate by �type�� Part � is by induction on derivations�

Lemma �Subtyping Regularity�� If � �TAL � � � � then � �TAL � and
� �TAL � ��

Proof� By induction on derivations�

Lemma �Heap Extension�� If �TAL H � &� � �TAL � � &f� � �g �TAL h � � hval�
and � �� H then�
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�� � �TAL &f� � �g

�	 � �TAL Hf� �� hg � &f� � �g

�
 � If & �TAL R �  then &f� � �g �TAL R �  

�� � If &���  �TAL I then &f� � �g���  �TAL I

�� � If & �TAL h � � hval then &f� � �g �TAL h � � hval

�
 � If &�� �TAL w � �� then &f� � �g�� �TAL w � ��

�� � If &�� �TAL w � � wval then &f� � �g�� �TAL w � � wval

�� � If &���  �TAL v � � then &f� � �g���  �TAL v � �

Proof� Part 	 is immediate by �htype�� Part � follows from parts 	 and �� Parts
�$� are by induction on derivations�

Lemma �Heap Update�� If �TAL H � &� � �TAL � � &���� and &f� � �g �TAL
h � � then�

�� � �TAL &f� � �g

�	 � �TAL Hf� �� hg � &f� � �g

�
 � If & �TAL R �  then &f� � �g �TAL R �  

�� � If &���  �TAL I then &f� � �g���  �TAL I

�� � If & �TAL h � � hval then &f� � �g �TAL h � � hval

�
 � If &�� �TAL w � �� then &f� � �g�� �TAL w � ��

�� � If &�� �TAL w � � wval then &f� � �g�� �TAL w � � wval

�� � If &���  �TAL v � � then &f� � �g���  �TAL v � �

Proof� Part 	 is immediate by �htype� and Subtyping Regularity� Part � follows
from parts 	 and �� Parts �$� are by induction on derivations� The only interesting
case is the case for the rule �label�� The derivation must end�

� �TAL �� � �

&�� �TAL �� � � wval
�&���� � ���

If � �� �� then clearly the inference also holds for &f� � �g� Suppose � � ���
By hypothesis and Context Strengthening� we deduce � �TAL � � ��� Then the
conclusion may be proven with the �trans� rule�

� �TAL � � �� � �TAL �� � �

� �TAL � � �

&f� � �g�� �TAL � � � wval
�&f� � �g��� � � �

Lemma �Register File Update�� If & �TAL R �  and &� � �TAL w � � wval
then & �TAL Rfr �� wg �  fr � �g�

Proof� Suppose R is fr� �� w�� � � � � rn �� wng and  is fr� �� ��� � � � � rm �� �mg
where r may or may not be in fr�� � � � � rng� Since & �TAL R �  � by the rule �reg� it
must be the case that n � m and &� � �TAL wi � �i wval �for all 	 � i � n and some
�m��� � � � � �n�� So certainly for i such that ri �� r� &� � �TAL wi � �i wval� and by
hypothesis &� � �TAL w � � wval so by rule �reg� & �TAL Rfr �� wg �  fr �� �g�
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Lemma �Canonical Heap Forms�� If & �TAL h � � hval then�

�� � If � � ����
� then�
�a� h � code���
 �I
�b� &� ���  �TAL I

�	 � If � � h���� � � � � � �
�n��
n�� i then�

�a� h � hw�� � � � � wn��i
�b� &� � �TAL wi � �

�i
i

Proof� By inspection�

Lemma �Canonical Word Forms�� If �TAL H � & and &� � �TAL w � � wval
then�

�� � If � � int then w � i�

�	 � If � � ��
�� � � � � 
m
� then�
�a� w � ����� � � � � �n

�b� H��� � code���� � � � � �n� 
�� � � � � 
m
 ��I
�c�  �  ����	��

�d� &���� � � � � �n� 
�� � � � � 
m�  � �TAL I

�
 � If � � h���� � � � � � �
�n��
n�� i then�

�a� w � �
�b� H��� � hw�� � � � � wn��i
�c� &� � �TAL wi � �

�i
i

�� � If � � 	��� then w � pack �� �� w�
 as 	��� and &� � �TAL w� � � �� �	�
 wval�

Proof� �	� By inspection�

��� By induction on the derivation of &� � �TAL w � � wval� The derivation must
end with either the �label� or the �tapp�word� rule� Suppose the former� Then w �

�� &��� � � � and � �TAL � � � ���

� � Inspection of the subtyping rules then reveals

that � � � ���

� � Since �TAL H � &� we may deduce that & �TAL H��� � ���

� hval�
The conclusion follows by Canonical Heap Forms�

Alternatively� suppose the derivation ends with �tapp�word�� Then w � w���


and &� � �TAL w� � ���� �

� � wval with  �  ���	�
� The conclusion follows by
induction�

��� The derivation &� � �TAL w � � wval must be shown by use of the �label�
rule� Thus� w � �� &��� � � � and � �TAL � � � h���� � � � � � �

�n��
n�� i� Let us say

that 
 � 
 and 	 � �� Then inspection of the subtype rules reveals that � �

must be of the form h�
���
� � � � � � �

��n��
n�� i with 
�i � 
i �for each � � i � n � 	��

Since �TAL H � &� we may deduce that & �TAL H��� � h�
���
� � � � � � �

��n��
n�� i hval� Thus

H��� � hw�� � � � � wn��i and &� � �TAL wi � �
��i
i by Canonical Heap Forms� It remains

to show that &� � �TAL wi � �
�i
i for all � � i � n � 	� Suppose 
�i � 	 and 
i � �

�otherwise the conclusion is immediate�� Then &� � �TAL wi � �
�
i is shown by the

�init� rule� which also permits the deduction of &� � �TAL wi � �
�
i �

��� By inspection�
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Lemma � 'R Typing�� If & �TAL R �  and &� ��  �TAL v � � then &� � �TAL
'R�v� � � wval�

Proof� The proof is by induction on the syntax of v� Cases�

v � w� Immediate�

v � r� The only rule that can type v is �reg�val� and this rule requires � �  �r�� The
only rule that can type R is �reg� and this rule requires &� � �TAL R�r� � � wval�
The conclusion follows since 'R�r� � R�r��

v � v���
� The only rule that can type v is �tapp�val�� so � � ���

� ���	�
 and

&� ��  �TAL v� � ���� �

� �� By induction we deduce &� � �TAL 'R�v�� � ���� �

� � wval�

and then the rule �tapp�word� proves &� � �TAL 'R�v����
 � ���

� ���	�
 wval� The
result follows since 'R�v���
� � 'R�v����
�

v � pack ��� v�
 as 	��� �� The only rule that can type v is �pack�val�� so � � 	��� �

and &� ��  �TAL v� � � ���	�
� By induction we deduce &� � �TAL 'R�v�� � � ���	�
 wval
and then the rule �pack�word� proves &� � �TAL pack ��� 'R�v

��
 as 	��� � � 	��� � wval�
The result follows since 'R�pack ��� v�
 as 	��� �� � pack ��� 'R�v��
 as 	��� ��

Lemma �Canonical Forms�� If �TAL H � & hval� & �TAL R �  � and
&� ��  �TAL v � � then�

�� � If � � int then 'R�v� � i�

�	 � If � � ��
�� � � � � 
m
� then�
�a� 'R�v� � ����� � � � � �n

�b� H��� � code���� � � � � �n� 
�� � � � � 
m
 ��I
�c�  �  ����	��

�d� &���� � � � � �n� 
�� � � � � 
m�  � �TAL I

�
 � If � � h���� � � � � � �
�n��
n�� i then�

�a� 'R�v� � �
�b� H��� � hw�� � � � � wn��i
�c� &� � �TAL wi � �

�i
i

�� � If � � 	��� then 'R�v� � pack �� �� w
 as 	��� and &� � �TAL w � � �� �	�
 wval�

Proof� Immediate from 'R Typing and Canonical Word Forms�

Lemma �Type Substitution�� If �
 �TAL �i then�

�� � If &� ��� �
�  �TAL I then &� �
�  ���	��
 �TAL I���	��


�	 � If &� ��� �
�  �TAL v � � then &� �
�  ���	��
 �TAL v���	��
 � � ���	��


�
 � If &� ��� �
 �TAL w � � wval then &� �
 �TAL w���	��
 � � ���	��
 wval

�� � If ��� �
 �TAL  � �  � then �
 �TAL  ����	��
 �  ����	��


�� � If ��� �
 �TAL �� � �� then �
 �TAL �����	��
 � �����	��


�
 � If ��� �
 �TAL � then �
 �TAL � ���	��


Proof� By induction on derivations� The only interesting case the case for the
rule �type��

FTV �� � � f��� �
g

��� �
 �TAL �
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The hypothesis must also be proven with the rule �type�� so FTV ��i� � f�
g�
Consequently�

FTV �� ���	��
� � FTV �� � n f��g � �
�

i
FTV ��i��

� f��� �
g n f��g � f�
g

� f�
g

Hence we may prove �
 �TAL � ���	��
 using the �type� rule�

Lemma �Register File Weakening��
If � �TAL  � �  � and &�� �TAL R �  � then &�� �TAL R �  ��

Proof� By inspection of the rules �weaken� and �reg��

Theorem �Subject Reduction�� If �TAL P and P ��� P � then �TAL P ��

Proof� P has the form �H�R� �� I� or �H�R� jmpv�� Let TD be the derivation
of �TAL P � Consider the following cases for jmp or ��

case jmp� TD has the form�

�TAL H � & & �TAL R �  

&� ��  �TAL v � �� 
� � � �TAL  �  �

&� ��  �TAL jmp v

�TAL P

By the operational semantics� P � � �H�R� I���	��
� where 'R�v� � ����
 and H��� �
code���
 ���I� Then�

�	� �TAL H � & is in TD�

��� From � �TAL  �  � and & �TAL R �  it follows by Register File Weakening
that & �TAL R �  ��

��� By Canonical Forms it follows from &� ��  �TAL v � �� 
� � that  � �  �����	��

and &� ���  �� �TAL I� By Type Substitution we conclude &� ��  � �TAL I���	��
�

case add� mul� sub� TD has the form

�TAL H � & & �TAL R �  

&� ��  �TAL rs � int &� ��  �TAL v � int
&� ��  � �TAL I

&� ��  �TAL arithp rd� rs� v� I

�TAL P

where  � �  frd � intg� By the operational semantics� P � � �H�R�� I� where
R� � Rfrd �� R�rs� p 'R�v�g� Then�

�	� �TAL H � & is in TD�

��� By Canonical Forms it follows that R�rs� and 'R�v� are integer literals� and
therefore &� � �TAL R�rs� p 'R�v� � int wval� We conclude & �TAL R� �  � by
Register File Update�

��� &� ��  � �TAL I is in TD�
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case bnz� TD has the form�

�TAL H � & & �TAL R �  

&� ��  �TAL r � int &� ��  �TAL v � �� 
� �

� �TAL  �  � &� ��  �TAL I

&� ��  �TAL bnz r� v� I

�TAL P

If R�r� � � then P � � �H�R� I� and �TAL P � follows since &� ��  �TAL I is in TD�
Otherwise the reasoning is exactly as in the case for jmp�

case ld� TD has the form

�TAL H � & & �TAL R �  

� � i � n� 	 
i � 	
&� ��  �TAL rs � h�

��
� � � � � � �

�n��
n�� i

&� ��  � �TAL I

&� ��  �TAL ld rd� rs�i
� I

�TAL P

where  � �  frd � �ig� By the operational semantics� P � � �H�R�� I� where R� �
Rfrd �� wig� R�rs� � �� H��� � hw�� � � � � wm��g and � � i � m� Then�

�	� �TAL H � & is in TD�

��� By Canonical Forms it follows from &� ��  �TAL rs � h���� � � � � � �
�n��
n�� i that

m � n and &� � �TAL wj � �
�j
j for � � j � n� Since 
i � 	 it must be the case

�by inspection of the �init� rule� that &� � �TAL wi � �i wval� By Register File
we conclude & �TAL R� �  ��

��� &� ��  � �TAL I is in TD�

case malloc� TD has the form

�TAL H � & & �TAL R �  

� �TAL �i &� ��  � �TAL I

&� ��  �TAL malloc rd���� � � � � �n
� I

�TAL P

where � � h��� � � � � � �
�
ni� &

� � &f� � �g� and  � �  frd � �g� By the operational
semantics� P � � �H�� R�� I� where H� � Hf� �� h#��� � � � � #�nig� R� � Rfrd �� �g�
and � �� H� Then�

�	� By the �tuple� and �uninit� rules we may deduce &� �TAL h#��� � � � � #�ni � � hval�
By Heap Extension it follows that �TAL H� � &��

��� By the �type�� �re�ex�� and �label� rules we may deduce that &�� � �TAL � �
� wval� By Heap Extension we deduce that &� �TAL R �  and it follows by
Register File Update that &� �TAL R� �  ��

��� By Heap Extension� &�� ��  � �TAL I�

case mov� TD has the form

�TAL H � & & �TAL R �  

&� ��  �TAL v � � &� ��  � �TAL I

&� ��  �TAL mov r� v� I

�TAL P

where  � �  fr � �g� By the operational semantics� P � � �H�R�� I� where R� �
Rfr �� 'R�v�g� Then�
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�	� �TAL H � & is in TD�

��� By 'R Typing it follows from &� ��  �TAL v � � that &� � �TAL 'R�v� � � wval�
Using Register File Update we conclude that & �TAL R� �  ��

��� &� ��  � �TAL I is in TD�

case st� TD has the form

�TAL H � & & �TAL R �  

� � i � n� 	 &� ��  �TAL rd � ��
&� ��  �TAL rs � �i &� ��  � �TAL I

&� ��  �TAL st rd�i
� rs� I

�TAL P

where�

�� � h���� � � � � � �
�n��
n�� i

�� � h���� � � � � � �
�i��
i�� � ��i � �

�i��
i�� � � � � � �

�n��
n�� i

 � �  frd � ��g

By the operational semantics� P � � �H�� R� I� where

H� � Hf� �� hw�� � � � � wi��� R�rs�� wi��� � � � � wm��ig

and R�rd� � �� H��� � hw�� � � � � wmi� and � � i � m� Then�

�	� Since &� ��  �TAL rd � ��� it must be the case that  �rd� � �� and thus since
& �TAL R �  and R�rd� � � we may deduce &� � �TAL � � �� wval� The latter
judgment must be proven with the �label� rule� hence � �TAL ��� � �� where
&��� � ���� Note that it follows from Subtyping Regularity and the de�nition
of �� that � �TAL �j for each � � j � n�
Let us say that 
 � 
 and 	 � �� Inspection of the subtyping rules reveals that

��� must be of the form h�
���
� � � � � � �

��n��
n�� i with 
�j � 
j� Let�

��� � h�
���
� � � � � � �

��i��
i�� � ��i � �

��i��
i�� � � � � � �

��n��
n�� i

Then � �TAL ��� � ��� and � �TAL ��� � ��� Since �TAL H � &� we may deduce

that m � n and &� � �TAL wj � �
�
�

j

j for � � j � n� Let &� � &f� � ���g� By

Heap Update it follows that &�� � �TAL wj � �
��j
j �

Using 'R Typing and Heap Update� we may deduce that &�� � �TAL R�rs� �
�i wval and� by applying the �init� and �tuple� rules� we may conclude�

&� �TAL hw�� � � � � wi��� R�rs�� wi��� � � � � wm��i � �
�

� hval

Hence �TAL H � � &� by Heap Update�

��� By Heap Update we may deduce &� �TAL R �  � Recall that � �TAL ��� � ���
Thus� &�� � �TAL � � �� wval� and by Register File Update we may conclude
that &� �TAL R �  � �since R � Rfrd �� �g��

��� By Heap Update� &�� ��  � �TAL I�
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case unpack� TD has the form

�TAL H � & & �TAL R �  

&� ��  �TAL v � 	��� � &���  fr�� �g �TAL I

&� ��  �TAL unpack��� r
� v� I

�TAL P

By the operational semantics� P � � �H�R�� I�� where R� � Rfr �� wg� I� � I��	�

and 'R�v� � pack ��� w
 as 	��� �� Then�

�	� �TAL H � & is in TD�

��� By Canonical Forms it follows from &� ��  �TAL v � 	��� � that &� � �TAL w �
� ���	�
 wval� Let  � �  fr � � ���	�
g� By Register File Update if follows that
& �TAL R� �  ��

��� By Type Substitution it follows from &���  fr�� �g �TAL I that &� ��  � �TAL I��

Theorem �Progress�� If �TAL P then either there exists P � such that P ���
P � or P is of the form �H�Rfr� �� wg� halt�� 
� �and� moreover� &� � �TAL w �
� wval for some & such that �TAL H � &��

Proof� Suppose P � �H�R� Ifull�� Let TD be the derivation of �TAL P � The
proof is by cases on the �rst instruction of Ifull �

case halt� TD has the form�

�TAL H � & &� � �TAL R �  

&� ��  �TAL r� � �

&� ��  �TAL halt�� 


�TAL �H�R� halt�� 
�

By 'R Typing we may deduce that 'R�r�� is de�ned and &� � �TAL 'R�r�� � � wval�
In other words� R � R�fr� �� wg and &� � �TAL w � � wval�

case add� mul� sub� TD has the form�

�TAL H � & &� � �TAL R �  

&� ��  �TAL rs � int &� ��  �TAL v � int � � �

&� ��  �TAL arithp rd� rs� v� I

�TAL �H�R� Ifull�

By Canonical Forms� R�rs� and R�v� each represent integer literals� Hence P ���
�H�Rfrd �� R�rs� p 'R�v�g� I��

case bnz� TD has the form�

�TAL H � & &� � �TAL R �  

&� ��  �TAL r � int &� ��  �TAL v � �� 
� � � � �

&� ��  �TAL bnz r� v� I

�TAL �H�R� Ifull�

By Canonical Forms�R�r� is an integer literal and 'R�v� � ����� � � � � �n
 withH��� �
code���� � � � � �n
� 

���I�� If R�r� � � then P ��� �H�R� I�� If R�r� �� � then P ���
�H�R� I����	��
��
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case jmp� TD has the form�

�TAL H � & &� � �TAL R �  

&� ��  �TAL v � �� 
� � � � �

&� ��  �TAL jmpv

�TAL �H�R� Ifull�

By Canonical Forms� 'R�v� � ����� � � � � �n
 with H��� � code���� � � � � �n
� 
���I��

Hence P ��� �H�R� I����	��
��

case ld� TD has the form�

�TAL H � & &� � �TAL R �  

&� ��  �TAL rs � h�
��
� � � � � � �

�n��
n�� i � � �

&� ��  �TAL ld rd� rs�i
� I
�	 � i � n�

�TAL �H�R� Ifull�

By Canonical Forms� R�rs� � � with H��� � hw�� � � � � wn��i� Hence P ���
�H�Rfrd �� wig� I��

case malloc� Suppose that Ifull is of the form mallocr���� � � � � �n
� I� Then P ���
�Hf� �� h#��� � � � � #�nig� Rfr �� �g� I� for some � �� H�

case mov� TD has the form�

�TAL H � & &� � �TAL R �  

&� ��  �TAL v � � � � �

&� ��  �TAL mov r� v� I

�TAL �H�R� Ifull�

By 'R Typing� 'R�v� is de�ned� Hence P ��� �H�Rfr �� 'R�v�g� I��

case st� TD has the form�

�TAL H � & &� � �TAL R �  

&� ��  �TAL rd � h�
��
� � � � � � �

�n��
n�� i

&� ��  �TAL rs � �i � � �

&� ��  �TAL st rd�i
� rs� I
�	 � i � n�

�TAL �H�R� Ifull�

By Canonical Forms� R�rd� � � with H��� � hw�� � � � � wn��i� By 'R Typing� R�rs�
is de�ned� Hence P ��� �Hf� �� hw�� � � � � wi��� R�rs�� wi��� � � � � wn��ig� R� I��

case unpack� TD has the form�

�TAL H � & &� � �TAL R �  

&� ��  �TAL v � 	��� � � �

&� ��  �TAL unpack��� r
� v� I

�TAL �H�R� Ifull�

By Canonical Forms� 'R�v� � pack �� �� w
 as 	��� � Hence P ��� �H�Rfr ��
wg� I�� �	�
��
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