Sound and Complete Elimination of Singleton
Kinds

KARL CRARY
Carnegie Mellon University

Singleton kinds provide an elegant device for expressing type equality information resulting from
modern module languages, but they can complicate the metatheory of languages in which they ap-
pear. I present a translation from a language with singleton kinds to one without, and prove that
translation to be sound and complete. This translation is useful for type-preserving compilers gen-
erating typed target languages. The proof of soundness and completeness is done by normalizing
type equivalence derivations using Stone and Harper’s type equivalence decision procedure.

Categories and Subject Descriptors: D.3.3 [Programming Languages|: Language Constructs
and Features—Modules; D.3.4 [Programming Languages]: Processors— Compilers

General Terms: Languages, Theory

Additional Key Words and Phrases: Type systems, singleton kinds

1. INTRODUCTION

Type-preserving compilation, compilation using statically typed intermediate lan-
guages, offers many compelling advantages over conventional untyped compilation.
A typed compiler can utilize type information to enable optimizations that would
otherwise be prohibitively difficult or impossible. Internal type checking can be
used to help debug a compiler by catching errors introduced into programs in op-
timization or transformation stages. Finally, if preserved through the compiler to
its ultimate output, types can be used to certify that executables are safe, that is,
free of certain fatal errors or malicious behavior [Morrisett et al. 1999].

For typed compilation to be practical, we require elegant yet expressive type
theories for use in the compiler: expressive because they must support the full
expressive power of a real source language, and elegant because they must be prac-
tical for a compiler to manipulate. One important issue arising in the design of such
type theories for compiling Standard ML, Objective CAML, and similar languages
is how to account for type abbreviations and sharing constraints in the module

This research was sponsored by the Advanced Research Projects Agency CSTO under the title
“The Fox Project: Advanced Languages for Systems Software”, ARPA Order No. C533, issued
by ESC/ENS under Contract No. F19628-95-C-0050. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 1529-3785/YY/00-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY, Pages 1-31.

2 . Karl Crary

language. For example, consider the following SML signature:

signature SIG =

sig
type t = int
val x : ¢t
val £ : t > t
end

If S is a structure having signature SIG, the type theory must ensure that S.t is
interchangeable with int in any code having access to S.

The standard account of sharing in type theory was developed independently by
Harper and Lillibridge, under the name translucent sums [Harper and Lillibridge
1994; Lillibridge 1997], and by Leroy, under the name manifest types [Leroy 1994]
(and extended in Leroy [1995]). These type theories provide a facility for stating
type abbreviations in signatures and (importantly) ensure the correct propagation
of type information resulting from those abbreviations. (Exactly what is meant by
correct propagation is discussed in Section 2.1.) Translucent sums are employed
in the type-theoretic definition of Standard ML given by Harper and Stone [2000]
(currently the only formal account of an entire practical programming language in
type theory), and manifest types are similarly employed (somewhat less formally)
by Leroy [2000] for Objective CAML.

In this paper I consider a type theory based on singleton kinds [Stone and Harper
2000], a variant of the translucent sum/manifest type formalism. The singleton
kind calculus differs from the module-oriented presentation in that it separates the
module system from the mechanisms for type abbreviations and focuses on the
latter. This separation is appropriate, first, because the two issues are orthogonal
(although they typically arise together in practice), but more importantly, because
type abbreviations persevere even after the compiler eliminates modules [Harper
et al. 1990]. Furthermore, separating modules from the issue of type propagation
makes it unnecessary to compare types by name (as in most module-oriented ac-
counts), which makes it possible to propagate more type information. (An example
of this is given in Section 2.1.)

Singleton kinds provide a very elegant and uniform type-theoretic mechanism
for ensuring the propagation of type information. Kinds are used in type theories
containing higher-order type constructors to classify type constructors just as types
classify ordinary terms. Using singleton kinds, in the above example S.t is given
the kind S(int), the kind containing only the type int (and types equal to it).
Propagation of type information is then obtained by augmenting the typechecker
with the rule that if 7 has kind S(7'), then 7 = 7'.

When using singleton kinds in practice, the question arises of how singleton
kinds affect typechecking, given that they provide a new (and conceivably difficult
to discover) way to show types to be equal. In fact, Harper and Stone [2000]
show that there exists a very simple algorithm for deciding equality of types in
the presence of singleton kinds. Indeed, the algorithm is very nearly identical to
the usual algorithm employed in the absence of singletons in practice (as opposed
to the less-efficient algorithms often considered in theory). In this sense, singleton
kinds complicate the compiler very little.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 3

Nevertheless, there are some good reasons why one may want to compile away
singleton kinds: Although the decision algorithm discussed above is simple, its proof
of correctness is sophisticated and may be difficult to extend to more complicated
type systems. The latter phases of a type-preserving compiler may involve some
very complicated type systems indeed [Morrisett et al. 2002; Walker et al. 2000;
Crary and Weirich 1999; Smith et al. 2000; Shao et al. 2002]. Extending Stone
and Harper’s proof to these type systems, some of which already have nontrivial
decidability proofs, is a daunting prospect. Moreover, there already exist a variety
of tools for manipulating low-level typed languages that, by and large, do not
support singleton kinds.

In this paper, I present such a strategy for compiling away singleton kinds. To
implement the source language correctly, this elimination strategy should be sound
and complete relative to the singleton calculus, that is, two types should be equal
in the singleton calculus if and only if they are equal after singleton elimination.
This means that the elimination process does not cause any programs to cease to
typecheck, nor does it allow any programs to typecheck that would not have before.!

The compilation process is based on the natural idea of substituting definitions
for any appearances of variables having singleton kinds. However, how to do this
in a sound and complete manner is not obvious because, as discussed below in
Section 3.1, in the presence of internal bindings, it is difficult to determine whether
or not a variable has a singleton kind. Although I show this issue can be handled
elegantly, as with Stone and Harper, the correctness proof is not obvious. This
proof is the central technical contribution of the paper.

The existence of a sound and complete compilation strategy does not imply that
singleton kinds are useless. They provide an extremely elegant and succinct account
of ML’s type sharing that (with modules taken out of the picture) is essentially
equivalent to the standard type-theoretic accounts employed to explain practical
source languages. To exploit this result and remove singletons from consideration
entirely (in the absence of some alternative) would require programmers to eliminate
type abbreviations by hand, resulting in verbose, unreadable code (to no particular
benefit). Moreover, singleton kinds may also be useful for some other purposes such
as compression of type information, or polymorphic closure conversion [Minamide
et al. 1996].

What this result does mean is using translucent sums, manifest types or singleton
kinds to express sharing in the source language need not constrain the compilation
strategy. Omne may use singleton kinds through as many compilation phases as
desired, and then compile them away and proceed without them. For example, a
reasonable architecture is to use singleton kinds in the compiler’s front end (which
performs ML-specific optimizations and transformations), but not in the back end
(which may use complicated type systems for code generation and low-level trans-
formations).

This paper is organized as follows: In Section 2, I formalize the singleton kind

11t may be argued that only the former property is essential to implement the source language
correctly, that it is acceptable to allow more programs to typecheck provided that the post-
translation type system is still sound. Nevertheless, the latter is still a desirable property, and it
is obtained with no additional trouble.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

4 . Karl Crary

kinds K = T|S() | K. Ky | Sa:K1. K3
constructors ¢ = a|b|da:K.c|cica | {c1,co) | mc| mac
assignments I'i=¢€|T,a:K

Fig. 1. Syntax

calculus and discuss some of its subtleties that make it complicated to work with.
In Section 3, I present the singleton elimination strategy and state its correctness
theorem. Section 4 is dedicated to the proof of the correctness theorem, and con-
cluding remarks appear in Section 5.

This paper assumes familiarity with type systems with higher-order type con-
structors and dependent types. The correctness proof draws from the work of
Stone and Harper [2000] showing decidability of type equivalence in the presence
of singleton kinds, but we will use their results almost entirely “off the shelf,” so
familiarity with their paper is not required.

2. A SINGLETON KIND CALCULUS

We begin by formalizing the singleton calculus that is the subject of this paper.
The syntax of the singleton calculus is given in Figure 1. It consists of a class
of type constructors (usually referred to as “constructors” for brevity) and a class
of kinds, which classify constructors. The class of constructors contains variables
(ranged over by «), a collection of base types (ranged over by b), and the usual
introduction and elimination forms for functions and pairs over constructors. We
could also add a collection of primitive type operators (such as 1list or ->) without
difficulty, but have not done so in the interest of simplicity.

The kind structure is the novelty of the singleton calculus. The base kinds in-
clude T, the kind of all types, and S(c), the kind of all types definitionally equal
to ¢. Thus, S(c) represents a singleton set, up to definitional equality. The con-
structor ¢ in S(c) is permitted to be open, and consequently kinds may contain
free constructor variables, which makes it useful to have dependent kinds. The
kind ITa: K4 .K5 contains functions from K7 to Ko, where « refers to the function’s
argument and may appear free in K5. Analogously, the kind Ya:K;.Ks contains
pairs of constructors from K7 and K5, where a refers to the left-hand member and
may appear free in K. As usual, when « does not appear free in K5, we write
Ia:K1. Ko as K1 — Ko and Ya:K1.K9 as K1 x Ks.

In addition, the syntax provides a class of assignments, which assign kinds to
free constructor variables, for use in the calculus’s static semantics. In a practical
application, the language would be extended with an additional class of terms, but
for our purposes (which deal with constructor equality) we need not be concerned
with terms, so they are omitted.

As usual, alpha-equivalent expressions (written F = E’) are taken to be identical.
The capture-avoiding substitution of ¢ for o in E (where E is a kind, constructor
or assignment) is written E{c/a}. We also will often desire to define substitutions
independent of a particular place of use, so when o is a substitution, we denote
the application of ¢ to the expression E by E{c}. Separately defined substitu-
tions will usually be written in the form {¢1/a1} - {cn/an}, denoting a sequential

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 5

signature SIG2 = funsig FSIG
sig (S : sig
type s type s
type t = int ... value fields ...
type u = s * t end) =
. value fields ... sig
end type t

type u = S.s * t
. value fields ...
end

Fig. 2. Sample Signatures

substitution with the leftmost substitution taking place first.

As discussed in the introduction, the principal intended use of singleton kinds is
in conjunction with module systems. For example, the type portion of signature
SIG2 in Figure 2 is translated to the kind:

Ya:T. $3:S(int). S(axp)

Note the essential use of dependent sums in this kind. Dependent products arise
from the phase splitting [Harper et al. 1990] of functors, in which the static por-
tion of a functor (i.e., its action on types) is separated from the dynamic portion.
For example, after phase-splitting, the type portion of the functor signature FSIG
in Figure 2 (given in the syntax of Standard ML of New Jersey version 110) is
translated to the kind:

Ho:T. (S3:T. S(ax3))

2.1 Judgements

The inference rules defining the static semantics of the singleton calculus are given
in Appendix A. For the reader’s convenience, the rules are given in the same
order and essentially the same form as in Stone and Harper [2000]. A summary
of the judgements that these rules define, and their interpretations, are given in
Figure 3. The context and kind equality judgements are auxiliary judgements used
in theorems but not by any of the other judgements. For the most part, the static
semantics consists of the usual rules for a dependently typed lambda calculus with
products and sums (but lifted to the constructor level). Again, the novelty lies
with the singleton kinds. Singleton kinds have two introduction rules (one for kind
assignment and one for equivalence),

T'ke: T I'Fe=c:T
I'e:S(c) 'ke=¢:5(c)
and one elimination rule:
F'ke:S()
I'kFe=c:T

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

6 . Karl Crary

Judgement Interpretation

'+ ok T' is a valid assignment

FI =19 Iy and I's are equivalent assignments
'K K is a valid kind

'K <K, K, is a subkind of Ky

'Ky =K, K7 and K5 are equivalent kinds

I'Fe: K c is a valid constructor with kind K

I'tecg =co: K ¢ and ¢y are equivalent as members of kind K

Fig. 3. Judgement Forms

These rules capture the intuition of singleton kinds: The first says that any type
belongs to its own singleton kind. The second says that equivalent types are also
considered equivalent as members of their singleton kind. The third says that if
one type belongs to another’s singleton kind, then those types are equivalent.

The complexity of the singleton calculus arises from the above rules in conjunction
with the subkinding relation generated by the following two rules:

The:T I'ter=c: T
kS <T I'F S(e1) < S(er)

These rules are essential for singleton kinds to serve their intended purpose in a
modern module system. The first allows a signature to match a supersignature
obtained by removing equality specifications. For example, structures having the
signature SIG from the introduction should also match the signature obtained by re-
placing the specification “type t = int” (which we might write type t : S(int))
with simply “type t” (which we might write type t : T'). The second allows a
signature to match another signature obtained by replacing equality specifications
with different but equivalent ones.

The presence of subkinding makes the usual context-insensitive methods of deal-
ing with equivalence impossible. Consider the identity function, Aa:T.a, and the
constant int function, Aa:T.int. These functions are clearly inequivalent as mem-
bers of T' — T that is, the judgement - Aa:T.a = Aa:T.int : T — T is not
derivable. However, since T — T is a subkind of S(int) — T, these two functions
can also be compared as members of S(int) — T and in that kind they are equiv-
alent. This is because the bodies o and int are compared under the assignment
a:S(int), under which o and int are equivalent by the singleton elimination rule.
This example makes it clear that to deal with constructor equivalence in the sin-
gleton calculus, one must take into account the contexts in which the constructors
appear.

The determination of equivalence is further complicated by the fact that the
classifying kind may be given implicitly. For example, the classifying kind may
be imposed by a function on its argument. Consider the constructors S(Aa:T.«)
and [B(Aa:T.int). These are well-formed under an assignment giving § the kind
(T'— T) — T and also under one giving § the kind (S(int) — T') — T. However,
for the same reason as above, the two constructors are equivalent under the second

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 7

assignment but not the first.? The classifying kind can then be made even further
remote by making 3 a function’s formal argument instead of a free variable, and so
on.

2.2 A Singleton-Free System

To formalize our results, we also require a singleton-free target language into which
to translate expressions from the singleton calculus. We will define the singleton-
free system in terms of its differences from the singleton calculus.

We will say that a constructor ¢ (not necessarily well-formed) syntactically be-
longs to the singleton-free calculus provided that ¢ contains no singleton kinds.
Note that as a consequence of containing no singleton kinds, all product and sum
kinds may be written in non-dependent form. Also, all kinds in the singleton-free
calculus are well-formed.

The inference rules for the singleton-free system are obtained by removing from
the singleton calculus all the rules dealing with subkinding (Rules 9-13, 28 and
45) and all the rules dealing with singleton kinds (Rules 6, 15, 25, 34 and 35).
Note that derivable judgements in the singleton-free system must be built using
only expressions syntactically belonging to the singleton-free calculus. When a
judgement is derivable in the singleton-free system, we will note this fact by marking
the turnstile .

3. ELIMINATION OF SINGLETON KINDS

The critical rule in the static semantics of the singleton calculus is the singleton
elimination rule (Rule 34). The main aim of the singleton kind elimination process
is to rewrite constructors so that any equivalences that hold for those constructors
may be derived without using that rule. If this aim is achieved, any singleton kinds
remaining within the constructors are not used (in any essential way) and can
simply be erased, resulting in valid constructors and derivations in the singleton-
free system.

This erasure process is made precise in Figure 4, which defines a mapping (—)°
from singleton calculus kinds to singleton-free kinds that replaces all singleton kinds
by T'. The erasure mapping is lifted to constructors and assignments in the obvious
manner. If I' - ¢; = ¢o : K is derivable without using singleton elimination, then
I'° kg ¢1° = ¢2° : K° is derivable in the singleton-free system. A slightly stronger
version of this fact is formalized as Lemma 25 in Section 4.4.

Thus, our goal is to rewrite constructors in such a manner that the singleton
elimination rule is not necessary. As mentioned in the introduction, this rewriting

2As an aside, in many module-oriented accounts [Harper and Lillibridge 1994; Lillibridge 1997;
Leroy 1994; 1995] it is impossible to discover that the module analogues of these types are equal
because comparisons can be made only on expressions in named form. Naming the expressions
Aa:T.a and Aa:T.int obscures the possible connection between them, which depends essentially
on their actual code. (In the first-class account of Harper and Lillibridge [Harper and Lillibridge
1994; Lillibridge 1997] this is essential because the equality may not hold—in addition to being
impossible to discover—since a functor can inspect the store before deciding what type to return.)
This is an example of when the singleton kind account can propagate more type information than
those module-oriented accounts. However, it is possible to give a module-oriented account that
does propagate as much type information as the singleton kind account [Dreyer et al. 2003].

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

8 . Karl Crary

T o7
Sk =T
(Ma:K,.K>)° Y K° — Ky°
(Ba:K1.K2)? = Ki° x K°

Fig. 4. Singleton Erasure

is done by substituting definitions for variables whenever singleton kinds provide
such definitions. This works out quite simply in first-order cases, but higher-order
cases raise some subtle issues. We will explore these issues by considering a number
of examples before defining the fully general elimination process.

3.0.0.1 Ezample 1. Suppose we are working under the assignment «:S(int),
(B:S(bool). Naturally, we replace all free appearances of « in the constructor in
question by int, and replace all free appearances of 3 by bool. This is done simply
by performing the substitution {bool/S}{int/a} on the constructor in question.

In this example, we refer to int as the expansion of «, and likewise bool is
the expansion of 3. In general, the elimination process will have the same gross
structure as in this example. For an assignment I' = aq:K7, ..., a,: K, we will
define a substitution R(T) of the form {c¢,/a,}---{c1/a1} where each ¢; is the
expansion of «;.

3.0.0.2 Ezample 2. Suppose we are working under the assignment I' =
a:S(int), 5:S(a). In this case, analogously to the previous example, R(T) is
{a/B}{int/a}. Note that since this is a sequential substitution, it is equivalent to
the substitution {int/f}{int/a}, as one would expect.

3.0.0.3 Ezample 3. Suppose « is assigned the kind S(int) x S(bool). In this
case, T« is equal to int and mea is equal to bool. We can write these equalities
into a constructor by substituting for o with the pair (int,bool).

3.0.0.4 Ezample 4. In the previous examples, the expansion of a variable «a did
not contain «, but this is not true in general. Suppose « is assigned the kind
T x S(int). In this case, ma« is equal to int, but 7« is not given a definition
and should not be changed. We handle this by substituting for o with the pair
(ma,int).

As this example illustrates, a good way to understand expansions is to view
them as eta-long forms® of constructors. This interpretation is precisely correct,
provided we view the replacement of a constructor by its singleton definition as
an eta-expansion. In fact, the ultimate definition of expansions will eta-expand
constructors uniformly, so, for example, if « has kind T x T, its expansion will
be (ma, mea) (instead of just). This uniformity will make the correctness proof
simpler, but a practical implementation would probably optimize such cases.

3That is, beta-normal forms such that no eta-expansions can be performed without creating beta-
redices.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 9

3.0.0.5 FEzample 5. Suppose « is assigned the kind X3:7.5(3). Then moa is
known to be equal to m« (although its precise value is unknown). In this case the
expansion of « is (m«, T).

3.0.0.6 Ezample 6. Suppose « is assigned the kind £3:5(int).S(3). In this case
mia and maa are equal to int and the expansion is (int, int).

Generally, if a has the kind 33:K;.K>, the expansion of « will be the pair (¢, ¢3)
where ¢; is the expansion of 7y, and ¢y is the expansion of moa with the additional
information that § refers to ma and has kind K;. We may generalize all the
examples so far with the following definition, where R(c, K) is the expansion of ¢
assuming ¢ is known to have kind K:
el

def
= cl

R(c,T)
R(e, S())
R(c,So:K1.K) < (R(me, K1), R(mac, Ko{R(mic, K1) /a})

3.0.0.7 Ezample 7. Suppose « is assigned the kind II3:7.S(1ist 3) (where
list : T — T). Then for any argument c, the application ac is equal to listc.
Thus, the appropriate expansion of « is AG:T.1ist 3. Note that this is the eta-long
form of list.

3.0.0.8 Ezample 8. Suppose « is assigned the kind IIF:T. (T x S(3)). In this
case, for any argument ¢, ma(ac) is known to be equal to ¢, but no definition is
given for m(a¢). Thus, the expansion of « is AG:T.(m (a), B).

These last two examples suggest the following generalization for product kinds:

R(c,ll: K1.K3) = Aa:K;. R(ca, Ks) (wrong)

This is close to the right generalization, but, as we will see in the next section, it is
not quite satisfactory due to the need to account for bound variables. Nevertheless,
it provides good intuition on the process of expansion over product kinds.

3.1 Bound Variables

Thus far we have exclusively considered rewriting constructors to account for the
kinds of their free variables. To be sure that no uses of the singleton elimination
rule are necessary, we must also consider bound variables. For example, it would
seem as though the constructor Aa:S(int).a should be rewritten to something like
Aa:S(int).int.

A naive approach would be to traverse the constructor in question and replace
every bound variable with its expansion resulting from the kind in its binding
occurrence. For example, in Aa:S(int).«, the binding occurrence of « gives it kind
S(int), so the « in the abstraction’s body would be replaced by R(«,S(int)) =
int. However this traversal is not sufficient to account for all bound variables, nor
in fact is it even necessary.

To see why a traversal is insufficient, suppose 3 has kind (S(int) — T) — T and
consider the constructors f(Aa:T.a) and G(Aa:T.int). (Recall Section 2.1.) In the
former constructor, the binding occurrence of o gives it kind 7', and consequently
the hypothetical traversal would not replace it. However, as we saw in Section 2.1,
the two constructors should be equal, and for this to happen without the singleton

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

10 . Karl Crary

elimination rule, o must be replaced by int in the former constructor. What
this illustrates is that when an abstraction appears in an argument position, the
abstraction’s domain kind can sometimes be strengthened (in this case from T to
S(int)). This means that the kind given in a variable’s binding occurrence cannot
be relied upon.

One possibility for dealing with this would be to perform a much more compli-
cated traversal that attempts to determine the “true” kind for every bound variable.
Fortunately, we may deal with this in a much simpler way by shifting the respon-
sibility for expanding a bound variable from the abstraction where that variable is
bound to all constructors that might consume that abstraction.

In the above example, 3 changes the effective domain of its arguments to S(int);
in other words, it promises only to call them with int. The expansion pro-
cess for product kinds makes this explicit. In this case, the expansion of g is
Ay:(S(int) — T).0(Aa:S(int).yint). After substituting this expansion for S,
each of the constructors above normalizes to S(Aa:S(int).int). This can again be
seen as an eta-long form for 3 where replacement of a variable by its definition is
considered an eta-expansion.

In general, the expansion that achieves this is:

R(e,Tla: K. K5) < MKy R(ca, K2){R(a, K1) /a}

Making this expansion part of the substitution for free variables accounts for
all cases in which the kind of an abstraction (and therefore its domain kind) is
given by some other constructor to which the abstraction is passed as an argument.
The only other way a kind may be imposed on an abstraction is at the top level.
Again recall Section 2.1 and consider the constructors Aa:T.av and Aa:T.int. These
constructors should be considered equivalent when compared as members of kind
S(int) — T, but not as members of T'— T. Thus, the elimination process must
be affected by the kinds in which a constructor is considered to lie.

This is neatly dealt with by (in addition to substituting expansions for free vari-
ables) expanding the entire constructor using the kind to which it belongs. Thus,
when considered as members of S(int) — T, the two constructors above become
Aa:S(int).((Aa:T.a)int) and Aa:S(int).((Aa:T.int)int); each of which normal-
ize to Aa:S(int).int. However, when considered as members of T — T, the two
become Aa:T.((Aa:T.a)a) and Aa:T.((Aa:T.int)a); each of which normalizes to its
original form.

It is worth noting that the required top-level expansion adds very little complexity
to the use of singleton elimination in practice. In this paper we have largely ignored
the term-level constructs of the intermediate language in question, but, in fact,
constructors lie within surrounding terms, and elimination of singleton kinds in
constructors is part of an overall transformation on terms. Typically, constructors
appearing within terms are simply types (the domain of a lambda, for example),
and in such cases the top-level expansion has no effect at all (since R(¢,T) = ¢). In
other cases constructors may by considered to lie in more interesting kinds (such as
with the argument to a constructor abstraction), but in all such cases the intended
kind is clearly given by context and the top-level expansion is still easy to perform.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 11

R(c,T) = ¢
R(c,S(c)) = ¢
R(c,lla: K1.K3) = Aa:K;. R(c R(e, K1), Ko{R(cv, K1)/a})
(where « is not free in ¢ or K1)
R(c,Ya:K1.K3) < (R(mie, Ky), R(mac, Ko{ R(mic, K1) /a})

R(a:Kq,...,0n:Ky) def {R(an, Ky)/an} - {R(o1, K1)/a1}

Fig. 5. Expansions

3.2 The Elimination Process

The full definition of the expansion constructors® and substitutions is given in Fig-
ure 5. Using expansion, the singleton kind elimination proceeds in three steps:
Given a constructor c¢ considered to have kind K under assignment I', we first ex-
pand ¢, resulting in R(c, K). Second, we substitute expansions for all free variables,
resulting in R(c, K){R(T")}. Third, we erase any remaining singleton kinds, result-
ing in (R(c, K){R(T")})°. This elimination process is easily seen to be terminating,
since R is defined by induction over the structure of kinds.

We may state the following correctness theorem for the elimination process, which
states that rewritten constructors will be equivalent if and only if the original
constructors were equivalent:

THEOREM 1. Suppose I'tcy : K and Tk co : K. ThenT'F ¢y = ¢ : K if and
only if I'° Fyf (R(c1, K){R(I)})® = (R(co, K){R(T)})° : K°.

The proof of the correctness theorem is the subject of the next section.

4. CORRECTNESS PROOF

The previous section’s informal discussion motivates why we might expect the elim-
ination process to be correct. Unfortunately, Theorem 1 is difficult to prove directly,
because there are too many ways that a judgement might be derived, and those
derivations have no particular structure in common. We may construct a meta-
explanation why the proof is difficult by considering the theorem’s implications.
Since it is easy to determine equality of constructors in the singleton-free system,
the theorem provides a simple test for equality: translate constructors into the
singleton-free system and check that they are equal there. The theorem states that
such a test is sound and complete. However, this also indicates that proving the
theorem is at least as difficult as proving decidability of constructor equality in the
full system. In essence, the proof in this paper uses the Stone-Harper equivalence
algorithm (discussed below) to provide structure to equivalence derivations they do
not otherwise have.

The decidability of constructor equality has already been shown by Stone and
Harper [2000]. They provide an algorithm for deciding constructor equality and

4Expansion of constructors is shown to be well-defined by induction on the structure of the kind,
ignoring the contents of singleton kinds.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

12 . Karl Crary

prove that algorithm sound and complete using a Kripke-style logical relation. In
addition to settling the decidability question, they provide a tool with which we
may prove Theorem 1. One approach would be to follow Stone and Harper and
prove the theorem directly using a logical relation. However, we need not go so
far to take advantage of their result. In fact, we can use it almost entirely “off the
shelf.”

The proof works essentially by using Stone and Harper’s algorithm to normalize
the derivations of equality judgements. Given a derivable equality judgement, we
use completeness of the algorithm to deduce the existence of a derivation in the
algorithmic system. That derivation can have only one form, making it much easier
to reason about. Thus, this proof can be regarded as “mostly syntactic”; it does
rely indirectly on the construction of a model, but all the work with the model is
encapsulated in Stone and Harper’s completeness proof.

The only-if portion of the proof (the difficult part, as it turns out) is structured
as follows:

(1) Suppose I'¢; =c¢o : K.

(2) Prove that constructors are equal to their expansions; that is, I' + ¢; =
R(c1, K){R(T)} : K and T ¢3 = R(ce, K){R(I")} : K. By symmetry and
transitivity it follows that the expansions are equal: T' F R(cy, K){R(I')} =
R(ce, K){R(I")} : K.

(3) By algorithmic completeness, deduce that there exists a derivation of the algo-
rithmic judgement I' - R(¢y, K){R(I")} : K & T'F R(co, K){R(I')} : K.

(4) Prove that singleton reduction (the algorithmic counterpart of the singleton
elimination rule) is not used in the algorithmic derivation. This step is the
heart of the proof.

(5) By algorithmic soundness, deduce that there exists a derivation of I' F
R(c1, K){R(I')} = R(ca, K){R(I")} : K in which the singleton elimination rule
(Rule 34) is not used (except within subderivations for kinding or subkinding
judgements).

(6) Prove that therefore there exists a derivation of I'° by (R(c1, K){R(T)})° =
(R(ca, K){R(I)})® : K°.

Once the only-if portion is proved, the converse is easily established. The con-

verse’s proof is discussed in Section 4.4.

4.1 Equality of expansions

We begin by establishing that well-formed constructors are equal to their expan-
sions. We first state three propositions giving some properties of the inference
system (these are proven in Stone and Harper [2000]), and then prove equality of
expansions by a series of three lemmas.

PROPOSITION 2 REGULARITY.

(1) IfT - J then T F ok.
(2) IfTEc: K then T'+ K kind.
(3) IfTFey=co: K thenT ke : K andTFes: K.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 13

ProrosiTION 3.

(1) (Weakening) IfT'1,I's - 7 and T'1,T'5,T's I ok then I'y, T2, T3+ J.
(2) (Reflexivity) IfTFc: K thenTFc=c: K.

(3) (Kind reflexivity) If T' - K kind thenT'F K = K.

(4) (Subkinding reflexivity) If ' K; = Ko then T'+ K7 < Ks.

(5) (Assignment reflexivity) IfI' F ok then FT' =T.

PROPOSITION 4 SUBSTITUTION. Suppose ' +c¢; =co: K. Then:
(1) IfTa:K,T" + Ky = Ky then T, (I"{c1/a}) b K1{c1/a} = Ka{ca/a}.
2) T, K,T' b ¢ = ¢, : K' then T, (T"{c1/a}) F i {ci/a} = ch{ca/a} :
K’{cl/a}.
LEMMA 5. R(c,K){c'/a} = R(c{d/a}, K{d'/a})
Proor. By induction on K. [
LEMMA 6. IfTFc: K thenTFce=R(¢,K) : K.

PROOF. By induction on K.

Case 1: Suppose K =T. Then R(c, K) = c and by reflexivity, ' Fc=c: K.

Case 2: Suppose K = S(¢/). Then R(¢,K) = ¢/. By assumption, I' F ¢ :
S(c’), so by singleton elimination (Rule 34), T' - ¢ = ¢/ : T. Then by symmetry and
Rule 35, T Fc=¢": S(¢).

Case 3: Suppose K = Ila:K;.K5. Choose « so that it does not appear in the
domain of T" or free in ¢. Then R(c, K) = Aa:K;. R(c R(a, K1), Ko{R(cv, K1)/a}).
Invoking Lemma 5, R(c, K) = Aa: K. R(ca, Ko){R(ar, K1)/}

By regularity and inversion, I' + K; kind, so by weakening, I';a:K; F ¢ :
Mo K. K. Thus 'y a: K5 F ca: Ko. By induction, I' a: K7 F ca = R(ca, Ks) @ Ko.
Also by induction, T, a: K7 + o = R(«a, K1) : Ky. Then, by weakening and sub-
stitution, I', a: Ky F ca = R(ca, K2){R(o, K1)/a} : K5. By product introduction
(Rule 40), T'F Aa: K5 .ca = R(e, K) : Ta: K . Ko.

It remains to show that I' - ¢ = Aa:Kj.ca : Tla:K;.K5. This may be shown
using functionality (Rule 30) and beta reduction (Rule 29).

Case 4: Suppose K = Ya:K7.K3. Choose a so that it does not appear in the
domain of T or free in ¢. Then R(c, K) = (R(m¢, K1), R(mac, Ka{R(mc, K1)/a}).
Note that by regularity and inversion, I', a: K7 F K> kind.

By sum elimination (Rule 22), T' - mc¢ : Kj, so by induction, I’ + mc¢ =
R(m¢, K1) : Ky. Also by sum elimination (Rule 23), I' F mac : Ko{mic/a}. By re-
flexivity and substitution, I' - Ko{mc/a} = Ka{R(mc, K1)/a}, and thus I' F mac :
Ky{R(mec,K1)/a}. Then, by induction, ' b mac = R(mac, Ko{R(mic, K1)/a}) :
Ks{R(m ¢, K1)/a}. By sum introduction (Rule 44) and symmetry, I' - (71¢, mac) =
R(¢,K) : Ya: K. Ks.

It remains to show that I' b ¢ = (m1¢, mac) : Ya:K1.Ka. This may be shown using
functionality (Rule 31) and beta reduction (Rules 32 and 33).

|
LEMMA 7. IfTFc¢: K thenTFe=R(c, K){RIT)}: K.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

14 . Karl Crary

PRroOOF. The proof is by induction on I'V that if I'\TV + ¢ : K then I',T' - ¢ =
R(c, K){R(I")} : K. For empty I/, use Lemma 6. In the inductive case, suppose
I" = a:K',T”. Then R(I") = RI"){R(e, K')/a}. By induction, I, : K/, T" |
¢c=R(c, K){R(I)} : K. Since ', a : K',T" I a : K', by Lemma 6 it follows that
Ia:K')T F o« = R(o, K') : K'. By weakening and substitution, T, a: K’ T |
c{aja} = R(e, K){R(I'")}H{R(a, K')/a} : K. That is, I',T" F ¢ = R(c, K){R(I")} :
K. O

COROLLARY 8. IfT'F ¢y =co: K thenT R(c1, K){R(T)} = R(ce, K){R(T)} :
K

PROOF. By regularity, Lemma 7, symmetry and transitivity. [

4.2 The Decision Algorithm

Stone and Harper’s decision algorithm for constructor equivalence is given in Figure
6. This algorithm is unusual in that it is a siz-place algorithm; it maintains two
assignments and two kinds. This allows the two halves of the algorithm to operate
independently, which is critical to Stone and Harper’s proof and to this one. In
common usage, the two assignments and the two kinds are equivalent (but often
not identical). The critical singleton reduction rule appears as the ninth clause.

Originally, Stone and Harper also proved their six-place algorithm equivalent to
a conventional four-place algorithm employing judgements of the form I' F ¢; <
¢y : K, which is preferable in practice. In more recent work [Stone and Harper
2004], Stone and Harper have developed a much simpler proof that applies to the
four-place algorithm directly. Nevertheless, it is the six-place algorithm that is most
useful to our purposes here.

The (six-place) algorithm works as follows:

(1) The algorithm is presented with a query of the form® T'-c: K & T"F ¢ : K'.
When FT' =T" and I' K = K’, this determines whether ' F ¢ = ¢ : K is
derivable.

(2) The constructor equivalence rules add appropriate elimination forms (applica-
tions or projections) to the constructors being compared in order to drive them
down to kind T or a singleton kind. Then those constructors are reduced to
weak head normal form.

(3) Elimination contexts (E) are defined in the usual manner, as shown below. A
constructor of the form E|q] is referred to as a path, and « is called the head
of the path. We will often use the metavariable p to range over paths.

E = []|Ec|mE|mFE

A constructor is reduced to weak head normal form by alternating beta reduc-
tions and singleton reductions. Beta reduction of a constructor ¢ is performed
by placing it in the form F[c] where ¢ is a beta redex, and reducing to E[c/]
where ¢ is the corresponding contractum. Repetition of this will ultimately
result in a path (if the constructor is well-formed, which is assumed).

51t is awkward to render six-place judgements in spoken language. My preferred rendering of the
algorithmic judgement is “In assignments I' and I/, ¢ and ¢’ are related at kinds K and K’.”

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 15

Natural kind extraction
'all(a)

o1 T

F'Empl K

'k mop T K2{mp/a}
I'tpcl Kof{c/a}

Weak head reduction

'+ E[(Aa:K.c)d'] — E[c{c'/a}]
'+ E[ri{c1,c2)] — Elci]

'+ Er2{c1,c2)] — Flec2]

I'F E[p] — E[d

Weak head normalization
kel
I'kelec

Algorithmic constructor equivalence
T'ibFep:TeTobkceg: T

Iy FC1:S(C/1)<:>F2F02:S(C/2)

T'iker: HO&:KLK{ STk eo: HO{ZKQ.Ké
I'ibFe YK K] © Dok e Ya:Ka K

Algorithmic path equivalence
Mralli(a) =Tk alla(a)
i T T—TakFb T

't Fpier TKi{Cl/CY} — T2 F paca TKé{Cz/a}

M Empr T Ky < TakEmpe T Ko
'y Fmepr T Ki{mp1/0o} <
Ty k- mape 1 Kj{mip2/a}

f'Ep 1 Ya:K1.Ko
if'Fpl Xa:K1.Ko
fEp 1 Ha:K1. Ko

ifT'Fp1S(c) (singleton reduction)

ifTFec—c”and T |
otherwise

if'1Fer Uprand o Fca | p2

andTi Fp1 TT—Taobkp2 1T

ifT'1Fer Uprand o Fca | p2

andTi Fp1 1T —Taobkp2 1T

ifFl,a:Kl Foa: K{ =4 FQ,CM:KQ Feoa: Ké
if Ty Fmer: K1 ©Tabmies: Ko

and 'y F mocy Ki{rrlcl/oz} =4

Ty - mac : Ki{maca/a}

if b1 = b2

T b opy 1 Ha:K1 K] < To b py 1 Mo:Ka. K.
andI 1 Fep: Ki e Tabco: Ko

if Ty Fp1 T Sk K} < To b py T Sa:Ko. K

if Ty Fp1 T Sk K} < To b py T Sa:Ko. K

Fig. 6. Constructor Equivalence Algorithm (Six-Place Version)

(4) Singleton reduction of a path p is performed by determining its natural kind,
and replacing p with ¢ whenever p’s natural kind is some singleton kind S(c).
(Formally, the algorithm adds an elimination context, reducing E[p| to E[c]
when p has natural kind ¢, but E will be empty when E[p] is well-formed.)

Note that the natural kind of a path is not a principal kind. For example, if
I'(or) = T then the natural kind of « is T', but « has principal kind S(«).

(5) When no more beta or singleton reductions apply, the algorithm compares the
two paths, checking that they have the same head variable and the same series
of eliminations. When checking that two applications are the same, the main
algorithm is reinvoked to determine whether the arguments are equal.

We may state the following correctness theorem for the algorithm:

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

16 . Karl Crary

THEOREM 9 STONE-HARPER.

(1) (Completeness) IfT'Fcy =co: K thenTFe¢p: K< The: K.
(2) (Soundness) Suppose T =T", - K =K', T'kFec¢; : K and " F ¢p : K'.
Then ifT'kci: K & TV kFcy: K thenT ke =c3: K.

COROLLARY 10. If ' F ¢ = ¢o : K thenT F R(c;, K){RI)} : K & T +
R(co, K){R(I)}: K.

There is one minor difference between this algorithm and the one presented in
Stone and Harper. When checking constructor equivalence at a singleton kind,
Stone and Harper’s algorithm immediately succeeds, while the algorithm here be-
haves the same as when comparing at kind 7. However, Stone and Harper’s proof
goes through in almost exactly the same way, with only a change to one subcase of
their “Main Lemma.” Their algorithm is more efficient, since it terminates early in
some cases, but for our purposes we are not concerned with efficiency. The advan-
tage of this version of the algorithm is that we may obtain the stronger version of
soundness given in Theorem 12:

DEFINITION 11. A derivation is mostly free of singleton elimination if every use
of singleton elimination (Rule 34) in that derivation lies within a subderivation
whose Toot is a constructor formation or subkinding judgement.

THEOREM 12 SINGLETON-FREE SOUNDNESS. Suppose FI' =TV, '+ K = K,
T'kbep:KandT'Fcey: K'. ThenifT'k e : K & TV F ¢y 1 K' without using
singleton reduction then there exists a deriwation of I' F ¢y = ¢ : K that is mostly
free of singleton elimination.

PROOF. By inspection of Stone and Harper’s proof. [

Theorem 12 fails with the more efficient version of the algorithm because when
i ke :S(c)) & Dy ke S(ch), the soundness proof must use singleton elimina-
tion to show that ¢; and ¢ are equal and that co and ¢, are equal, in the course of
showing that ¢; and ¢y are equal.

In the next section we will show that the algorithmic derivation shown to exist
by Corollary 10 is free of singleton reduction. Then Theorem 12 will permit us
to conclude that the corresponding derivation in the declarative system is mostly
free of singleton elimination. A derivation mostly free of singleton elimination uses
singleton elimination in no significant manner; any residual uses (within constructor
formation or subkinding) will be removed by singleton erasure in Section 4.4.

4.3 Absence of singleton reduction

The heart of the proof is to show that singleton reduction will not be used in a
derivation of algorithmic equivalence of expanded constructors. It is here that we
really show that expansion works to eliminate singleton kinds: if the algorithm
is able to deduce that the two expanded terms are equal without using singleton
reduction, then we have obviated the need for singleton kinds.

The proof works by defining a condition, called protectedness, that is satisfied by
expanded constructors, that rules out any need for singleton reduction, and that is
preserved by the algorithm. First we make some preliminary definitions:

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 17

DEFINITION 13.

—Two kinds K and K' are similar (written K =~ K') if they are the same modulo
the contents of singleton kinds. That is, similarity is the least congruence such
that S(c) = S(c’) for any constructors ¢ and ¢'.

—Two assignments T' and TV are similar (written T' ~ T) if they bind the same
variables in the same order, and if I'(a) = I"(a) for all o € Dom(T).

Note that a well-formed kind can be similar to an ill-formed kind, and likewise
for assignments. When two kinds or two assignments are similar, they are said
to have the same shape. For the proof of the absence of singleton reductions, we
will be able to disregard the actual kinds and assignments being used and consider
only their shapes; this will simplify the proof considerably. This works because the
contents of singleton kinds are only pertinent to singleton reduction, which we are
showing never takes place.

We also define contexts (C) as shown below. Note that contexts are defined to
have exactly one hole, and note also that elimination contexts are a subclass of
contexts. As we are not concerned with the contents of singleton kinds, there is no
need for contexts to account for constructors appearing within the domain kind of
a lambda abstraction. Instantiation of a context is defined in the usual manner; in
particular, it is permissible for instantiation to capture free variables.

C == []|:K.C|Ccl|cC|{(C,c)|{c,C)|mC|mC

Finally, we define weak head reduction without an assignment® in the usual manner
(that is, F[(Aa:K.c)'] — E[c{c'/a}] and E[m;{c1,c2)] — E|c;]). Note that if
¢1 — ¢g then ' F ¢y — ¢ (recall algorithmic weak head reduction).

We are now ready to define the protectedness property. The intuition is that a
constructor is protected if every variable in that constructor appears in an elimi-
nation context (equivalently, at the head of a path) that drives it down to kind T
(i.e., that performs elimination operations on it resulting in a constructor of kind
T). By implication, this means that no variable appears in an elimination context
driving it down to a singleton kind. In other words, no path within the constructor
will have a singleton natural kind and consequently singleton reduction will not
take place.

In order to ensure that protectedness is preserved by the algorithm, we must
strengthen the condition a bit. When the algorithm processes a constructor Aa:Kj.c
of kind ITa: K7.K5 in context I', the body ¢ will be processed in the extended context
T', a: K7, not simply I'. Thus, we wish to ensure that ¢ is protected not merely at
T', but at I', a: K;. Thus, we define a stronger condition of protectedness relative
to a kind that extends the context appropriately for constructors of IT kind. This
stronger condition is then the primary condition used in the main lemma.

Additionally, each path used (in the definition of protectedness) to drive a variable
to kind T will ultimately be processed by the algorithm, and so each constructor
appearing as an argument in that path must be protected at the pertinent kind. We

6As opposed to the algorithm’s judgement I' - ¢; — ¢z for weak head reduction within an
assignment I

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

18 . Karl Crary

refer to such a path as appropriate, and require, in the definition of protectedness,
that the path that drives a variable to kind 7" must be appropriate.

DEFINITION 14. Suppose T' is an assignment and K is a kind. The relations
I'-protected, K-I'-appropriate, and K-I'-protected are the least relations such that:

(1) Protectedness

—A constructor ¢ is T -protected if whenever ¢ = Cla] (where a € Dom(T") and
C' does not capture «), there exist C' and E such that C[] = C'[E[]], and
El«] is T-T'-appropriate.

(2) Appropriateness

—A path « is K-T'-appropriate if I'(a) ~ K.

—A path pe is Ko-T-appropriate if p is (Ila:K1.Ks)-T-appropriate and c is
K1 -T'-protected.

—A path m1p is K1-T-appropriate if p is (Xa:K1.Ks)-T-appropriate.

—A path mop is Ko-T'-appropriate if p is (Xa:K1.Ks)-T-appropriate.

(3) Protectedness relative to a kind

—A constructor c is T-I'-protected if ¢ is I'-protected.
—A constructor ¢ is S(¢")-T-protected if ¢ is T-protected.

—A lambda abstraction Ao:K7i.c is (Ha:Kq.Ky)-T-protected if ¢ is Ko-
(T, a: K1) -protected.

—A pair {c1,ca) is (Ba:K1.Ks)-I'-protected if ¢1 is K1-I'-protected and co is
Ks-T'-protected.

Note that the relations being defined appear only positively above, so Definition
14 is a valid inductive definition. Also, note that these definitions are concerned
with kinds only up to similarity, and for this reason the definition can safely ignore
the presence of free variables in kinds and assignments. We may immediately
observe a number of easy structural facts about these definitions:

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 19

LEMMA 15.

(1) Suppose T' =T and K ~ K', then
—c is I-protected if and only if ¢ is I -protected,
—c is K-T'-protected if and only if ¢ is K'-T'-protected, and
—vp is K-T'-appropriate if and only if p is K'-I'-appropriate.
) If ¢ is T-protected then Aa:K.c, wic, and mac are T-protected.
) If ¢1 and co are T-protected then cico and (c1,co) are T-protected.
) If E[Aa:K.c] is T-protected then c is T'-protected.
) If E[cica] is T-protected then co is T'-protected.
) If E[{c1,ca)] is T-protected, then ¢; and co are T'-protected.
) Any constructor is e-protected.
) If ¢ is (T'\ «)-protected and o is not free in ¢, then c is I'-protected.
9) If ¢ is T-protected then c is (T'\ a)-protected.
10) If ¢ is K-T'-protected then c is T'-protected.

PROOF. Parts 1-3 and 7-10 are by inspection. For part 4 observe that any path
with its head in c lies entirely within c¢. Likewise for part 5 observe that any path
with its head in ¢y lies entirely within ¢y, and similarly for part 6. O

In order to show that protectedness is preserved by the algorithm, we need to
show that it is preserved by weak head reduction. To show this we must first
establish a substitution lemma. To do so, we will have need of the fact that any
subexpression of a substitution results from one or the other participant in the
substitution:

LEMMA 16. If Clc] = c1{c2/a} and C does not capture o then either

—there exist contexts C1 and Co such that ¢; = Cila], ca = Cslc] and C[] =
(Ci{ca/a})[Cal]] (that is, ¢ results from c3), or

—there exists a context Cy and a constructor ¢ such that c; = C1[c], ¢ = {c2/a},

and C[] = (C1{cz2/a})]] (that is, ¢ results from some ¢ in cy).
PRrROOF. By induction on c¢;. If C is empty then the second case is satisfied by
C1[] =[] and ¢’ = ¢;. Therefore assume C' is nonempty.
Case 1: Suppose ¢; = a. Then the first case is satisfied by C;[] = [] and
Col] = Cl

Case 2: Suppose ¢; = 3 where § # a. Then Clc] = 3, which is impossible
since C' is nonempty.

Case 3: Suppose ¢; = AG:K.c¢}. Then C[] = A\G:(K{ca2/a}).(C'[]). Since C
does not capture «, it follows that § # «. Note that C'[c] = ¢|{ca/a}. We proceed
by case analysis using the induction hypothesis on C'[c]:

Subcase 3.1: Suppose there exist contexts C] and Cy such that ¢} = Cf]
ca = Csc] and C'[] = (C1{cz2/a})[Ca[]]- Then the first case is satisfied by C4]]
AFE(CL[]).

Subcase 3.2: Suppose there exists a context C] and a constructor ¢’ such
that ¢ = C1['], ¢ = {c2/a}, and C'[] = (Ci{cz/a})[]. Then the second case is
satisfied by C1[] = A\3:K.(C1[]).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

1l

20 . Karl Crary

Case 4: Suppose ¢; = c¢}c}. The remaining cases are similar. Then C[] is
either (C'[])(cf{cz/a}) or (i {ca/a})(C'[]). Suppose the former; the latter is sim-
ilar. Note that C’[c] = ¢} {c2/a}. We proceed by case analysis using the induction
hypothesis on C’[c]:

Subcase 4.1: Suppose there exist contexts C] and Cy such that ¢j = Cf[a],
co = Cslc] and C'[] = (Ci{ca/a})[C2]]]. Then the first case is satisfied by C1[] =
(Cil])ef-

Subcase 4.2: Suppose there exists a context C}] and a constructor ¢’ such
that ¢} = C{[], ¢ = {ca/a}, and C'[] = (C1{c2/a})[]. Then the second case is
satisfied by C1[] = (C{[])¢f-

O
LEMMA 17 SUBSTITUTION.

(1) If ¢y is D-protected and cq is T-protected, then ci{ca/a} is T'-protected.

(2) If p is K-T-appropriate, co is D-protected and « is not the head of p, then
p{ce/a} is K-T-appropriate.

(3) If ¢y is K-T-protected and cy is T-protected, then c1{ca/a} is K-T'-protected.

PRrOOF. The proof is by induction on the derivation of the first assumption (é.e.,
c1 being I'-protected, p being K-I'-appropriate, or ¢; being K-I'-protected, respec-
tively.) We show part 1; the other two parts are easy using an inner induction on
K.

We may assume, without loss of generality, that o ¢ Dom(T'), if necessary by re-
placing « with a fresh variable and re-establishing protectedness of ¢; using Lemma
15 (parts 8 and 9). Suppose C[3] = c1{c2/a}, 8 € Dom(I'), and C does not capture
B. By assumption, a # (3, so we may alpha-vary C[f3] as necessary to ensure that
C does not capture ce. We proceed by case analysis using Lemma 16:

Case 1: Suppose ¢; = Cia], co = Co[f] and C[] = (Ci{cz/a})[Ca]]]- Since
o is T-protected, there exists C4 and E such that Cy[] = C4[E[]] and E[J] is
T-T-appropriate. Then C[] = C'[E[]] where C'[] is (Ci{cz/a})[C[]].

Case 2: Suppose ¢y = Ci[¢], 8 = d{c2/a}, C[] = (Ci{c2/a})[]. The
constructor ¢’ must be either o or 3. In the former case, co = 3, and since ¢y
is T-protected, it follows that protection is satisfied by setting C’ to C and E to
empty. Therefore, assume ¢’ = .

Then ¢; is of the form C1 8] where C does not capture 3 (since C' does not). Since
¢1 is T-protected, there must exist Cf and E such that C1[] = C{[E][]] and E[g] is T-
I-appropriate. By induction, E[§]{cz/a} is T-T-appropriate. Then C[] = C'[E'[]]
where C'[] is (C1{cz2/a})[] and E' is (E{c2/a})[]. O

COROLLARY 18. If ¢1 is I'-protected and ¢y — co then co is I'-protected.

PROOF. We prove that if Eouifci] is T-protected and ¢; — ¢o then ¢y is T-
protected. The result follows by setting Fous = []. Let ¢; be E|c}] and ¢3 be E[ch],
where ¢] is a redex and ¢} is its contractum. The proof is by induction on E.

Case 1: Suppose FE =[] and ¢} = (Aa:K.c¢)¢. By Lemma 15 (parts 4 and
5), ¢ and ¢’ are I-protected. By Lemma 17, ¢{c’/a} is I-protected.

Case 2: Suppose F =[] and ¢} = m;{c1,c2). By Lemma 15 (part 6), ¢; is
T'-protected.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 21

Case 3: Suppose E = FE’c. Then F’[c]] — FE’[c}] so, by induction, E’[c}]
is I-protected. By Lemma 15 (part 5), ¢ is I-protected, so E’[c}] ¢ is T-protected.

Case 4: Suppose E = m,E'. Then E’'[¢|] — E’[c}4] so, by induction, E’[c}]
is I-protected. Thus ; E’[c4] is T-protected. [

We will also need a technical lemma regarding natural kind extraction:
LEMMA 19.

(1) If p is K-T-appropriate and T Fp 1 K’ then K =~ K'.
(2) IfFl Fpl T Kl ad FQ Fpg T KQ then Fl Fpl T Kl and FQ Fpg T KQ.

ProOOF. Part 1 is by induction on K. Part 2 is by induction on the derivation. [
We are now ready to prove the main lemma:
LEMMA 20 MAIN LEMMA.

(1) f Ty F e Ky & To b eyt Ko is derivable, ¢ —* ¢, cog —* ¢, ¢} is
K, -T'1-protected, and cfy is Ko-T's-protected, then the derivation does not use
singleton reduction.

(2) If Ty Fp1 1 Ky« To b po 1 Ky is derivable, ¢ is K1-T'y-appropriate, and co
is Ko-I's-appropriate, then the derivation does not use singleton reduction.

PrOOF. By induction on the algorithmic derivation.

Case 1: Suppose the derivation’s root is 'y F¢; : T < I's - ¢ : T. Then
ke ldp,TobFelpy,and Ty Fpy T T <« I's Fpy T T. By the definitions
of weak head normalization and reduction, it follows either that ¢; —* p; or that
e —* Epi], T1 Fpy 1 5(c), and Ty - E[c]] | p1. In either case ¢; beta weak
head reduces to a path, so let ¢, —* p. Since weak head reduction is deterministic
and p is in (beta) weak head normal form, it follows that ¢; —* p. By assumption
¢} is T'y-protected, so by Corollary 18, p is I';-protected.

Suppose p singleton reduces and let p be E[a]. Then there exist Ey and Ey such
that E[] = E1[Es[]] and I'; F E2[a] 7 S(e). Since p is I';-protected, there also exist
E{ and F) such that E[] = E{[F}[]] and Ej[a] is T-T'1-appropriate. One of Es[a]
and F)[a] must be a subpath of the other and both cases lead to a contradiction.
If E}la] is a subpath of Es[a] then I'y + EjJa] T K for some K, but K ~ T by
Lemma 19 so it cannot be the case that I'; F Es[a] T S(c). If Ex[a] is a subpath of
Ella] then Esla] is K-T'j-appropriate for some K, but K ~ S(c) by Lemma 19 so
it cannot be the case that Ej[a] is T-T-appropriate.

Hence p does not singleton reduce, and consequently ¢; —* p; and p; is I';-
protected. Again let p; be E[a]. Since p; is I'1-protected, there exist Fy and Es
such that E[] = Fy[E2[]] and Es[a] is T-TI'y-appropriate. Since I'y = E1[Ez]a]] 1
T < Ty b ps 1T, by Lemma 19 (part 1) I'y - E1[E2[a]] T T, and therefore that
'y F Esla] T K for some K. By Lemma 19 (part 2), K &~ T, which means that E;
must be empty. Therefore, p; is T-I'1-appropriate. Similarly coc —* po and ps is
T-TI's-appropriate. The result follows by induction.

Case 2: Suppose the derivation’s root is I'y F ¢; : S(c¢}) & T'y F ca @ S(ch).
This case is identical to the previous case.

Case 3: Suppose the derivation’s root is I'1 F ¢; : Ha:K11. K12 & T's F ¢o :
I Kg1.K92. By assumption, ¢; —* ¢} and ¢} is of the form Aa:K7,.c] where ¢/

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

22 . Karl Crary

is Ky2-(T'y, a:Kq1)-protected. Then c;ae —* ¢f. Similarly, coae —* ¢} for some
Ko9-(Ty, a: Ko1)-protected ¢j. The result follows by induction.

Case 4: Suppose the derivation’s root is I'y F ¢1 : Ya: K11. K19 & T'a F ¢o -
Ya:K91.Kas. By assumption, ¢; —* ¢} and ¢} is of the form (c11,c12) where
c11 is Kq1-T'1-protected and cio is Kio-I'j-protected. Then mc; —* ¢17 and
T2C1 —* C12. Since K12 ~ K12{7T1C1/0[}, it follows that C12 is (Ku{mcl/a})—Pl—
protected. Similarly, mico —* co1 and mocy —* co9 for some Koi-I's-protected
¢o1 and some (Koo{mico/a})-T'a-protected caa. The result follows by induction.

Case 5: Suppose the derivation’s root is 'y F o 1 T'1 () < T'a F o T Ta(a).
The result follows trivially.

Case 6: Suppose the derivation’s root is I'1' b T T < I's b T T. The
result follows trivially.

Case 7: Suppose the derivation’s root is I'1 F picr T Kiofci/a} < Ty F
DP2cCo T KQQ{CQ/Q}. Then Fl [P1 T Ha:Ku.Klg nd FQ - P2 T HO(:Kgl.KQQ and
Ty ket Kip © Ty ke Koo Since (invoking Lemma 15 (part 1)) piey is Kio-
I'y-appropriate, it follows that p; is (IHa:K7{;.K12)-I'1-appropriate and ¢y is Ki;-
I'y-protected, for some Kj,. However, by Lemma 19 it follows that K;; ~ Ki;.
Thus, p; is (ITa:K71.K72)-I'1-appropriate and ¢; is K711-I'1-protected. Similarly, po
is (ITa:: K91.K92)-T'9-appropriate and co is Ka1-I's-protected. The result follows by
induction.

Case 8: Suppose the derivation’s root is I't F myp1 T K11 <« I's F mips
Kgl. Then Fl = P1 T ZO&IKll.Klg — Fg - P2 T Ea:K21.K22. Since T™1P1 is Kll‘
I'j-appropriate, it follows that p; is (Xa:K71.K],5)-T'1-appropriate. However, by
Lemma 19 it follows that K5 ~ K{,. Thus, p; is (3a:K11.K12)-T'1-appropriate.
Similarly, pg is (Sa:Ka;1.Kag)-T's-appropriate. The result follows by induction.

Case 9: Suppose the derivation’s root is 'y F mopy T Kio{mip1/a} < Ta
ToP2 T Kgg{ﬂ'lpg/a}. Then Fl - P1 T ZO{ZKll.Klg — FQ F P2 T EalKgl.Kgg.
Since (invoking Lemma 15 (part 1)) mopy is Kio-I'j1-appropriate, it follows that p;
is (Xa:K{,.K;2)-T'1-appropriate. However, by Lemma 19 it follows that Kj; ~
K1{,. Thus, py is (Ba:Ky1.K12)-T'1-appropriate. Similarly, ps is (Xa:Koq.K22)-T'o-
appropriate. The result follows by induction. [

It remains to show that expanded constructors are protected.
DEFINITION 21.
—The kind T is T'-protected.

—The kind S(c) is T'-protected if c is.
—The kinds lla: K1. Ko and Ya:K1.Ko are I'-protected if both K1 and Ko are.

LEMMA 22.

(1) If p is K-T'-appropriate and K is I'-protected then R(p, K) is I'-protected.
(2) If ¢ and K are I'-protected then R(c, K) is K-T'-protected.

Proor. By induction on K.
Case 1: Suppose K = T. Part 2 is trivial. For part 1, we wish to show that
p is T-protected. Let p be E[a] and suppose p = C[f]. If C = E then the result
is immediate. Otherwise C chooses § from within one of the argument positions

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 23

in the path. That is, E[] = Ey[(E2[])(C'[8])] and C[] = E1[(E2[a])(C'[])]. Since
p is T-T-appropriate, C’[3] is K'-I'-protected (for some K'), and thus is C'[f] is
I-protected. Hence there exist C” and E’ such that C'[] = C”[E’[]] and E’'[3] is T-
T-appropriate. The result follows choosing E;[(E2[@])(C”[])] for the outer context
and E’ for the inner.

Case 2: Suppose K = S(¢’). Both parts are trivial, since ¢’ is I-protected.

Case 3: Suppose K = [la:K7.K5. Assume, without loss of generality, that
a € Dom(T") and « is not free in ¢. Then « is trivially K;-(T', a: K7)-appropriate.
Therefore, by induction, R(«, K1) is (T, a:K7)-protected. By Lemma 17 (and an
easy induction over K3), it follows that Ko{R(a, K1)/a} is (T, a:Kq)-protected.
Using Lemma 15, K>{R(a, K1)/a} is also I'-protected.

(1) Since a ¢ Dom(I'), « is I-protected. By induction, R(a,K;) is
K;-T-protected. Thus pR(«, K;) is Ko-T-appropriate. By induction,
R(p R(a, K1), Ko{R(a, K1)/a}) is I'-protected. By Lemma 15, R(p,K) =
Aa:K71.R(p R(a, K1), Ko{ R(v, K1)/ a}) is T-protected.

(2) Since « is not free in ¢, by Lemma 15 ¢ is (T, a: K7)-protected. Thus ¢ R(«, K1)
is (T, a:K7)-protected. By induction R(c R(«, K1), Ko{R(a, K1)/a}) is K-
(T, a: K1)-protected. Hence R(c, K) is K-TI'-protected.

Case 4: Suppose K = Xa:K1.Ks.

(1) By definition, m1p is K;-T-appropriate and mep is Ky-I-appropriate. By in-
duction, R(mip, K1) is DI-protected. By Lemma 17, Ko{R(mp,K1)/a} is
I-protected, so by induction, R(map, Ko{R(m1p, K1)/a}) is T-protected. By
Lemma 15, R(p, K) = (R(m1p, K1), R(mep, Ko{ R(m1p, K1) /a})) is T-protected.

(2) By Lemma 15, mc and mec are I-protected. By induction, R(mic, K7) is
K;-T-protected. Therefore R(mic, K1) is also I'-protected, so by Lemma 17,
Ky{R(mec, K1)/a} is T-protected. By induction R(mac, Ko{R(m1c, K1)/a}) is
Ky-T-protected. Hence R(c, K) is K-TI'-protected.

O
LEMMA 23. IfT'F ok then R(c, K){R(T')} is K-I'-protected.

PROOF. Observe first that since I' = ok, whenever I' = I'y, a: K/, 'y, neither «
nor any variable in Dom(T's) can appear free in K'. We claim that for any ¢/,
d{R(T")} is I-protected. By Lemma 5, R(c, K){R(T")} = R(c{R(I")}, K{R(T")}). Tt
follows from the claim that ¢{R(T")} and K{R(T')} are I'-protected, and there-
fore, by Lemma 22, R(c{R(I')}, K{R(I')}) is (K{R(T')})-T-protected. ~Then
R(c{R(T")}, K{R(T")}) is K-I'-protected as well, since K ~ K{R(T")}.

We prove the claim by induction on I". The base case is trivial. Suppose then
I' = a:K',T’. By induction, ¢/{R(I")} is I'-protected. By the initial observation,
neither o nor any variable in Dom(I") is free in K'. Therefore K’ is I'-protected.
Also I'(«) = K’ so a is K'-T-appropriate. By Lemma 22, R(a, K') is I-protected.
We cannot immediately claim by Lemma 17 that ¢/{R(I")} is I'-protected, since
d{R(I")} may contain free occurrences of o and thus might not be I-protected.
However, any such occurrences are nonessential, since they will only be substituted
away. We make this explicit with a change of variables. Let 3 be fresh. Then by

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

24 . Karl Crary

changing variables we obtain:

HRI)} = HRI)HR(e, K')/a}

HRT)HB/aM Ra, K')/ B}

Then ¢/{R(I"")}{B/a} is I'-protected, since it does not contain « free. Therefore,
by Lemma 17, ¢/{R(I")} is I'-protected. O

COROLLARY 24. If I' F ¢; = ¢ : K then there exists a deriwation of I F
R(c1, K){R(I")} = R(co, K){R(I")} : K that is mostly free of singleton elimina-
tion.

PROOF. Suppose I' - ¢; = ¢; : K. By regularity, I' - ok. By Corollary 10,
I' F R(e;, K){R()} : K & T + R(ce, K){R(T")} : K. By Lemma 23, both
R(c1, K){R(T")} and R(cq, K){R(T")} are K-T-protected, and each weak head re-
duces to itself, so by Lemma 20 the algorithmic derivation is free of singleton
reduction. Therefore the desired derivation exists by Theorem 12. [

4.4 Wrapping up

To complete the first half of the proof, we need only the fact that singleton erasure

preserves derivability of judgements with mostly singleton free derivations.
LEMMA 25.

(1) IfT'F ¢; = co : K has a derivation mostly free of singleton elimination, then

kg c1° = 2%t K°.

(2) IfTFc: K thenT° kg ¢® 1 K°.

(3) IfF [Kl S KQ then K10 = KQO.

(4) If T+ ok then I'° kg ok.

PRrROOF. By a straightforward induction on derivations. [

COROLLARY 26. If I' F ¢; = ¢ @ K then T° kg (R(ci, K){R(I)})° =
(R(ca, K){RT)})° : K°.

For the converse, we already have most of the facts we need at our disposal.
We require two more lemmas. One states that the algorithm is symmetric and
transitive. It is here that the use of a six-place algorithm is critical. For the six-
place algorithm it is easy to show that symmetry and transitivity hold. For a
four-place algorithm, on the other hand, it is a deep fact depending on soundness
and completeness that symmetry and transitivity hold for well-formed instances,
and for ill-formed instances it is not known to hold at all.

LEMMA 27.

(1) IfFll_CliK1<:>F2|_025K2 thean}—CQ:Kg(:)Fll—clzKl.

(2) Ifrl}—cliK1<:>F2|—CglK2 and I's F co : Ko & I's b ¢c3 : K3 then
F1|_012K1<=>F3|_632K3.

PRrOOF. By inspection. [J

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 25

The other lemma states that if singleton reduction is not employed in the algo-
rithm, then whatever singleton kinds appear are not relevant and may be erased.
Moreover, since the two halves of the algorithm operate independently (here again
the six-place algorithm is critical), we may erase them from either half of the algo-
rithm.

LEMMA 28.

(1) IfTh F gt K1 & Iy b oco @ Ky without using singleton reduction, then
F1|_011K1<:>F20|_0202K20

(2) If Ty F p1 T Ky < Dy F po 1 Ky without using singleton reduction, then
I'ibpi T K o T Fpe® 1 KL%

PrOOF. By induction on the algorithmic derivation. [

It is worth noting that the algorithmic judgement in Lemma 28 is quite peculiar,
in that I is ordinarily not equal to I'® and K is ordinarily not equal to K°. Although
there is a valid derivation of this algorithmic judgement, the soundness theorem does
not apply, so it does not correspond to any derivation in the declarative system.
When we apply this lemma below we will use transitivity to bring the assignments
and kinds back into agreement before invoking soundness.

LEMMA 29. If T b ¢« K, T ¢3 : K, and T° by (R(cr, K){R(D)})° =
(R(ca, K){R(I)})° : K° then Tk c¢; =¢2: K.

PrOOF. By Lemma 7, I' - ¢; = R(cy, K){R(I')} : K. By algorithmic complete-
ness, 'Fep: K & T'F R(ep, K){R(T")} : K. By symmetry and transitivity of the
algorithm, ' F R(cy, K){R(I')} : K & T'F R(c1, K){R(I")} : K. Then, by Lem-
mas 23, 20, and 28, T' - R(cy, K){R(T)} : K < TI° - (R(cy, K){R(T)})° : K°.
By transitivity, I' + ¢; : K & I'° F (R(c;, K){R(I)})® : K°. Similarly,
I'Fey: K& TOF (Rley, K){R(T)})® : K°.

Since the singleton-free system is a subsystem of the full system, we have
by algorithmic completeness that I'° + (R(ci, K){R(I)})° : K° & TI° +
(R(cz, K){R(I)})? : K°. Hence, by symmetry and transitivity, I' F ¢; : K <
It ¢y : K. (Note that by applying transitivity, we have swept away the peculiarity
noted above.) Therefore I' - ¢; = ¢o : K by algorithmic soundness. [

This completes the proof.

5. RELATED WORK AND CONCLUSIONS

The primary purpose of this work is to allow the reification of type equality informa-
tion in a type-preserving compiler for a language like Standard ML, thereby elimi-
nating the need to complicate the metatheory of the latter phases of the compiler
with singleton kinds. Within this architecture, equality (or “sharing”) information
would initially be expressed using singleton kinds, but at some point singleton kind
elimination would be exploited to eliminate them. Thereafter, with singleton kinds
no longer available, type information would be propagated by substitution, as in
Harper et al. [1990].

Shao [1999] proposes a different approach for dealing with type equality in mod-
ule languages. Shao’s approach resembles the approach in this paper, in that it

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

26 . Karl Crary

substitutes definitions for variables. However, it does so less thoroughly than the
approach here, since, as with most module-oriented accounts, less type information
is to be propagated than in the singleton account, as mentioned in Section 2.1.
In effect, Shao’s substitution does not account for the issue of internal bindings
discussed here in Section 3.1.

Another alternative is given in an earlier paper by Shao [1998]. In his earlier
approach, equality specifications are taken as mere abbreviations and deleted from
signatures. The main work arises in ensuring that the appropriate subsignature
relationships hold: a signature containing a type abbreviation must be considered
a subsignature of a similar one that contains that type but not the abbreviation (as
required by Standard ML and the standard type-theoretic accounts). To accomplish
this, when a structure matching a signature with a deleted field is used in a context
where that deleted field is required, the translation coerces the structure to reinsert
the deleted field. Thus, Shao’s earlier approach differs from the one here in two
main ways: it interprets the subsignature relation by coercion, whereas this paper’s
approach interprets it by inclusion; and (as with the later approach) it does not
account for indirect equalities resulting from internal bindings—abbreviation occurs
only where equality specifications appear syntactically.

Aspinall [1994] studies in detail a related type system with singleton types. The
difference between singleton kinds and his singleton types is entirely cosmetic—
this work could just as easily be presented as singleton type elimination by taking
everything down one level. However, there exist important technical difference
between this system and Aspinall’s that prevent our result from being applied
directly to Aspinall’s system. Most importantly, our system relies crucially on eta-
conversion, since the elimination process places constructors into eta-long form,
but Aspinall’s system does not support eta-conversion. Stone and Harper [2000]
compare this system to Aspinall’s in greater detail.

Some other systems also include types that have a bearing on equality; for ex-
ample, Martin-Lof type theories [Martin-Lof 1975] contain types representing the
proposition that two objects are equal. The result discussed here does not im-
mediately apply for such systems, as our proof relies on an algorithm to struc-
ture equivalence derivations. For Martin-Lof type theories that do enjoy decidable
equivalence, it may be possible to develop an appropriate notion of equality-type
elimination. However, even in such cases, one would not necessarily expect that
the appropriate notion of reduction would closely resemble the one here, unless the
equivalence algorithm closely resembled that of Stone and Harper.

Singleton kind elimination has been implemented in the TILT compiler for Stan-
dard ML. The main issue that arises when putting this work into practice is that
singleton kinds, in addition to expressing type equality information from the mod-
ule language, are also very useful for expressing type information compactly. The
elimination of singleton kinds can thus substantially increase the space taken up by
type information. (In the limit, a particularly naive implementation could result in
exponential blowup of type information by breaking DAGs into trees.) This issue
arises in two ways; first, type information can take up more space in the compiler,
resulting in slower compilation, and, second, if types are constructed and passed
at run time [Harper and Morrisett 1995] as they are in TILT, inefficient type rep-

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 27

resentation can result in poor performance at run time. Shao et al. [1998] discuss
a number of ways to deal with the former issue, such as hash-consing and using
explicit substitutions. The latter issue can be addressed by making the construc-
tion and passing of type information explicit [Crary et al. 2002] and doing so before
performing singleton elimination; then singleton elimination will have no effect on
the run-time version of type information.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

28 . Karl Crary

A. INFERENCE RULES
Well-Formed Context

1
€ ok &)
'K a ¢ Dom(T") @)
I'a: K F ok
Context Equivalence
Fe=e (3)
FI'y =T
Fl FKl :Kg OéQDOHI(Fl) (4)
= Fl,a:Kl = F2,0¢:K2
Well-Formed Kind 'K
'k ok
1IN)
I'ke:T (©)
'k S(c)
Ia:K' - K"
I'FIa:K' . K" Q)
I'a:K'+ K"
'YK K" ®)
Subkinding 'K <K’
I'kec:T)
'S <T
'+ ok
70 (10)
re-T7<T
I'tFea=c: T
i (11)
'k S(c1) < S(e2)
'+ Ia:K{.KY
'K, <Kj INaK)FK{ <KY

I'FTa: K. K <a:K5.KY
(12)

It Yo:Kb.KY

K| <K, T,uK,FK/<K)Y
I'-Ya:K{.K{ <Ya:K5. K4
(13)
Kind Equivalence 'Ky =K,
'+ ok

Tk (14)

r-T=T

I'bFei=co: T

C1 C2 (15)

I }— S(Cl) = S(Cz)

I'- K} =K;j Ia:KiFK{ =KY
I'FTa: K. Ky =Ha: K5 KY
(16)
I' K| =K, Ia:Ki - K{ = KY
I'Ya:K{.K{ = Ya:K5. K4
(17)
Well-Formed Constructor
T+ ok
T'Hb:T (18)
T+ ok
_ 19
'Fa:T'(a) (19)
MoK Fc: K” (20)
I'FAaK'.c:au:K'.K"
I'kec: MK K" 'kc: K’ (21)
Fked : K'{c/a}
I'kFc:Ya:K' K"
7 (22)
I'Fme: K
TkFe: XK' .K"
7 (23)
Ik mc: K'{mec/a}
I'FYa:K' K"
'+ C1 : K’
F'keo: K"
c2 {c1/a} (24)

Tt {c1,c2) : Sa: K" K"

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 29

I'te:T (25)
L'kec:S(c)
'YK K"
TFme: K’
Tk mac: K" {mic/a} (26)
I'kc:Ya:K' . K"
I'kc: oK' .KY
oK' Fca: K’
I'Fc: oK' K" (27)
I'Fce: K ' K; <K
c: K1 1 < Ko (28)
I'ke: Ko
Constructor Equivalence
NaK'Fep=c: K" Trhdi=c: K

Tk (Aa:K'.c1)cy = ca{cy/a} : K"{ci/a}

(29)
I'kep: oK' .KY
I'kcy: Ma:K' . KY
Ia:K'Fcia=ca: K"
— (30)
ke =co: lMa: K'.K
I'FYa:K' K"
'tk mel =mice : K
F|—7T261:TI'QCQZKN{7T1C1/CK} (31)
TkFei=co: XK' K"
P|_01:C/11K1 1—:|—CQIK2 (32)
I'Fmifer,c) =c): Ki
I'kei: K TkFe=ch: K
1 1 2/ o Ko (33)
'k ma{c1,c2) = : Ko
T'ke:S(
Lhe:s) (34)
'be=c:T
F'ke=cd:T
T o (35)
I'ke=c:5()
I'Fd=c: K
- (36)
I'Fe=c¢: K

TkFe=(d: K 'd=d:K
7 (37)
I'Fe=(":K
I'F ok
—_— (38)
'b=0b:T
I'F ok
(39)

F'rFa=a:T(a)

I-K, =Ky, T,aK,Fec=c:K"

I'FAvK.ci = a:Kb.co : I K' K"
(40)

I'Fe=cd MK .Ks The=c: K

Tkcey =cc): Kofer/a}

(41)
'Fei=co: XK' K" (42)
'k mic =mics: K’
Tkei=co: XK' K" (43)
'+ T2C1 = T2C2 . K”{mcl/a}
I'FYa:K' K"
I'kci=ch: K’
kel =cy: K"{ci/a} (44)
TF{cl,cl) = (ch,c5) : B K'. K"
F|_81:CQZK F"KSK’ (45)
'+ Cl = C2 . K,

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

30 . Karl Crary

REFERENCES

ASPINALL, D. 1994. Subtyping with singleton types. In Eighth International Workshop on Com-
puter Science Logic. Lecture Notes in Computer Science, vol. 933. Springer-Verlag, Kazimierz,
Poland, 1-15.

CRARY, K. AND WEIRICH, S. 1999. Flexible type analysis. In 1999 ACM International Conference
on Functional Programming. Paris, 233-248.

CrARY, K., WEIRICH, S., AND MORRISETT, G. 2002. Intensional polymorphism in type-erasure
semantics. Journal of Functional Programming 12, 6 (Nov.), 567—-600.

DREYER, D., CrRARY, K., AND HARPER, R. 2003. A type system for higher-order modules. In
Thirtieth ACM Symposium on Principles of Programming Languages. New Orleans, Louisiana,
236-249.

HARPER, R. AND LILLIBRIDGE, M. 1994. A type-theoretic approach to higher-order modules with
sharing. In Twenty-First ACM Symposium on Principles of Programming Languages. Portland,
Oregon, 123-137.

HARPER, R., MITCHELL, J. C.; AND MocGGaGI, E. 1990. Higher-order modules and the phase distinc-
tion. In Seventeenth ACM Symposium on Principles of Programming Languages. San Francisco,
341-354.

HARPER, R. AND MORRISETT, G. 1995. Compiling polymorphism using intensional type analysis.
In Twenty-Second ACM Symposium on Principles of Programming Languages. San Francisco,
130-141.

HARPER, R. AND STONE, C. 2000. A type-theoretic interpretation of Standard ML. In Proof,
Language and Interaction: Essays in Honour of Robin Milner. The MIT Press. Extended
version published as CMU technical report CMU-CS-97-147.

LErOY, X. 1994. Manifest types, modules and separate compilation. In Twenty-First ACM
Symposium on Principles of Programming Languages. Portland, Oregon, 109-122.

LEROY, X. 1995. Applicative functors and fully transparent higher-order modules. In Twenty-
Second ACM Symposium on Principles of Programming Languages. San Francisco.

LEROY, X. 2000. A modular module system. Journal of Functional Programming 10, 3.
LILLIBRIDGE, M. 1997. Translucent sums: A foundation for higher-order module systems. Ph.D.
thesis, Carnegie Mellon University, School of Computer Science, Pittsburgh, Pennsylvania.
MARTIN-LOF, P. 1975. An intuitionistic theory of types: Predicative part. In Proceedings of
the Logic Colloguium, 1973. Studies in Logic and the Foundations of Mathematics, vol. 80.

North-Holland, 73-118.

MINAMIDE, Y., MORRISETT, G., AND HARPER, R. 1996. Typed closure conversion. In Twenty-
Third ACM Symposium on Principles of Programming Languages. St. Petersburg, Florida,
271-283.

MORRISETT, G., CRARY, K., GLEW, N., AND WALKER, D. 2002. Stack-based typed assembly
language. Journal of Functional Programming 12, 1 (Jan.), 43-88.

MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N. 1999. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems 21, 3 (May), 527-568.
An earlier version appeared in the 1998 Symposium on Principles of Programming Languages.

SHAO, Z. 1998. Typed cross-module compilation. In 1998 ACM International Conference on
Functional Programming. Baltimore, Maryland, 141-152.

SHAO, Z. 1999. Transparent modules with fully syntactic signatures. In 1999 ACM International
Conference on Functional Programming. Paris, 220-232.

SHAO, Z., LEAGUE, C., AND MONNIER, S. 1998. Implementing typed intermediate languages.
In 1998 ACM International Conference on Functional Programming. Baltimore, Maryland,
313-323.

SHAO, Z., SAHA, B., TRIFONOV, V., AND PAPASPYROU, N. 2002. A type system for certified bina-
ries. In Twenty-Ninth ACM Symposium on Principles of Programming Languages. Portland,
Oregon, 217-232.

SMmiTH, F.; WALKER, D., AND MORRISETT, G. 2000. Alias types. In European Symposium on
Programming. Berlin, Germany.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Sound and Complete Elimination of Singleton Kinds . 31

STONE, C. AND HARPER, R. 2004. Personal Communciation.

STONE, C. A. AND HARPER, R. 2000. Deciding type equivalence in a language with singleton
kinds. In Twenty-Seventh ACM Symposium on Principles of Programming Languages. Boston.
Extended version published as CMU technical report CMU-CS-99-155.

WALKER, D., CrRARY, K., AND MORRISETT, G. 2000. Typed memory management via static
capabilities. ACM Transactions on Programming Languages and Systems 22, 4 (July). An
earlier version appeared in the 1999 Symposium on Principles of Programming Languages.

Received August 2002; revised January 2004 and May 2005; accepted May 2005

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

