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Motivation

• KDD applications constitute a rapidly growing 
segment of the commercial and scientific 
computing domains

• Interactive process � response times
• Memory and compute intensive

• Modern architectures
– Memory wall issues

• Latency tolerating mechanisms – prefetching, SMT

• Objective here is to characterize such 
applications on a modern architecture
– Can we leverage above mechanisms effectively?



Contributions
• Specifically, we study

– Performance and memory access behavior of 
eight data mining algorithms

– Impact of processor technologies such as 
hardware pre-fetching and simultaneous 
multithreading (SMT)

– How to leverage latency-tolerating 
mechanisms to improve performance of 
frequent pattern mining
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Algorithms under study (1)

• Frequent itemset mining
– Finds groups of items that co-occur frequently in a 

transactional data set
– Example: “Item A and Item B are purchased together 90% of the 

time”
• FPGrowth (FP-tree)
• MAFIA (Tid-list as a bit vector)

• Sequence mining
– Discovers sets of items that are shared across time
– Example: “70% of the customers who buy item A also buy item B 

within 1 month”
• SPADE (Tid-list)



Algorithms under study (2)

• Graph mining
– Finds frequent sub-graphs in a graph data set

• FSG
– Tid-list

• Clustering
– Partitions data points into groups or clusters such that 

intra-cluster distance in minimized and inter-cluster 
distance in maximized

• kMeans and vCluster



Algorithms under study (3)

• Outlier detection
– Finds the top k points in a data set that are 

most different from the remaining points
• ORCA

• Decision tree induction
– Learns a decision tree from a data set

• C4.5
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Performance characterization

• Setup
– Intel P4 at 2.8GHz with HT technology
– 1.5GB of main memory
– 8KB L1 d-cache and 512 KB L2 u-cache
– Intel VTune Performance Analyzers to collect 

performance characteristics of execution
– Synthetic/Real datasets
– All codes were obtained from the authors



Operation mix

0.1560.1630.1540.0570.1660.1770.0740.136Branch 
operations / 
instruction

0.3920.5170.3530.2670.6920.5930.4330.65Memory 
operations / 
instruction

0.2730.0870.2070.2520.0150.0040.0010.001Floating point 
operations / 
instruction

0.6070.7690.6200.6880.6250.6360.8220.56Integer ALU 
operations / 
instruction

ORCAC4.5vClusterkMeansFSGSPADEMAFIAFPGrowth



Cache and CPU performance

• FPGrowth
– Poor cache hit rates
– Large number of DTLB 

misses per instruction
– Poor data locality 
– Low ILP

0.119CPU utilization

0.000ITLB misses / 
instruction

0.024DTLB misses / 
instruction

0.135ST operations / 
instruction

0.515LD operations /  
instruction

0.03L2 LD misses /  
instruction

0.430L2 LD hit rate

0.891L1 LD hit rate



Cache and CPU performance

• MAFIA
– Has the highest CPU 

utilization of the 
considered workloads

• Counting using bit-
vectors is very efficient

– Temporal locality can 
be improved

• Note:
– The search is not as 

efficient as FPGrowth
0.446CPU utilization

0.000ITLB misses / 
instruction

0.000DTLB misses / 
instruction

0.042ST operations / 
instruction

0.391LD operations /  
instruction

0.001L2 LD misses /  
instruction

0.997L2 LD hit rate

0.953L1 LD hit rate



Cache and CPU performance

• SPADE
– Temporal locality can 

be improved
– Very poor CPU 

utilization
• Tidlist joins are 

expensive

0.146CPU utilization

0.000ITLB misses / 
instruction

0.012DTLB misses / 
instruction

0.116ST operations / 
instruction

0.538LD operations /  
instruction

0.001L2 LD misses /  
instruction

0.992L2 LD hit rate

0.954L1 LD hit rate



Cache and CPU performance

• FSG
– Temporal locality can 

be improved
– Very poor CPU 

utilization
• Tidlist joins are 

expensive

0.152CPU utilization

0.000ITLB misses / 
instruction

0.007DTLB misses / 
instruction

0.160ST operations / 
instruction

0.532LD operations /  
instruction

0.002L2 LD misses /  
instruction

0.985L2 LD hit rate

0.963L1 LD hit rate



Cache and CPU performance

• kMeans
– Poor CPU utilization

• FPU intensive

0.244CPU utilization

0.001ITLB misses / 
instruction

0.001DTLB misses / 
instruction

0.013ST operations / 
instruction

0.254LD operations /  
instruction

0.000L2 LD misses /  
instruction

0.989L2 LD hit rate

0.979L1 LD hit rate



Cache and CPU performance

• vCluster
– Poor data locality

• Graph partitioning 

0.322CPU utilization

0.000ITLB misses / 
instruction

0.001DTLB misses / 
instruction

0.083ST operations / 
instruction

0.279LD operations /  
instruction

0.000L2 LD misses /  
instruction

0.987L2 LD hit rate

0.882L1 LD hit rate



Cache and CPU performance

• C4.5
– The sort routine has 

poor data locality
• Cache-conscious sort?

0.049CPU utilization

0.000ITLB misses / 
instruction

0.005DTLB misses / 
instruction

0.131ST operations / 
instruction

0.385LD operations /  
instruction

0.031L2 LD misses /  
instruction

0.969L2 LD hit rate

0.60L1 LD hit rate



Cache and CPU performance

• ORCA
– Similar trends

0.316CPU utilization

0.000ITLB misses / 
instruction

0.003DTLB misses / 
instruction

0.057ST operations / 
instruction

0.335LD operations /  
instruction

0.000L2 LD misses /  
instruction

0.993L2 LD hit rate

0.970L1 LD hit rate



Impact of hardware prefetching and 
SMT

1.031.181.261.301.261.051.061.02Speedup due 
to SMT

1.011.061.191.021.151.021.651.11Speedup due 
to hardware 
pre-fetching

ORCAC4.5vClusterkMeansFSGSPADEMAFIAFPGrowth

• Prefetching improves performance for MAFIA, significantly
– AND operation on bit-vectors
– Working set is larger than other frequent pattern mining workloads

• SMT helps the FPU intensive workloads, as it is able to mask FPU
latency
– Not easy to hide memory latency



Characterization summary

• Compute intensive
– Integer ALU and FPU intensive

• Memory intensive
– Limits CPU utilization

• Good spatial locality
– Temporal locality can be improved in most 

cases

• SMT improves performance for FPU 
intensive workloads
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Improving performance of 
FPGrowth (1)

• FP-tree as an 
intermediate data set 
representation

• Pointer-based structure
• Tree traversals are 

bottom-up accesses
– We only need item and 

parent pointer!

a:3

p:2

c:3

f:3

m:2

c:1

b:1

p:1

f:1

b:1

b:1

r

m:1

COUNT

ITEM

NODE POINTER

CHILD POINTERS

PARENT POINTER



Improving performance of 
FPGrowth (2)

• Improve spatial locality
– Node size reduction
– Depth-first tree reordering

• Improve temporal locality
– Path tiling

• Improve ILP
– Thread co-scheduling on an SMT for 

improved cache-reuse



Speedup

• DS1 to DS4 - synthetic datasets (increasing size)
• DS5 – real dataset 
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Related work
• Cache-conscious data base algorithms

– DBMS on modern hardware
• Ailamaki et al. [VLDB99]

– Cache sensitive search trees and B+ trees
• Rao and Ross [VLDB99,SIGMOD00]

– Prefetching for B+ trees and Hash-Join
• Chen et al. [SIGMOD01,ICDE04]

• Cache performance of data mining algorithms
– SOM

• Kim et al. [WWC99]
– C4.5

• Bradford and Fortes [WWC98]
– Apriori

• Parthasarathy et al. [KAIS01]

• Parallel scalability and I/O performance of data mining 
algorithms
– Y. Liu et al. [PDCS04]



Conclusions

• We presented a characterization of 8 data mining 
algorithms
– Compute and memory intensive
– Temporal locality can be improved in most cases
– Prefetching helps workloads with good spatial locality 
– SMT helps FPU intensive workloads
– Memory intensive nature of these algorithms limits performance

• Improved performance of FPGrowth

• Effective algorithm design needs to take account both 
traditional complexity issues and modern architectural 
designs.



Questions?

• Thanks
– NSF CAREER IIS-0347662
– NSF NGS CNS-0406386
– DOE ECPI DE-FE02475



Improving performance of 
FPGrowth

• FP-tree as an 
intermediate data set 
representation

• Pointer-based structure
• Tree accesses are 

bottom-up and are 
repeated for each item
– We only need item and 

parent pointer!

a:3
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Cache-conscious prefix tree
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Path tiling & Co-scheduling for 
cache-reuse SMT

r

Tile 1 Tile N -1 Tile N


