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DBMS on Modern Hardware

• Why so poor? Memory stalls!
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Modern Architecture & DBMS

• Instruction-Level Parallelism (ILP)
� Out-of-order (OoO) execution window

� Cache hierarchies - spatial / temporal locality

• DBMS’ memory system characteristics
� Limited locality (e.g., sequential scan)

� Random access patterns (e.g., hash join)

� Pointer-chasing (e.g., index scan, hash join)

• DBMS needs Memory-Level Parallelism (MLP)
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Prior Work

• Cache layout [Ailamaki 01] [Chilimbi 99] etc.

� Increase utilization, reduce conflicts

� Cannot hide miss latency

• Prefetching [Gracia Pérez 04] [Chen 03] etc.

� Hide memory latency

� Difficulties: pointer-chasing / random accesses

• SMT [Lo 98] [Garcia 05] [Zhou 05] etc.

� Hide memory latency, expose MLP

� Limited number of threads
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Our Contributions

• DB operators on thread-parallel architectures

� Expose parallel misses to memory

� Leverage intra-operator parallelism

• Evaluation using network processors

� Designed for packet processing

� Abundant thread-level parallelism (64+)

� Speedups of 2.0X-2.5X on common operators

Early insight on multi-core, multi-threaded 
architectures and DBMS execution
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Outline

• Introduction

• TLP and network processors

• Programming model

• Methodology

• Results

• Conclusions
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TLP in database operators

• Sequential or index scan

� Fetch attributes in parallel

• Hash join

� Probe tuples in parallel
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Network Processors

• Intel IXP2400

� 8 cores, each with 8 thread contexts

� Dedicated DDR SDRAM (up to 1GB)

� < 20W power dissipation
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Multi-threaded Core

• Simple processing core

� 5-stage, single-issue pipeline @ 600MHz

� 2.5KB local cache

� Switch contexts at programmer’s discretion
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Programming Model

• ISA supports thread switching

� Wait for specific hardware ‘signal’

� 4 cycle context switch (non-preemptive)

• Software-managed memory access

� Instructions for DRAM, local, scratch memories

� Programmer controls data access

• No OS or virtual memory

Sensible for simple, long-running code
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Multithreading in Action
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Methodology

• IXP2400 on prototype PCI card

� 256MB PC2100 SDRAM

� Separated from host CPU

• Pentium 4 Xeon 2.8GHz

� 8KB L1D, 512KB L2, 4 pending misses

� 3GB PC2100 SDRAM

• Workloads

� TPC-H orders and lineitems tables (250MB)

� Sequential scan, hash join
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Sequential Scan

• Use slotted page layout (8KB)

• Network processor implementation

� Each page scanned by threads on one core

� Overlap individual record access within core
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Sequential Scan Performance
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Hash Join Setup

• Model ‘probe’ phase

hash

key attributes

1

2 3 4

• Assign pages of outer relation to one core

� Each thread context issues one probe

� Overlap dependent accesses within core 
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Hash Join Performance
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Conclusions

• DBMS on modern processor

� Need to exploit memory parallelism

• Require thread-level parallelism

� Multi-threaded, multi-core architecture

� Hide memory latency

• Evaluation using network processors

� Simple hardware, lots of threads

� Beat Pentium 4 by 2X-2.5X on DB operators
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Thank You!
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Backup Slides
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What about Niagara?

• 8 cores, 4 threads each

• Originally targeted network applications

• Sound familiar?  Some differences:

� Larger L1/L2 caches

� More friendly programming environment (?)

� Less programmer control (?)

� Larger memory bandwidth/parallelism

� Availability?


