
Accelerating Database Operators
Using a Network Processor

Brian Gold

Anastassia Ailamaki

Larry Huston

Babak Falsafi

@Carnegie Mellon
Databases

2

DBMS on Modern Hardware

• Why so poor? Memory stalls!

Theoretical
minimum

Desktop/
Engineering

Decision
Support

Online
Transaction
Processing

0.33
0.8

1.4

4.0

C
yc

le
s

P
er

 In
st

ru
ct

io
n

3

Modern Architecture & DBMS

• Instruction-Level Parallelism (ILP)
� Out-of-order (OoO) execution window

� Cache hierarchies - spatial / temporal locality

• DBMS’ memory system characteristics
� Limited locality (e.g., sequential scan)

� Random access patterns (e.g., hash join)

� Pointer-chasing (e.g., index scan, hash join)

• DBMS needs Memory-Level Parallelism (MLP)

4

Prior Work

• Cache layout [Ailamaki 01] [Chilimbi 99] etc.

� Increase utilization, reduce conflicts

� Cannot hide miss latency

• Prefetching [Gracia Pérez 04] [Chen 03] etc.

� Hide memory latency

� Difficulties: pointer-chasing / random accesses

• SMT [Lo 98] [Garcia 05] [Zhou 05] etc.

� Hide memory latency, expose MLP

� Limited number of threads

5

Our Contributions

• DB operators on thread-parallel architectures

� Expose parallel misses to memory

� Leverage intra-operator parallelism

• Evaluation using network processors

� Designed for packet processing

� Abundant thread-level parallelism (64+)

� Speedups of 2.0X-2.5X on common operators

Early insight on multi-core, multi-threaded
architectures and DBMS execution

6

Outline

• Introduction

• TLP and network processors

• Programming model

• Methodology

• Results

• Conclusions

7

TLP in database operators

• Sequential or index scan

� Fetch attributes in parallel

• Hash join

� Probe tuples in parallel

Name ID Grade

Smith 0 B

Chen 1 A

Thread A

Thread B

Name ID Grade

Smith 0 B

Chen 1 A

Thread A

Thread B

8

Network Processors

• Intel IXP2400

� 8 cores, each with 8 thread contexts

� Dedicated DDR SDRAM (up to 1GB)

� < 20W power dissipation

8 Cores

DRAM
Controller

DRAM

PCI
ControllerHost CPU

Scratch
Memory

9

Multi-threaded Core

• Simple processing core

� 5-stage, single-issue pipeline @ 600MHz

� 2.5KB local cache

� Switch contexts at programmer’s discretion

IXP2400

DRAM
Controller

DRAM

PCI
Controller

Host CPU

Scratch
Memory

Context
0

1 2 3

4 5 6 7

Local Cache

Active Context Waiting Contexts

Register Files

Core

8 Cores

10

Programming Model

• ISA supports thread switching

� Wait for specific hardware ‘signal’

� 4 cycle context switch (non-preemptive)

• Software-managed memory access

� Instructions for DRAM, local, scratch memories

� Programmer controls data access

• No OS or virtual memory

Sensible for simple, long-running code

11

Multithreading in Action

Active Waiting Ready

DRAM
Request

DRAM
Data

Thread States:

Thread
Contexts
(1 core)

time

DRAM Latency

T0

T1

T2

T7

T0 T1 T2 T7 T0 T1 T2
Aggregate

12

Methodology

• IXP2400 on prototype PCI card

� 256MB PC2100 SDRAM

� Separated from host CPU

• Pentium 4 Xeon 2.8GHz

� 8KB L1D, 512KB L2, 4 pending misses

� 3GB PC2100 SDRAM

• Workloads

� TPC-H orders and lineitems tables (250MB)

� Sequential scan, hash join

13

Slot array

0 1

4
2

3

n
01234n

P
ag

e

Record header Attributes

Sequential Scan

• Use slotted page layout (8KB)

• Network processor implementation

� Each page scanned by threads on one core

� Overlap individual record access within core

14

Sequential Scan Performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9

Threads/Core

1 core

2 cores

4 cores

8 cores

Performance limited by DRAM controller

15

Hash Join Setup

• Model ‘probe’ phase

hash

key attributes

1

2 3 4

• Assign pages of outer relation to one core

� Each thread context issues one probe

� Overlap dependent accesses within core

16

Hash Join Performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9

Threads/Core

1 core

2 cores

4 cores

8 cores

Network processor finds MLP across tuples

17

Conclusions

• DBMS on modern processor

� Need to exploit memory parallelism

• Require thread-level parallelism

� Multi-threaded, multi-core architecture

� Hide memory latency

• Evaluation using network processors

� Simple hardware, lots of threads

� Beat Pentium 4 by 2X-2.5X on DB operators

18

Thank You!

19

Backup Slides

20

What about Niagara?

• 8 cores, 4 threads each

• Originally targeted network applications

• Sound familiar? Some differences:

� Larger L1/L2 caches

� More friendly programming environment (?)

� Less programmer control (?)

� Larger memory bandwidth/parallelism

� Availability?

