
DaMoN 2005

Hardware Acceleration for Database Systems using
Content Addressable Memories

Nagender Bandi, Sam Schneider, Divyakant Agrawal, Amr El Abbadi

University of California, Santa Barbara

DaMoN 2005

Overview

• The “Memory Bottleneck”� What is it?� How does the Memory Bottleneck effect Database Performance?

• Networking hardware - Can CAM-technology help?� Content Addressable Memories (CAMs)

• CAM-Cache Architecture� Database equi-join

• Concluding Remarks

DaMoN 2005

The “Memory Bottleneck”� CPU speed increases about 70% each year� Memory speed has increased about 50% over the last decade

Memory is increasingly
becoming a performance
bottleneck� Solution: “Memory Hierarchy”� Faster, smaller and more

expensive memories (caches)� Data kept near CPU� Smaller latency

DaMoN 2005

The “Memory Bottleneck”� But..
..caches improve latency only, if requested data is found in cache.� Some quotes:� “Unfortunately, recent studies report that faster processors do not improve

database system performance to the same extent as scientific workloads.”
“On the average, half the execution time is spent on stalls.” [Ailamaki et al.
VLDB 1999]� “..unless special care is taken, a database server running even a simple
sequential scan on a table will spend 95% of its cycles waiting for memory to be
accessed.”

“..we must draw the sad conclusion that if no attention is paid in query
processing to data locality, all advances in CPU power are neutralized due to the
memory access bottleneck.”

“ This trend of improvement in bandwidth and standstill in latency is expected
to continue, with no real solutions in sight.”
[Boncz et al. VLDB 1999]

DaMoN 2005

Optimization Algorithms� Data layout techniques� Decomposition Storage Model [Copeland et al. 1985]� PAX Model [Ailamaki et al. 2001]� Cache line extraction of relevant data [Shatdal et al. 1994]� Compression of tuples [Manegold et al. 1999]� Pre-fetching-based optimizations

DaMoN 2005

Hardware-based Approaches� Graphics Processors� Hardware Acceleration of Spatial Database Operations [Sun et al.
SIGMOD 2003]� Fast Computation of Database Operations using Graphics Processor
[Govindaraju et al. SIGMOD 2004]� Hardware Acceleration in Commercial Databases : A Case Study of
Spatial Operations [Bandi et al. VLDB 2004]� Fast and Approximate Stream Mining of Quantiles and Frequencies
Using Graphics Processors [Govindaraju et al. SIGMOD 2005]

DaMoN 2005
SEARCH SUBSYSTEM

SRAM(s)TERENARY CONTENT
ADDRESSABLE MEMORIES

SEARCH
KEY

RESULT

NETWORK
PROCESSOR (NPU)

DATA PACKET

Networking Hardware : Content Addressable
Memories

DaMoN 2005

Ternary Content-Addressable Memory
(Network Search Engine)

10010101011011110

10110101011011110

11110101011011110

|

|

11000001011011000

01010001011011000

10110101011011110
0

1

2

3
1

Data Array

DaMoN 2005

TCAM and Associated SRAM

202.141.*

64.0.0.*

Destination Address

202.141.81.*

128.121.*

128.111.28.*

202.141.21.1

64.0.0.1

Next Hop

202.141.81.2

128.121.0.1

128.111.28.1

TCAM SRAM128.111.28.24

DaMoN 2005

TCAMs and Applications� Packet Classification � Fast and scalable layer four switching [SIGCOMM98]� Intrusion Detection� Efficient Multi-Match Packet Classification with TCAM [HOTI’04]� Pattern Matching� Gigabit Rate Packet Pattern-Matching Using TCAM [ICNP’04]

DaMoN 2005

Databases and TCAMs� TCAMs provide very fast data-centric searches� Earlier works proposed using CAMs� A Data Management System Utilizing an Associative Memory [DeFiore73] � A content-addressed memory design for data base applications [Kain76]� Why did not they work?� Hardware technology was in its infancy [Grosspietsch92]� Largest CAM sizes were typically hundred words� Very expensive to build� Scientific computing was the main driving force and not databases� What changes it now?� Industry standard TCAMs (25600 entries (72 – bit) size and 133 Million
searches per second)� Can be cascaded to provide storage of 18Million entries without losing any
search throughput

DaMoN 2005

CPU

L1 -Cache

v

L2 -Cache

SRAMTCAM

Main Memory

CAM-Cache : Ideal Architecture

System bus

TCAM SRAM

DaMoN 2005

CPU

L1 -Cache

L2 -Cache

SRAMTCAM
Main Memory

CAM-Cache : Prototype architecture

System bus

TCAM SRAM

I/O hub

PCI bridge

PCI

Bridge Processor

DaMoN 2005

CAM-Cache prototype

Courtesy : Cypress Semiconductor Inc.

DaMoN 2005

CAM-Cache Prototype� Communicates with the CPU over PCI bus� 32-bit 33MHz � Bridge processor � FPGA Implementation� One 256K TCAM from Cypress Semiconductor Inc.� 133 million searches per second capability� Current prototype’s search through-put� 33000 searches per second� PCI communication is the bottleneck

DaMoN 2005
FOReach tuple p in PROJ DO

FOReach tuple e in EMP DO
IF p and e join to make a tuple t
THEN output t;

n PROJ EMPSoftware-based Nested Loop Join

DaMoN 2005

� A possible approach� Both tables reside in memory� One of the join tables is mirrored in CAM-engine

CAM-based equi-join (CJ)

MainMemoryCAM
Sample Algorithm

CPU loads first join attribute x from PROJ

CPU instructs CAM to search EMP for x
if found – the memory address of the tuple is returned

CPU loads next join attribute x from PROJ EMPPROJ
SRAM

DaMoN 2005

Design Challenges for equi-join� Multiple matches not supported � Joins can have a tuple matching multiple tuples� Multi-hit flag� For each match null the valid bit � This return the next top result

� 127� 248� 127� 128� 127

� 176

DaMoN 2005

Experimental Setup� Integration into a commercial database� Allows comparison with highly optimized techniques� Comparison� CAM-Cache based join� Nested Loop Join, Hash Join, Nested Indexed Join, Sort-Merge Join� Dataset� Uniformly distributed numerical dataset� Results Shown� CJ (PCI overhead inclusive)� CJnoPCI (PCI overhead excluded)

DaMoN 2005

Experimental evaluation : Nested loop join

Join Factor = 1

DaMoN 2005

Comparison with efficient techniques

Join Factor = 1

DaMoN 2005

Comparison with efficient techniques

Join Factor = 12

DaMoN 2005

Concluding Remarks� Prototype improvement� PCI-X bus� Driver optimization� Other database applications� Fast O(n) complexity sorting algorithms� Fast solution for general conditional joins� Supports multi-matches without any write overhead� String Matching.

