
Memory-Efficient GroupBy-Aggregate
using Compressed Buffer Trees

Hrishikesh Amur†, Wolfgang Richter?, David G. Andersen?,
Michael Kaminsky‡, Karsten Schwan†, Athula Balachandran?, Erik Zawadzki?

?Carnegie Mellon University, †Georgia Institute of Technology, ‡Intel Labs

Abstract
The rapid growth of fast analytics systems, that require
data processing in memory, makes memory capacity an
increasingly-precious resource. This paper introduces
a new compressed data structure called a Compressed
Buffer Tree (CBT). Using a combination of techniques in-
cluding buffering, compression, and serialization, CBTs
improve the memory efficiency and performance of the
GroupBy-Aggregate abstraction that forms the basis of
not only batch-processing models like MapReduce, but re-
cent fast analytics systems too. For streaming workloads,
aggregation using the CBT uses 21-42% less memory
than using Google SparseHash with up to 16% better
throughput. The CBT is also compared to batch-mode
aggregators in MapReduce runtimes such as Phoenix++
and Metis and consumes 4× and 5× less memory with
1.5-2× and 3-4× more performance respectively.

1 Introduction
This paper presents the design, implementation, and eval-
uation of a new data structure called the Compressed
Buffer Tree (CBT). The CBT implements in-memory
GroupBy-Aggregate: Given a set of records, partition the
records into groups according to some key, and execute
a user-defined aggregation function on each group. The
CBT uses less memory and provides more performance
than current alternatives.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
SoCC’13, Oct. 01–03 2013, Santa Clara, CA, USA.
ACM 978-1-4503-2428-1/13/10.
http://dx.doi.org/10.1145/2523616.2523625

Instance type (size) Percentage of hourly cost
CPU Memory Storage

Std. (S) 18% 47% 35%
Std. (L) 16% 44% 40%
Hi-Mem. (XL) 17% 69% 14%
Hi-CPU (M) 40% 20% 40%

Table 1: Amazon EC2 resource costs (# resource units × per-
hour unit resource cost); details in Section 5.2.1.

The CBT focuses on in-memory GroupBy-Aggregate
(called aggregation henceforth) because of the recent
need for performing aggregation with not just high
throughput, but low latency as well. This trend is driven
by fast analytics systems such as Muppet [32], Storm [3]
and Spark [49], that seek to provide real-time estimates
of aggregate data such as customer checkins at various
retailers or trending topics in tweets. For these systems,
the conventional model of batch-aggregating disk-based
data does not yield the necessary interactive performance.
Instead, fast and incremental aggregation on summarized
data in memory is required.

The CBT focuses on performing memory-efficient ag-
gregation because recent hardware trends indicate that
memory capacity is growing slowly relative to compute
capacity [35]. Moreover, our analysis in Table 1 of prices
charged by Amazon for different resources in EC2 in-
stances shows that for most instances, memory costs
already dominate, in terms of the proportion of total in-
stance cost. In other words, with Amazon’s standard con-
figurations, it is far cheaper to double the CPU capacity
than to double the memory capacity. This trend, seen in
the context of heavy demand for memory capacity for
fast analytics, naturally motivates the development of
techniques that can trade off additional CPU use in return
for reduced memory consumption.

Memory compression is used by the CBT to exploit
this trend, as in previous systems [5, 43]. The CBT ef-
ficiently maintains intermediate aggregate data in com-
pressed form, trading off extra compute work for reduced

memory capacity use. Direct application of memory com-
pression to existing methods for in-memory aggregation
does not work. Consider hashing, a popular technique
for fast in-memory aggregation [12, 32]: To maintain,
for example, a running count of real-time events, each
new event is hashed using its unique key to a hashtable
bucket and the stored counter is incremented. Compress-
ing buckets of the hashtable in memory is ineffective;
compressing individual buckets makes compression in-
efficient as each bucket may be small, and compressing
many buckets together as a block causes frequent de-
compression and compression whenever a bucket in the
block is accessed. Hashtables, therefore, are not ideal for
aggregating compressed data.

The CBT solves this problem with the insight that ac-
cessing compressed data is similar to accessing data on
disk. In both cases, (a) there is a high static cost associated
with access (i.e., decompression or reading from disk),
and (b) an access returns more data than requested (i.e.
entire compressed blocks or disk pages). The well-known
External Memory model [6] is developed around pre-
cisely these constraints. Techniques based on this model,
exploit these constraints by organizing data on disk such
that all the data in the block that is returned from an ac-
cess is “useful” data. This allows the static access cost
to be amortized across all the data in the block. Most
importantly, techniques developed for this model are anal-
ogously applicable to compressed memory.

In particular, the CBT leverages the buffer tree data
structure [7] as the store for compressed aggregate data.
The CBT intelligently organizes the aggregate data into
compressed buffers in memory such that data that is com-
pressed together also tends to be accessed together. This
allows the cost of decompression and compression to be
amortized across all the data in the buffer. High com-
pression efficiency is maintained by always compress-
ing large buffers. This allows aggregation to be both
extremely fast and memory-efficient.

Concretely, our contributions in the paper are:

• We introduce the Compressed Buffer Tree (CBT),
a data structure for stand-alone, memory-efficient
aggregation written in C++; the CBT seeks to re-
duce memory consumption through compression.
To reduce the number of compression/decompres-
sion operations (for high performance), the CBT
leverages the buffer tree data structure. The novelty
of this work lies in two insights: (a) the buffer tree,
originally designed to minimize I/O, can also be
used to reduce the number of compression/decom-
pression operations, and (b) the buffer tree can be
used to support the GroupBy-Aggregate abstraction,
hitherto only implemented using sorting or hash-
ing [48, 22]. This abstraction is a building block for
many data-processing models.

• The CBT includes optimizations to specifically im-
prove aggregation performance (e.g. multi-buffering,
pipelined execution) and reduce memory (e.g. seri-
alization, column-wise compression), which were
not the focus of the original buffer tree work.

• For stream-based workloads prevalent in fast ana-
lytics, the CBT uses 21-42% less memory than an
aggregator based on Google’s sparsehash [21],
a memory-efficient hashtable implementation, with
up to 16% higher aggregation throughput. The CBT
can also be used as a batch-mode aggregator. Com-
pared to state-of-the-art batch-mode aggregators
from the Phoenix++ [42] and Metis [37] MapRe-
duce runtimes, the CBT uses 4× and 5× less mem-
ory, achieving 1.5-2× and 3-4× higher throughput,
respectively. Our contribution can be viewed as ei-
ther allowing existing aggregation workloads to use
less memory, or accommodating larger workloads
on the same hardware.

We organize the paper as follows: The rationale behind
the choice of the Buffer Tree is explained in Section 2.
CBT design is detailed in Section 3 and implementation
details and various optimizations are described in Sec-
tion 4. Aggregator comparisons and an in-depth CBT
factor analysis are presented in Section 5.

2 Aggregator Data Structures

In this section, we first introduce a well-known model
for external memory; we then discuss the applicability of
the model to compressed memory. After a brief survey of
design alternatives, we explain why we choose the buffer
tree as the basis for a memory-efficient aggregator.

2.1 The External Memory (EM) Model

The External Memory model [6] is a popular framework
for the comparison of external data structures and algo-
rithms. It models the memory hierarchy as consisting of
two levels (e.g. DRAM and disk). The CPU is connected
to the first level (sized M) which is connected, in turn, to
a large second level. Both levels are organized in blocks
of size B and, transfers between levels happen in units
of blocks. Note that the model can be used to describe
various combinations of levels: hardware last-level cache
(LLC)/DRAM or DRAM/hard disk etc. In this section,
we will use the (capitalized) terms Cache and Disk to
indicate the two levels, and the terms Read and Write to
indicate the movement of a block of data from Disk to
Cache and Cache to Disk respectively.

Term DRAM/
Hard disk

Uncompressed/
Compressed DRAM

Cache DRAM DRAM
Disk Hard drive Compressed DRAM
Read Page read Block decompress
Write Page write Block compress
I/O Page read/write Block compress/

decompress

Table 2: External Memory (EM) Model analogs for compressed
memory

101 102 103 104 105 106 107 108

Compression Block Size B (bytes)

0.0

0.2

0.4

0.6

0.8

C
om

pr
es

si
on

R
at

io
(h

ig
he

ri
s

be
tte

r) Google Snappy LZOGoogle Snappy LZO

Figure 1: Efficient compression requires large block sizes.
Dataset used: Snapshot of Wikipedia compressed using
Snappy [20] and LZO [2] compression libraries.

2.2 EM Model for Compressed Memory

Our goal is to improve the memory efficiency of
GroupBy-Aggregate by maintaining aggregate data in
compressed form. Data access necessitates decompres-
sion, so the organization of data plays a critical role in
determining the frequency of compression, which affects
overall aggregation performance. Our first contribution is
to study techniques for this organization of data in the EM
model. More precisely, compressed memory is modeled
as Disk and uncompressed memory as Cache. Therefore,
a Read is a decompression operation and a Write is a
compression operation. Table 2 shows the analogs for
uncompressed/compressed memory compared to the con-
ventional DRAM/disk hierarchy.

The EM model requires that data movement between
Disk and Cache are in blocks of size B. For compressed
memory, Figure 1 shows that compression efficiency is
high only when moderately large blocks are compressed
together. This holds true for many popular compression
algorithms based on Lempel-Ziv techniques [50, 51], be-
cause these work by building a dictionary of frequently-
occurring strings and encoding the strings with (the much
shorter) references to the dictionary. Only large blocks
allow long, repeating runs to be captured.

2.3 Data Structure Alternatives

Next, we discuss alternatives for a data structure for stor-
ing data on Disk. We consider data structures that support

Data Structure Reads per get I/Os per insert

B-Tree O(logB N) O(logB N)

In
cr

ea
si

ng
 i
ns

er
t

pe
rfo

rm
an

ce

Hashing [17] O(1) O(1)

LSM Tree [41] O(logN logB N) O(1
B logN)a

COLA [8] O(log2 N) O(1
B logN)a

Buffer tree [7] O(1
B log M

B

N
B)

a O(1
B log M

B

N
B)

a

Append-to-file O(N
B) O(1

B)
a

aamortized

Table 3: Comparison of I/Os performed by various data struc-
tures to insert a new key-value pair or get the value associ-
ated with a key in the External Memory model: B is the block
size for data movement between Disk and Cache (see §2.1), M
is the size of the Cache and N is the number of unique keys.

two operations: 1) insert(key, value) – insert
the key, if absent, and associate the value with the key,
and 2) get(key) – fetch the current value associated
with the key. The performance of insert and get is
measured in terms of I/Os required per operation. Previ-
ous work offers data structures that provide a spectrum of
tradeoffs between insert and get performance under
the EM model. Table 3 summarizes these in increasing
order of insert performance.

At one end of the spectrum are B-trees and hash-
ing [17]. Both methods provide low latency gets, but
modify data on Disk in-place. This means that each
insert operation requires one Read and one Write. At
the other end are unordered log-structured stores (append-
to-file in Table 3) such as the Log-Structured File Sys-
tem [44]. They are called unordered because they do
not order keys in any way (e.g. sort) before Writing to
Disk. Typically, a B-sized buffer in Cache is maintained
and new key-value pairs copied into it. When full, it is
Written to a log on Disk. This amortizes the cost of the
Write across all key-value pairs in the block providing
the optimal cost of O(1

B) Writes per insert. However,
gets need to Read the entire log in the worst case.

Ordered log-structured stores form the middle of the
spectrum. These buffer multiple key-value pairs in the
Cache and order them before writing to Disk. Ordered
log-structured stores offer much higher insert per-
formance compared to in-place update structures like
B-trees, and also provide the crucial advantage that
key-value pairs with the same key tend to cluster to-
gether in the data structure allowing periodic merge
operations to be performed efficiently. Examples of or-
dered log-structured stores include Log-Structured Merge
(LSM) Trees [41], Cache-Oblivious Lookahead Arrays
(COLA) [8] and buffer trees [7]. Similar to unordered

stores, ordered stores amortize the cost of Writes across
multiple key-value pair aggregations, but, unlike them,
periodically merge records belonging to the same key.

LSM Trees maintain multiple B-Trees organized in
levels with exponentially increasing size. When a tree at
one level becomes full, it flushes to the tree at the next
level. COLA are similar to LSM Trees, but use arrays
instead of B-trees at each level for slightly slower reads.
Both LSM Trees and COLA, with their emphasis on
maintaining low latency for Reads, aim to serve as online
data structures and are used as data stores in key-value
databases [11]. The buffer tree has a slightly different
goal. It targets applications that do not require low la-
tency queries, and only provides good amortized query
performance, as shown in Table 3. In return, buffer trees
make better use of available Cache space, to improve on
the insert performance of LSM Trees and COLA.

Briefly, the buffer tree maintains an (a,b)-tree with
each node augmented by a nearly Cache-sized buffer.
Inserts and queries are simply copied into the root buffer.
When any node fills up, it is emptied by pushing the
contents of the node down to the next level of the tree.
During the emptying process, multiple inserts with
the same key can be coalesced.

We leave proofs regarding the performance bounds to
related work. Having outlined the tradeoffs in insert
and get performance, we look at what properties are
required from a data structure to support GroupBy-
Aggregate efficiently.

2.4 GroupBy-Aggregate in the EM Model

To understand the requirements of GroupBy-Aggregate,
consider implementing GroupBy-Aggregate using a
hashtable on Disk to store aggregate data. Recall that
contents of the hashtable on Disk can only be accessed in
blocks of size B. To aggregate a new key-value pair (k,v),
the current value V0 associated with k (if any) must be
fetched using a get; the value v is then aggregated with
V0 to produce V1, and (k,V1) inserted. Thus, each ag-
gregate requires a get and an insert. The problem is
that if each key-value pair is much smaller than a block,
the remaining data in the block that has been read is
wasted. We term this type of read-modify-update aggre-
gation as eager aggregation, since each new key-value is
immediately aggregated into the current value.

An alternative is lazy aggregation, where up-to-date
aggregates of all keys are not always maintained. Eager
aggregation assumes the worst: that aggregated values for
any keys may be required at any point during aggregation.
In lazy aggregation, on the other hand, for a new key-
value pair (k,v) that has to be aggregated, aggregation
is simply scheduled by inserting the pair. Of course,
this requires a lazy aggregator to be finalized, where all

scheduled-but-not-executed aggregations are performed,
before the aggregated values can be accessed.

Lazy aggregation works well in scenarios where the
accessing of aggregated values happens at well-defined
intervals (e.g. MapReduce and databases where the ag-
gregated results are only accessed at the end of the job
and query respectively), or when the ratio of aggrega-
tions to accesses is high. For example, lazy aggregation
works well for the following scenario: Find the top-100
retweeted tweets, updated every 30 seconds, by monitor-
ing a stream of tweets; the incoming rate of all tweets is
high, possibly millions per second, and the aggregated
data which includes the top-100 tweets is only accessed
once (therefore requiring a finalize) every 30 seconds.

To contrast the requirements of a lazy aggregator with
an eager aggregator, it is immediately clear that, for the
former, the get corresponding to accessing the current
aggregated value can be avoided. Therefore, a data struc-
ture used to support a lazy aggregator only needs to
support fast inserts. There is one other requirement:
For fast finalization, the data structure must be ordered.
To see why, consider the case of append-to-file from
§2.3. Append-to-file (unordered log) supports very fast
inserts, but at finalization time, the inserted values
for a given key can be distributed over the entire log on
Disk. To collect these, the entire log essentially has to
be sorted, which leads to poor finalization performance.
Instead, an ordered data structure clusters inserted val-
ues with the same key together, allowing periodic partial
aggregation. This improves finalization performance. For
example, for LSM and buffer trees, buffered values in the
higher levels must only be flushed down to the lowest
level during finalization, which is significantly faster than
sorting the entire log.

Taking these requirements into account, along with
conclusions from §2.3, it is clear that buffer trees provide
the solution we seek: low-cost inserts for fast schedul-
ing of aggregation, and ordering for efficient finalization.
Using this insight, our data structure, the Compressed
Buffer Tree (CBT), uses the buffer tree to organize aggre-
gate data in compressed memory.

3 Compressed Buffer Trees

The CBT is a data structure for maintaining key-value
pairs in compressed memory. It allows new key-value
pairs to be inserted for aggregation; it merges inserted
key-value pairs with existing key-value pairs in com-
pressed memory while reducing the number of compres-
sion/decompression operations required. We adopt the
CBT for use as a fast, memory-efficient aggregator of
key-value pairs that can be used to implement a generic
GroupBy-Aggregate operation. This aggregator can be

used in a variety of data-processing runtimes including
MapReduce and fast analytics systems.

3.1 Partial Aggregation Objects (PAOs)
The CBT uses a simple data structure called a Partial Ag-
gregation Object (PAO) to represent intermediate partial
results. Yu et al. [48] hint at a similar abstraction, but we
make it explicit to help simplify the description of CBTs.

Prior to aggregation, each new key-value pair is repre-
sented using a PAO. During aggregation, PAOs accumu-
late partial results. PAOs also provide sufficient descrip-
tion of a partial aggregation such that two PAOs pq and
pr with the same key can be merged to form a new PAO,
ps. Because different PAOs with the same key provide no
guarantees on the order of aggregation, applications must
have a merge function that is both commutative and
associative. For example, in a word-counting application,
two PAOs: 〈arge,2, f : count()〉 and 〈arge,5, f :
count()〉, can be merged because they share the same
key “arge”, invoking the function associated with the
PAOs count(), and resulting in 〈arge,7, f : count〉.
The CBT is programmed by the user by specifying the
structure of the PAO (members and function).

3.2 The CBT API
The CBT API consists of two mutating operations:
insert(PAO p) – schedule a PAO for aggregation,
and finalize() – produce final aggregate values for
all keys. Aggregated PAOs can then be read using an iter-
ator, but random key lookups are not currently supported
(we briefly address this in Section 7).

3.3 CBT Operation
Like the buffer tree, the CBT uses an (a,b)-tree [25]
with each node augmented by a large memory buffer. An
(a,b)-tree has all of its leaf nodes at the same depth and
all internal nodes have between a and b children, where
2a≤ b. The entire CBT resides in memory. We term all
nodes except the root and leaf nodes “internal nodes.”
The root is uncompressed, and the buffers of all other
nodes are compressed.

Inserting PAOs into the CBT When a PAO is
inserted into the CBT, the tuple 〈hash, size,
serialized PAO〉 is appended to the root node’s
buffer; hash is a hash of the key, and size is the size
of the serialized PAO. We use the hash value of the key,
instead of the key itself, because string comparisons are
expensive (excessively so for long keys). Handling hash
collisions is explained later. PAOs have to be serialized
into the root buffer because PAOs, in general, can contain

Root node A is full
1

4 Copy fragmentsCompress fragments3

bold border
indicates

compressed state

color
gradient
indicates

sorted order

P

A C

create new
root P

2

new fragments
copied to leaves3

1

create
new leaf;
add to P

for A

for new leaf C

for A

for new leaf C

2
Split buffer into two

A A

sort and
aggregate

buffer

buffer for
root A

Figure 2: Split process for root node A: The root buffer is sorted
and aggregated; the buffer is then split into two and each part
compressed. One split is copied into a new node C. The new
root P is created as the parent of A and C.

pointers, dynamic data structures such as C++ vectors
etc., and because the eventual goal is to compress the
buffer, the PAOs have to serialized into a contiguous
chunk of memory. PAOs are copied into the root node
until it becomes full. The procedure to empty a full node
(Algorithm 1) is summarized next.

Algorithm 1 Emptying a node

@param N: Node which must be emptied
def empty(N):

if N is the root:
if N is a leaf:

When the tree has only one node,
it is both the root and a leaf
splitRoot() # see Figure 2

else:
spillRoot() # see Figure 3

else:
if N is a leaf:

splitLeaf() # see Figure 4
else:

spillNode() # see Figure 5

Emptying the Root Node When the root becomes full,
the PAOs in the root buffer are sorted by hash; a fast
radix sort is used because 32-bit hashes are being sorted.
After sorting, because PAOs with the same key appear
consecutively in the sorted buffer, an aggregation pass is
performed. This aggregates PAOs in the buffer to exactly
one PAO per key. The sorted, aggregated buffer is then
handled in two possible ways: if the root is also a leaf (if
the tree only contains one node), then it undergoes the
split procedure (Figure 2), otherwise, it undergoes the
spill procedure (Figure 3).

Root node P is full
1

4 Copy fragments to
children

Compress fragments3

bold border indicates
compressed state

2

sort and
aggregate

buffer

Split buffer into
fragments

split using key (hash)
ranges of children

for A

for B

for C

P

BA C

for A

for B

for C

P

New fragments appended
to existing fragments

BA C

Figure 3: Spill process for root node A: The root buffer is sorted
and aggregated; the buffer is then split into fragments according
to hash ranges of children, and each fragment is compressed
and copied into the respective children node.

Leaf node A is full

Merge fragments of

merge and aggregate
sorted fragments into
single buffer

A

1

3 4

6

BA

Split buffer into two

for A

for new leaf C

Create new leaf C and
copy fragments5 Compress fragments

compressed
buffer fragments

2
Decompress fragments

bold border
indicates

compressed
state

color
gradient
indicates

sorted order

for A

for new leaf C

P

A C

if A is the
root create
new root P

2

new fragments
copied to leaves3

1

create
new leaf;
add to P

Figure 4: Split process for leaf node A: The compressed frag-
ments in A are decompressed, merged (each is sorted), and
divided into two splits. Both splits are compressed and one split
copied into a new leaf node C.

Emptying Internal and Leaf Nodes Each root spill
copies compressed buffer fragments into its children. Any
node can spill until one or more of its children becomes
full. A full child must first be emptied, before the par-
ent can spill again. Internal and leaf nodes consist of
compressed buffer fragments. During emptying, these

Internal node P is full

Merge fragments of

merge and aggregate
sorted fragments into
single buffer

P

P

P

New fragments appended
to existing fragments

1

3 4

6

BA C

split using key
ranges of children

Split buffer into
fragments

for A

for B

for C

Copy created
fragments into children

BA C

5 Compress fragments

compressed
buffer fragments

for A

for B

for C

2
Decompress fragments

bold border
indicates

compressed
state

color
gradient
indicates

sorted order

Figure 5: Spill process for internal node P: The compressed
fragments in A are decompressed, merged (each is sorted), and
split into fragments according to hash ranges of children. Each
compressed fragment is copied into the respective child.

compressed fragments are first decompressed; since each
decompressed fragment is already sorted, the fragments
are then merged into a single buffer. During merging,
PAOs with the same key are aggregated into a single PAO
per key. If the node is a leaf, it is split (Figure 4), else
spilled (Figure 5).

Handling hash collisions Ordering PAOs by hash val-
ues instead of the keys improves performance and reduces
CPU use, but introduces the possibility of hash collisions.
To aggregate a list of PAOs sorted by hash, in the event
of no collisions, a single accumulator can be maintained
and PAOs aggregated into it until the hash value changes.
After this, the accumulator is written out to a separate
aggregated list, and the process is repeated for the next
set of PAOs.

When collisions occur, PAOs for colliding keys
can occur in interleaved fashion. For example, the
following sequence (containing hashes, sizes and PAOs)
could occur: {ha,s1,(a,1)}, {hb,s2,(b,3)},
{ha,s3,(a,2)}, {hc,s4,(c,1)}, where a and b
collide, i.e., ha = hb 6= hc. Collisions are handled by
maintaining accumulators for all colliding keys, and
aggregating PAOs into the appropriate accumulator until
the hash value changes. For the above sequence, an
accumulator for a is first created, but since h(a) = h(b),

but a 6= b, a second accumulator is created for b. These
accumulators are stored in separate hash table. The
second PAO for key a is aggregated into key a’s accu-
mulator. When the PAO for key c is read, h(c) 6= h(a),
so both accumulators for a and b are written out to the
aggregated list, and the process continues.

Implementing finalize() Due to buffering, CBTs
can have multiple PAOs for the same key buffered at
different levels in the tree. When the final aggregated
value is required, the CBT is finalized by performing a
breadth-first traversal of the tree (starting from the root)
and emptying each node using the procedure outlined in
Algorithm 1. This causes all PAOs to be pushed down to
the leaf nodes in the tree. At the end of this process, any
possible duplicate PAOs would have been merged.

4 Implementation

We implement the CBT as a stand-alone aggregator in
C++, allowing it to be integrated into different parallel-
processing runtimes. The CBT can either be used as a li-
brary or as a service (uses ZeroMQ [4] for cross-language
RPC). In either form, it can implement per-node aggrega-
tion in a distributed runtimes for MapReduce or stream-
processing systems such as Muppet [32] or Storm.

4.1 Performance Optimizations

Asynchronous operations Core CBT operations such
as compression, sorting/merging and emptying execute
asynchronously. Queues are maintained for each of these
operations and nodes are moved between queues after
processing. For example, when a non-root node is full, it
is inserted into the decompression queue. After decom-
pression, it is queued for merging, where its fragments
are merged and aggregated. Finally, the node is queued
for emptying. All movement of nodes between queues is
by reference only, with no copying of buffers involved.
Queues also track dependencies to avoid cases such as a
parent node spilling into an emptying child node.

Scaling the number of workers Structuring CBT op-
erations as a pipeline of queues allows minimal synchro-
nization during parallel execution (only required when
adding/removing nodes from queues). Multi-core scal-
ing is achieved by simply adding more worker threads
per queue. We use a thread-pool for worker threads as
work is bursty, especially for workloads with uniformly
distributed keys where entire levels of nodes in the tree
become full and empty within a short interval of time.

Multiple Root Buffers PAOs are inserted into the CBT
by an insertion thread. The insertion thread blocks when
the root buffer becomes full and remains blocked until the
buffer is emptied into the nodes in the next level. Overall
performance depends significantly on minimizing the
blocking time for the insertion thread. Using multiple
buffers for the root allows insertion to continue while
buffers are sorted and aggregated and wait to be emptied.
The inserter blocks only when all buffers are full.

Scaling the number of trees Due to the bursty nature
of the work, a single tree, though multi-threaded, cannot
utilize all CPUs on our node. Therefore, we use multiple
CBTs, using hashes of the keys to partition PAOs between
trees, such that any given key can occur only in one tree.
We find it sufficient to restrict all threads belonging to
one instance of the CBT to run on the same processor
socket.

4.2 Memory Optimizations

Efficiency through Serialization CBTs improve
memory efficiency through compression. As discussed,
being able to compress buffers requires that PAOs are
serialized into the buffers. Serialization, in fact, also im-
proves memory-efficiency by avoiding many sources of
memory overhead that “live” objects require. For exam-
ple, if an uncompressed in-memory hashtable is used to
store the aggregators, there are many sources of overhead:

1. Pointers: Because an intermediate key-value pair is
hashed by key, the hashtable implementation stores
a pointer to the key, at a cost of 8B (64 bit).

2. Memory allocator: Both keys and values are al-
located on the heap, incurring overhead from the
user-space memory allocator because: (a) sizes are
rounded up to multiples of 8B to prevent external
fragmentation (e.g. jemalloc [16] has size classes
8,16,32,48, ...,128), (b) each allocation requires
metadata; an allocator that handles small objects
efficiently (e.g. jemalloc) reduces this overhead.

3. Hashtable implementation: unoccupied hashtable
slots waste space to limit the load factor of the
hashtable for performance. A memory-efficient im-
plementation such as Sparsehash [21] minimizes
this overhead and has a per-entry overhead of just
2.67 bits (at the cost of slightly slower inserts).

The CBT always stores PAOs in efficient1 serialized
form and avoids “live”-object overheads. “Live” PAOs
also use C-style structs instead of C++ objects to

1e.g. Google Protocol Buffers (protobufs) serializes integers as var-
ints which take one or more bytes allowing smaller values to use fewer
bytes instead of the usual 4B

avoid virtual table overheads. Compared to hashtables, al-
locator overhead is minimal because memory is allocated
for large buffers, both compressed and uncompressed
(typical buffer sizes are hundreds of MB).

Column-Specialized Compression The CBT borrows
the idea of organizing data by columns from column-
store databases. This enables the use of specialized com-
pression techniques to save memory. Recall that each
buffer fragment in the CBT consists of tuples of the form
〈hash, size, serialized PAO〉; storing tuples
column-wise results in three columns, each of which
is compressed separately. For example, in each buffer
fragment, the hashes are already sorted; therefore, we
use Delta-encoding to compress the column of hashes.
Because many of the PAOs are of similar size, we use
Run-Length Encoding to compress the column of PAO
sizes. For the column of actual PAOs, we use Snappy [20],
a general-purpose compressor, but allow the user to over-
ride this with a custom compression algorithm.

5 Evaluation
In this section, we evaluate the CBT as an aggregator in
streaming and batch modes and compare performance
with uncompressed hashtable-based aggregators. Since
the CBT trades off additional CPU use for memory sav-
ings, we introduce a cost model based on Amazon EC2
resource costs to study whether the saved memory is
worth the cost of increased CPU consumption. Next, we
perform a factor analysis to understand how CBT param-
eters and workload characteristics affect performance.

Setup The experiments use a server with two Intel
X5650 processors (12 2.66GHz cores or 24 threads with
SMT) with 48GB of DDR3 RAM. Each processor has
32KB L1 caches, 256KB L2 caches and a 12MB L3
cache. The system runs Linux 2.6.32 with the gcc-4.4
compiler (with -O3 optimization). Each experiment is
repeated 12 times and the mean of the last 10 runs is re-
ported with error bars denoting the standard deviation. We
use the jemalloc [16] memory allocator; jemalloc
and tcmalloc [19] both have good multi-threaded per-
formance, but the latter shows inflated memory usage
as it does not return freed memory to the kernel. Unless
specified, we use the CBT with compression enabled us-
ing the Snappy [20] compressor; a buffer size of 30MB
and a fan-out of 64 are used.

5.1 Applications
Recall that user-defined aggregate functions are specified
using PAOs (Section 3.1). Next, the applications used in

the evaluation are described.

Wordcount In this application, we count the number
of occurrences of each unique word. We use this appli-
cation with a series of synthetic datasets to understand
the characteristics of the different runtimes and aggre-
gators. The synthetic datasets are characterized by the
number of unique keys, a measure of how often the key
appears—aggregatability (for an application, we define
the aggregatability of the dataset as the ratio of the size of
the dataset to the aggregated size of the dataset), the aver-
age length of the keys and the distribution of key lengths.
These datasets use randomly-generated keys, which is
the worst-case for compressibility.

N-gram Statistics An n-gram is a continuous sequence
of n items from a sequence of text. N-gram counting is
useful in applications such as machine translation [38],
spelling correction [28] and text classification [10]. This
application computes n-gram statistics on 30k ebooks
downloaded from Project Gutenberg [1] for different val-
ues of n. Each PAO contains a key-value pair: the n-gram
and a 32-bit count. Merging PAOs simply adds the count
values. The popularity of words in English follows a Zipf
distribution, and this application tests the ability of aggre-
gators to handle workloads where the aggregatability and
key length is non-uniform across keys.

k-mer counting Counting k-mers, which are sub-
strings of length k in DNA sequence data, is an essential
component of many methods in bioinformatics, including
genome assembly and for error correction of sequence
reads [39]. In this application we count k-mers (for k=25)
from Chromosomes 1 & 2 from human genomic DNA
available at ftp.ncbi.nlm.nih.gov/genomes/
H_sapiens. Each PAO consists of the k-mer as the key
and a 32-bit count. Merging PAOs simply adds the count
values, similar to n-gram. This application tests the ability
of aggregators to handle datasets with a large number of
unique keys. We use k-mer counting as a representative
batch aggregation application.

Nearest Neighbor In this application, we detect simi-
lar images using the perceptual hashes [40] of 25 million
images from the MIT Tiny Image dataset [47]. Perceptual
hashes (PHs) of two images are close (as defined by a
similarity metric like Hamming distance) if the images
are perceptually similar according to the human visual
response. Perceptual hashes are often used in duplicate
detection.

This application consists of two MapReduce jobs: the
first job clusters images that have the same PH prefix and
the second job performs a brute-force nearest-neighbor

ftp.ncbi.nlm.nih.gov/genomes/H_sapiens
ftp.ncbi.nlm.nih.gov/genomes/H_sapiens

search among these clusters. For the first job, a PAO con-
sists of a PH-prefix as key and a list of (image ID,
perceptual hash) tuples, which denote the images
in that cluster, as value. Merging two PAOs with the same
key combines their image lists. From an input image and
its hash (e.g. A, 563), a PAO is created whose key is a
prefix of the PH (e.g. 56) and whose value is the image’s
file name. Therefore, PAOs for images with the same pre-
fix (e.g. 561, 567), which by definition are perceptually
similar, can be merged by merging the file lists from the
PAOs. This job has an expensive reduce function and
large PAOs.2 The second job generates all possible pairs
of images from each cluster; the key is the image ID
and the value is a (neighbor ID, distance) tu-
ple. These are merged by choosing neighbors with the
least distance.

5.2 Comparison with Hashtable-based Ag-
gregators

Workload generator To model a stream-based system,
we use a multi-threaded workload generator that gener-
ates streams of application-specific PAOs that are inserted
into the aggregator for grouping and aggregation. To gen-
erate the workload, the workload generator can either use
an input dataset file or generate randomized data accord-
ing to input parameters. We run the workload generator
on the same machine as the aggregator and link the ag-
gregator libraries into the workload generator. For all
experiments, we find that using four generator threads is
sufficient to saturate all aggregators.

The workload generator also periodically finalizes the
aggregators. For hashtable-based aggregators, this has no
effect since they always maintain up-to-date aggregated
values for all keys. CBTs, however, can have multiple
PAOs per key buffered, so finalization causes these to be
merged to a single PAO per key.

Hashtable-based Aggregators For comparison with
the CBT, we also implemented two stand-alone
hashtable-based aggregators: 1) SparseHash (SH),
which permits only serial access but uses Google’s
sparse_hash_map, an extremely memory-efficient
hashtable implementation, and 2) ConcurrentHashTable
(CHT), which allows concurrent access using the
concurrent_hash_map from Intel’s Threading
Building Blocks [26].

Unlike the CBT, which maintains intermediate key-
value pairs in compact, serialized form before being

2This basic method does not find images whose hashes are close
by Hamming distance but differ in higher-order bits (e.g. 463 and 563).
Therefore, we repeat the process after rotating the PH values for each
image (635 and 634 share the same prefix). This works because the
Hamming distance is invariant under rotations.

0 20 40 60 80 100 120

Time interval between finalize operations (sec)

0

20

40

60

80

100

A
gg

re
ga

tio
n

th
ro

ug
hp

ut
D

eg
ra

da
tio

n
(%

) wordcount (binomial)
2-gram (gutenberg)
wordcount (binomial)
2-gram (gutenberg)

Figure 7: Effect of time interval between finalize operations
on aggregation throughput

compressed, SH and CHT maintain each (unique) in-
termediate key-value pair unserialized. We consider two
representations for the intermediate key-value pairs: (a)
statically sized, where the intermediate key-value pair is
stored in-place in a statically-sized C++ struct, and
(b) dynamically sized, which uses pointers. The former
approach (called SH and CHT respectively) requires the
struct to be sized to the largest key-value pair, but
avoids heap allocation overheads, whereas the latter ap-
proach (called SH-ptr and CHT-ptr respectively) allocates
the exact amount of memory required for each interme-
diate key-value pair. For the CBT, we also show perfor-
mance with compression disabled (BT).

A single instance of each aggregator uses a different
amount of CPU. For fair comparison, we use the same
amount of CPU overall by using multiple instances for
the CBT and SparseHash and partitioning the PAO stream
between the instances (e.g. by using a hash function on
the PAO key). Therefore, we use 5 instances of the CBT
and 20 instances of SparseHash.

First, we compare the aggregators with finalization
performed only once at the end of the input dataset. This
is equivalent to batch-mode execution. Figure 6 shows
these results, and we make the following observations: (a)
For all applications, CBT consumes the least amount of
memory; (b) the performance of BT is better than the al-
ternatives (except for the application wordcount(uniform)
which is a special case with words of exactly the same
length); (c) BT always offers better throughput than CBT;
(d) CBT consumes significantly less memory than BT
if the dataset is compressible: the randomized text and
ebook datasets are not highly compressible, but the k-
mer and nearest-neighbor are. Many real-world datasets,
such as URLs, DNA sequences etc., are compressible;
finally, (e) for the hashtable-based aggregators, no inter-
mediate key-value pair representation (static or dynamic)
consistently outperforms the other.

As the frequency of finalization increases, hashtables
remain unaffected, but CBT performance decreases. Fig-

wordcount
(uniform)

wordcount
(binomial)

2-gram
(gutenberg)

kmer-count
(k=25)

nn (25mil)
0

5

10

15

20

25

30

35

M
em

or
y

us
ag

e
(G

B
)

ou
to

fm
em

or
y

ou
to

fm
em

or
y

CBT
BT
SH
SH-ptr
CHT
CHT-ptr

wordcount
(uniform)

wordcount
(binomial)

2-gram
(gutenberg)

kmer-count
(k=25)

nn (25mil)
0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
(×

1
0

6
ke

ys
/s

)

ou
to

fm
em

or
y

ou
to

fm
em

or
y

CBT
BT
SH
SH-ptr
CHT
CHT-ptr

Figure 6: Comparison of various aggregators

SparseHash CBT
0

20

40

60

80

100

Pe
rc

en
ta

ge
of

to
ta

l
C

P
U

us
e

(%
)

fin
d

po
si

ti
on

m
ap

re
si

ze

m
al

lo
c

PA
O

m
gm

t.

PA
O

m
er

ge

co
m

pr
es

s

ag
gr

eg
at

e

m
ap

m
er

ge

de
co

m
pr

es
s

so
rt

in
se

rt
io

n

sp
il

l/s
pl

it

Figure 8: Comparison of CPU use by SparseHash
(20 instances) and CBT (4 instances): For SparseHash,
find_position: find an unassigned index in a closed
hashtable, map: map-side processing (tokenizing of keys etc.),
resize: hashtable resizing when full, malloc: memory al-
location, PAO mgmt.: creation of PAOs for insertion into
hashtable, PAO merge: merging of PAOs with the same
key. For CBT, each bar refers to the respective operation
performed on buffer fragments in CBT nodes.

ure 7 shows the effect of finalization frequency on degra-
dation of aggregation performance for two applications:
WordCount (Binomial) and 2-gram (Gutenberg). It can
be seen that while frequent finalization (once every 5s)
can lead to high degradation, more realistic inter-finalize
intervals lead to between 10-20% of degradation in ag-
gregation throughput.

Finally, intuitively, it seems that hashtable-based ag-
gregators should always outperform CBTs, given that
aggregation using CBTs entails compression, sorting, etc.
However, especially for memory-efficient hashtables, the
comparison is hard to intuit because aggregation using
hashtables involves overheads not present in the CBT.
Figure 8 shows the breakup of CPU use for operations
involved in aggregation using both hashtables and CBTs.

For clarity, we briefly explain how SparseHash works:
The hashtable is implemented as an array of fixed-sized
“groups”. Each hashtable operation (e.g. insert, find) is

passed on to the group responsible for the index returned
by the hash of the key. Each group consists of a bitmap,
that stores whether a particular index in the group is
assigned or not, and a vector that stores values for as-
signed indices only. This allows the hashtable to use less
memory (2.67 bits) for each entry, wasting little memory
for unassigned indices. The savings in memory result
in slower inserts, as indicated by the high CPU use of
find_position. SparseHash uses quadratic probing
for collision resolution; during an insert, multiple string
comparisons might be performed along the probe se-
quence. Like other hashtables, SparseHash also requires
resizing when the load factor (for a closed hashtable, the
proportion of occupied indices) becomes too high. Sparse-
hash also incurs higher allocator overhead than regular
hashtables, as unassigned indexes are not pre-allocated
and have to be allocated on inserts.

5.2.1 Cost model

Estimating the cost-benefit of using the CBT requires a
cost model for the resources it consumes. The model must
account for the total cost of operation including purchase
and energy costs. Instead of synthesizing a model from
component costs, inspired by an idea in a blog post [36],
we analyze the publicly available pricing of different
Amazon EC2 instances, which have varying amounts of
CPU, memory and disk resources, to estimate the unit
cost of each kind of resource as priced by Amazon as
alluded to in Section 1. We describe the derivation next.

Let A be an m× 3 matrix with each row containing
the number of units of CPU, memory and storage avail-
able in a type of instance. There is one row for each
of the m different types of EC2 instances (e.g. Stan-
dard Small, Hi-memory Large etc.). Let b be an m× 1
matrix representing the hourly rates of each kind of in-
stance, and let x = [c,m,d]> be the per-unit-resource
rates for CPU, memory and disk respectively. Solving

Total cost (¢)

Application (x,y) CBT BT SH SH-ptr CHT CHT-ptr Savings

wordcount (uniform) 100, 10 0.43 0.28 0.31 0.43 0.50 0.57 9.6%
wordcount (binomial) 100, 10 0.41 0.31 0.51 0.46 0.64 0.65 32.6%
2-gram (gutenberg) 105, 80.5 0.53 0.43 0.70 0.67 0.86 0.92 35.8%

k-mer (genomic) 394, 6.1 0.53 0.56 0.68 0.94 1.50 1.84 22%
nn (25mil) 116, 5.3 0.15 0.18 - 0.25 - 0.33 40%

Table 4: Dataset Parameters and Costs using Amazon EC2 cost model: x represents the number of unique keys in the dataset (in
millions) and y represents the average number of occurrences. The cost benefit obtained by using the better of CBT/BT (bold) over
the best option among alternatives (underlined).

0

5

10

15

20

25

30

35

M
em

or
y

us
ag

e
(G

B
)

Metis (CBT)
Metis
Phoenix++

5 10 15

Number of unique keys (×106)

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
(×

1
0

6
ke

ys
/s

)

Metis (CBT)
Metis
Phoenix++

Figure 9: Comparison of CBT with aggregators in Metis and
Phoenix++: All systems sort final results by count and display
the top 5 words. The synthetic datasets consist of an increasing
number of unique keys, with average key length 16B, and each
key repeating 1000 times.

for x in A.x = b using a least squares solution that mini-
mizes ‖b−A.x‖2 yields the per-unit-resource costs. Us-
ing prices from April 2012, this yields hourly costs of
1.51¢ per ECU (Elastic Compute Unit), 1.93¢ per GB of
RAM and 0.018¢ per GB of storage. Table 4 shows the
corresponding costs predicted by our model along with
the benefits of using the CBT over its alternatives.

Batch-mode comparison with MapReduce Aggrega-
tors The CBT can also be used as a batch-mode aggre-
gator. For comparison, we replace the default aggregator
in the Metis [37] MapReduce framework, which uses a
hash table with a B+ Tree in each entry to store intermedi-
ate data, with the CBT. We use a set of synthetic datasets
with an increasing number of unique keys to compare the
growth in memory of the independent aggregator pipeline
with the partitioned aggregator pipeline.

The number of mappers (and aggregators) for (default)
Metis and Phoenix++ is set to 24, which is equal to
the number of logical cores on our system. Metis and

Phoenix++ performance scales linearly up to 24 logi-
cal cores, and both systems are able to utilize all avail-
able cores. For Metis-CBT, we use only 5 instances of
the CBT, with each instance configured with 16 worker
threads, as this is able to saturate all cores on the system.
Figure 9 shows that Metis with CBT outperforms Metis
and Phoenix++, while requiring up to 5× and 4× less
memory. Recall that simply compressing the hashtables
used in Metis or Phoenix++ will not yield the same bene-
fits, since each hashtable entry is typically too small to
yield significant memory savings.

5.3 CBT Factor Analysis
In this section, we use microbenchmarks to evaluate the
performance of the CBT for varying workload charac-
teristics and the effect of different CBT parameters. We
first evaluate the impact of CBT design features and con-
figuration parameters on aggregation performance and
memory consumption. Finally, we evaluate the effects of
workload characteristics.

5.3.1 Design features

We analyze the performance of the CBT by considering
its features in isolation. For each feature, we show its in-
cremental impact on aggregation throughput and memory
consumption in Figure 10. Gains/losses are relative to pre-
vious version and not to the baseline. For reference, the
memory use and throughput of the SparseHash-dynamic
(SH-ptr) aggregator is also shown. A synthetic dataset
with 100 million unique keys, each repeating 10 times,
with binomially (p = 0.15) distributed key-lengths be-
tween 6 and 60B, is used.

The baseline CBT consists of a single instance of the
CBT. It has 4 worker threads: one each for compression,
sorting, aggregation and emptying. The basic CBT con-
sumes about 50% less memory compared to SH-ptr. It
avoids overheads associated with allocating small ob-
jects on the heap (by always allocating large buffers) and
avoids storing pointers for each PAO (by serializing the

0.0

1.5

3.0

4.5

6.0
M

em
or

y
(G

B
)

Memory

SH-ptr

Baseline

+MultiW
orker

+MultiTree

+MultiR
oot

+SpecComp
0

5

10

15

20

Th
ro

ug
hp

ut
(×

1
0

6
ke

ys
/s

)

Throughput (left y-axis)
CPU Time (right y-axis)

0

5

10

15

20

25

C
P

U
tim

e
(c

pu
-s

ec
on

ds
/s

)

Memory

Throughput (left y-axis)
CPU Time (right y-axis)

Figure 10: Effects of CBT Optimizations

60 120 180 240

Buffer Size (MB)

2
2

2
4

2
6

Fa
n-

ou
t

32
40
48
56

Pe
r-

ke
y

M
em

or
y

(B
)

60 120 180 240

Buffer Size (MB)

2
2

2
4

2
6

Fa
n-

ou
t

4
6
8
10

Th
ro

ug
hp

ut
(×

1
0

6
ke

ys
/s

)

Figure 11: Effects of tree fan-out and buffer size

PAO into the buffer) in addition to compression. Aggre-
gation throughput of the baseline CBT is about 87% less
than that of SH-ptr.

By increasing the number of worker threads to 16, CBT
parallelism increases (overall CPU use increases 2.6×)
and improves throughput by 1.5×. Due to the burstiness
of the work generated by the CBT, adding more CBT
instances allows full use of the multi-core platform. CPU
use increases 3.5×, boosting aggregation throughput by
3.6×. Per-instance static overhead increases the memory
use by 1.3×. Using multiple root buffers (n = 4 in this
case) allows insertion to continue even when the root
is being emptied. “MultiRoot” increases throughput by
nearly 21% at the cost of 11% additional memory (in-
creasing the number of buffers beyond 4 did not increase
performance enough to justify the increase in memory
use). Finally, specialized compression for each column,
“SpecComp”, which uses delta encoding for the hashes-
column, run-length encoding for the sizes-column and
Snappy for the PAOs, improves the effectiveness of com-
pression, reducing memory use by a further 8%.

Next we consider how the performance and memory
consumption of the CBT depend on system parameters
such as the node buffer size and the tree fan-out.

5.3.2 CBT Parameters

Variation with buffer size and fan-out of CBT Al-
though the CBT avoids many overheads associated with
hashtable-based aggregation, it incurs memory overhead

0.0

1.5

3.0

4.5

6.0

M
em

or
y

(G
B

)

Memory

4 8 16 32 64

Number of worker
threads (single tree)

0

4

8

12

16

20

Th
ro

ug
hp

ut
(×

1
0

6
ke

ys
/s

)

Throughput (left)
CPU Time (right)

Memory

Throughput (left)
CPU Time (right)

1 3 5 7

Number of trees
(16 threads each)

0

5

10

15

20

C
P

U
tim

e
(c

pu
-s

ec
on

ds
/s

)

Figure 12: Scaling aggregation throughput

when serialized PAOs with the same key occur at multiple
levels of the tree as a result of lazy aggregation.

This overhead depends on certain CBT parameters:
we provide intuition for the dependence of both memory
consumption and aggregation performance on these pa-
rameters. Figure 11 shows heat-maps for memory use and
aggregation throughput for variations in buffer size and
fan-out of the tree. Darker colors imply lower memory
overheads and higher aggregation performance respec-
tively and vice versa. In general, increasing buffer size in-
creases aggregation performance, but also increases mem-
ory overhead. The reason for this is that larger buffers
allow less frequent spilling (improving performance), but
provide a greater opportunity for keys to repeat (increas-
ing memory overhead).

The trend with fan-out is similar: increasing fan-outs
decrease (colors lighten) memory overhead as well as
aggregation throughput. This is because an increase in
fan-out results in a decrease in the height of the tree. Shal-
lower trees provide less opportunity for keys to repeat
at different levels of the tree (decreasing memory over-
head), but also lead to more frequent spilling (decreasing
performance).

Therefore, adjusting the buffer size and fan out when
configuring the CBT allows the user to trade off through-
put for memory efficiency, or vice versa, as desired.

Scalability Figure 12 shows how the memory use and
throughput of the CBT scales with an increasing number
of worker threads (left), and by partitioning keys across
an increasing number of trees (right). In the rightmost
graph, each tree uses 16 worker threads. The striking
throughput improvement from using multiple trees arises
because they help smooth out the otherwise extremely-
bursty workload imposed upon the CBT; without addi-
tional trees, the CBT alternates between periods of idle
and periods of maximum CPU use. With the additional
trees, the cores are occupied nearly full-time. Partition-
ing keys across more trees adds additional root buffers,
increasing memory use modestly.

0

30

60

90

120

150

M
em

or
y

pe
rk

ey
(B

)

20 60 100 140 180

Number of unique keys
(×106)

0

4

8

12

16

20
Th

ro
ug

hp
ut

(×
1
0

6
ke

ys
/s

)

20 40 60 80 100

Aggregatability
20 40 60 80 100

Key length (B)

210
304

217 350
222

uniform
binomial

zipfian

Key length
Distribution

Figure 13: Evaluating the CBT with Microbenchmarks

5.3.3 Workload Properties

Here we evaluate how workload properties affect the per-
formance of the CBT. We consider the number of unique
keys, the aggregatability (for wordcount in the following
experiments), the size of the PAO, and distribution of key
length. Figure 13 shows the per-key memory consump-
tion and aggregation throughput.

Aggregated data size We use synthetic datasets with
an increasing number of unique keys while holding other
properties constant. Figure 13 shows that the static mem-
ory use of the CBT causes per-key use to be high for
(relatively) small number of keys, but this cost gets amor-
tized with increasing number of unique keys.

Aggregatability We examine memory efficiency as a
function of increasing aggregatability by using a progres-
sively larger number of total keys with a fixed number of
unique keys. With hashtable-based aggregation, increased
aggregatability does not require more memory since a
single PAO is maintained per key (and wordcount’s PAOs
do not grow with aggregation). Figure 13 shows that even
for a CBT, despite buffering, per-key memory use does
not increase with aggregatability.

PAO size Datasets with increasing key size are used,
with the rest of the parameters remaining constant. The
per-key memory use increases with increasing key-size,
as expected. While the throughput appears to drop with
increasing key-size in Figure 13, the throughput in terms
of MB/s shown above the bars, does not share this trend.

Key length distribution We use datasets with 100 mil-
lion unique keys, each occurring 10 times, with vary-
ing distributions on key length: uniform, binomial and
Zipf; the average length of each word is around 10B. The
throughput for binomial and Zipf are similar, with uni-
form being marginally higher owing to better cache use

(each cache line fits 4 serialized PAOs) which improves
performance during sorting and aggregation.

6 Related Work
GroupBy-Aggregate Yu et al.’s work [48] discusses
the generality of the GroupBy-Aggregate operation
across a range of programming models including MapRe-
duce and Dryad [27]. Graefe [22] and Chaudhuri [13]
survey sort and hash-based techniques for aggregation in
the batched context for optimization of database queries.
There is also a significant amount of previous work in
online aggregation in databases [24] that returns early
results and on-the-fly modification of queries. The CUBE
SQL operator was proposed by Gray et al. to support
online aggregation by pre-computing query results for
queries that involved grouping operations [23]. Iceberg-
CUBE extended the CUBE operation to include user-
specified condition to filter out groups [9]. Kotidis et al.
propose R-trees to support Cube operations with storage
reduction and faster updates [30].

Stream-processing systems such as Muppet [32],
which provides a MapReduce-like interface to operate on
streams, and Storm [3], also support interactive queries
by pre-computing aggregates. These systems allow fully
user-defined aggregate functions to be set up as ag-
gregators that are updated in near real-time with input
data streams. Other stream-processing systems, includ-
ing SPADE [18], provide similar options for aggregation.
The CBT can be used as a drop-in replacement for aggre-
gators in these systems.

Other work that has considered the optimization of
the aggregator include Tenzing [12], which is a SQL
query execution engine based on MapReduce and uses
hashtables to support SQL aggregation operations, and
One-pass MapReduce [33]. Phoenix++ and its prede-
cessors [46, 42], Metis [37], Tiled-MapReduce [14] and
MATE [29] are shared-memory MapReduce implemen-
tations that also focus on the design of aggregation data
structures. The CBT is able to match or better the perfor-

mance of these aggregators, while achieving significantly
lesser memory consumption.

Write-Optimized Data Structures In this paper, a
crucial insight is that prior work in write-optimized data
structures is applicable to aggregation using compressed
memory. Log-structured approaches are used because
in-place update data structures such as the B-Tree and
hashtables [17] do not provide the required write per-
formance. Sears et al. differentiate between ordered and
unordered log-structured approaches [45]. Among or-
dered approaches, LSM Trees [41] and variants [45] are
used in many real-world key-value stores [11, 31]. Buffer
trees [7] offer better write performance, but only good
amortized read performance (I/Os per read is low, but la-
tency can be high due to buffering). The CBT adopts the
buffer tree because lazy aggregation requires fast writes
and ordering, but not low-latency reads.

Compression in Databases There is a significant body
of work involving compression in databases. Chen et al.
compress the contents of databases, and derive optimal
plans for queries involving compressed attributes [15],
and Li et al. consider aggregation algorithms in a com-
pressed Multi-dimensional OLAP databases [34]. We
believe that the CBT is a promising candidate for imple-
menting aggregation within RDBMS systems.

7 Future Work

External aggregation Although the CBT decreases
memory use in aggregated data compared to existing ap-
proaches, datasets may still be too large to fit in memory.
One possible extension of this work is to use ideas from
the original buffer tree data structure that inspired the
CBT: handling external aggregation, using fast storage
such as SSDs. Possible heuristics include (a) maintaining
lower levels of the tree, closer to the leaf, on disk, while
higher levels are in remain compressed memory, or (b)
compressing sub-trees with high aggregation activity in
memory while keeping the remaining sub-trees on disk.

Supporting random access The CBT does not cur-
rently support random access to aggregated PAOs by
key. To support this, the buffers containing PAOs for the
queried key at different levels in the tree have to be iden-
tified and decompressed. Then, the PAOs of the queried
key have to be located within the decompressed buffers
and aggregated. This overhead makes it unlikely that
CBTs can support random access faster than hashtables,
which require just a few memory accesses.

8 Conclusion

This paper introduced the design and implementation of
a new structure for memory-efficient, high-throughput
aggregation: the Compressed Buffer Tree (CBT). The
CBT is a stand-alone aggregator that can be used in dif-
ferent data-parallel frameworks. Our evaluation results
show that when used as an aggregator for streaming data,
the CBT uses up to 42% less memory than an aggrega-
tor based on Google SparseHash, an extremely memory-
efficient hashtable implementation, while achieving equal
or better throughput. CBTs can also be used in MapRe-
duce runtimes. Substituting the default aggregator in the
Metis MapReduce framework with the CBT, enables it to
operate using 4-5× less memory and run 1.5-4× faster
than default Metis and Phoenix++, another modern in-
memory MapReduce implementation.

The primary goal of the CBT is to allow efficient ag-
gregation on compressed data. Hashtables offer the read-
modify-update paradigm for aggregation where up-to-
date aggregates are always maintained for all keys. This
paradigm makes it nearly impossible to keep data com-
pressed since it may be accessed at any time. The CBT
is built on the realization that aggregation need not be
eager and aggregates can be lazily computed. With this
relaxation, the CBT maintains aggregate data in com-
pressed form (increasing memory efficiency), and limits
the number of decompression and compression opera-
tions (increasing aggregation throughput).

Acknowledgments

This work was funded in part by Intel via the Intel Science
and Technology Center on Cloud Computing (ISTC-CC).
We would like to thank the SoCC reviewers, and Vishal
Gupta for their feedback, and Frank McSherry for shep-
herding this paper.

References
[1] Project Gutenberg. www.gutenberg.org.
[2] LZO. oberhumer.com/opensource/lzo.
[3] Storm. storm-project.net.
[4] ØMQ (zeroMQ). zeromq.org.
[5] B. Abali, H. Franke, X. Shen, D. E. Poff, and T. B. Smith.

Performance of Hardware Compressed Main Memory. In
Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, HPCA ’01, pages
73–81. IEEE Computer Society, 2001.

[6] A. Aggarwal and S. Vitter, Jeffrey. The Input/Output Com-
plexity of Sorting and Related Problems. Communications
of the ACM, 31(9):1116–1127, Sept. 1988.

www.gutenberg.org
oberhumer.com/opensource/lzo
storm-project.net
zeromq.org

[7] L. Arge. The Buffer Tree: A Technique for Designing
Batched External Data Structures. Algorithmica, 37(1):
1–24, 2003.

[8] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R.
Fogel, B. C. Kuszmaul, and J. Nelson. Cache-Oblivious
Streaming B-Trees. In Proceedings of the Nineteenth
Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, SPAA ’07, pages 81–92. ACM, 2007.

[9] K. Beyer and R. Ramakrishnan. Bottom-up Computation
of Sparse and Iceberg CUBE. In Proceedings of the 1999
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’99, pages 359–370. ACM, 1999.

[10] W. B. Cavnar and J. M. Trenkle. N-Gram-Based Text
Categorization. In In Proceedings of SDAIR-94, 3rd An-
nual Symposium on Document Analysis and Information
Retrieval, pages 161–175, 1994.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A Distributed Storage System for Structured
Data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June
2008.

[12] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,
V. Lychagina, Y. Kwon, and M. Wong. Tenzing: A SQL
Implementation on the Mapreduce Framework. In Pro-
ceedings of the VLDB Endowment, volume 4, pages 1318–
1327, 2011.

[13] S. Chaudhuri. An Overview of Query Optimization in Re-
lational Systems. In Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS ’98, pages 34–43. ACM, 1998.

[14] R. Chen, H. Chen, and B. Zang. Tiled-Mapreduce: Opti-
mizing Resource Usages of Data-Parallel Applications on
Multicore with Tiling. In Proceedings of the 19th Inter-
national Conference on Parallel Architectures and Com-
pilation Techniques, PACT ’10, pages 523–534. ACM,
2010.

[15] Z. Chen, J. Gehrke, and F. Korn. Query Optimization in
Compressed Database Systems. In Proceedings of the
2001 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’01, pages 271–282. ACM,
2001.

[16] J. Evans. A Scalable Concurrent malloc(3) Implemen-
tation for FreeBSD.

[17] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong.
Extendible Hashing - a Fast Access Method for Dynamic
Files. ACM Trans. Database Syst., 4(3):315–344, Sept.
1979.

[18] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
SPADE: the System S Declarative Stream Processing En-
gine. In Proceedings of the 2008 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD
’08, pages 1123–1134. ACM, 2008.

[19] S. Ghemawat and P. Menage. Tcmalloc: Thread-caching
malloc. goog-perftools.sourceforge.net/
doc/tcmalloc.html.

[20] Google. Snappy. code.google.com/p/snappy, .

[21] Google. Sparsehash. code.google.com/p/
sparsehash, .

[22] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv., 25(2):73–169, June 1993.

[23] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Re-
ichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals. Data Min. Knowl.
Discov., 1(1):29–53, Jan. 1997.

[24] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
Aggregation. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’97, pages 171–182. ACM, 1997.

[25] S. Huddleston and K. Mehlhorn. A New Data Structure
for Representing Sorted Lists. Acta Informatica, 17(2):
157–184, 1982.

[26] Intel Corporation. Intel Threading Building Blocks. www.
threadingbuildingblocks.org.

[27] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed Data-Parallel Programs from Sequen-
tial Building Blocks. In EuroSys ’07: Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, pages 59–72. ACM, 2007.

[28] A. Islam and D. Inkpen. Real-Word Spelling Correction
using Google Web IT 3-grams. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language
Processing, volume 3 of EMNLP ’09, pages 1241–1249.
Association for Computational Linguistics, 2009.

[29] W. Jiang, V. T. Ravi, and G. Agrawal. A Map-Reduce Sys-
tem with an Alternate API for Multi-core Environments.
In Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, CC-
GRID ’10, pages 84–93. IEEE Computer Society, 2010.

[30] Y. Kotidis and N. Roussopoulos. An Alternative Stor-
age Organization for ROLAP Aggregate Views Based on
Cubetrees. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’98, pages 249–258. ACM, 1998.

[31] A. Lakshman and P. Malik. Cassandra: A Decentralized
Structured Storage System. SIGOPS Operating Systems
Review, 44(2):35–40, Apr. 2010.

[32] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and
A. Doan. Muppet: MapReduce-Style Processing of Fast
Data. Proc. VLDB Endow., 5(12):1814–1825, Aug. 2012.

[33] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy. A
Platform for Scalable One-Pass Analytics using MapRe-
duce. In Proceedings of the 2011 International Confer-
ence on Management of Data, SIGMOD ’11, pages 985–
996. ACM, 2011.

[34] J. Li, D. Rotem, and J. Srivastava. Aggregation Algo-
rithms for Very Large Compressed Data Warehouses. In
Proceedings of the 25th International Conference on Very
Large Data Bases, VLDB ’99, pages 651–662. Morgan
Kaufmann Publishers Inc., 1999.

[35] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Rein-
hardt, and T. F. Wenisch. Disaggregated Memory for

goog-perftools.sourceforge.net/doc/tcmalloc.html
goog-perftools.sourceforge.net/doc/tcmalloc.html
code.google.com/p/snappy
code.google.com/p/sparsehash
code.google.com/p/sparsehash
www.threadingbuildingblocks.org
www.threadingbuildingblocks.org

Expansion and Sharing in Blade Servers. In Proceedings
of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 267–278. ACM, 2009.

[36] H. Liu. huanliu.wordpress.com/2011/01/24/
the-true-cost-of-an-ecu/.

[37] Y. Mao, R. Morris, and F. Kaashoek. Optimizing Mapre-
duce for Multicore Architectures. Technical Report MIT-
CSAIL-TR-2010-020, MIT, 2010.

[38] J. B. Mariòo, R. E. Banchs, J. M. Crego, A. de Gispert,
P. Lambert, J. A. R. Fonollosa, and M. R. Costa-jussà.
N-gram-based Machine Translation. Comput. Linguist.,
32(4):527–549, Dec. 2006.

[39] P. Melsted and J. Pritchard. Efficient Counting of k-mers
in DNA Sequences using a Bloom Filter. BMC Bioinfor-
matics, 12(1):1–7, 2011.

[40] V. Monga and B. L. Evans. Robust Perceptual Image
Hashing Using Feature Points. In PROC. IEEE Confer-
ence on Image Processing, pages 677–680, 2004.

[41] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The Log-
Structured Merge-Tree (LSM-Tree). Acta Informatica, 33
(4):351–385, June 1996.

[42] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating MapReduce for Multi-core
and Multiprocessor Systems. In Proceedings of the 2007
IEEE 13th International Symposium on High Performance
Computer Architecture, HPCA ’07, pages 13–24. IEEE
Computer Society, 2007.

[43] L. Rizzo. A Very Fast Algorithm for RAM Compression.
SIGOPS Oper. Syst. Rev., 31(2):36–45, Apr. 1997.

[44] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Trans. Comput. Syst., 10(1):26–52, Feb. 1992.

[45] R. Sears and R. Ramakrishnan. bLSM: a General Purpose
Log Structured Merge Tree. In Proceedings of the 2012
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12, pages 217–228. ACM, 2012.

[46] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modu-
lar MapReduce for Shared-Memory Systems. In Proceed-
ings of the Second International Workshop on MapReduce
and its Applications, MapReduce ’11, pages 9–16. ACM,
2011.

[47] A. Torralba, R. Fergus, and W. Freeman. 80 Million
Tiny Images: A Large Data Set for Nonparametric Object
and Scene Recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 30(11):1958 –1970,
Nov. 2008.

[48] Y. Yu, P. K. Gunda, and M. Isard. Distributed Aggrega-
tion for Data-Parallel Computing: Interfaces and Imple-
mentations. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating Systems Principles. ACM, 2009.

[49] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster Computing with Working
Sets. In Proceedings of the 2nd USENIX conference on
Hot Topics in Cloud Computing, HotCloud’10, pages 10–
10. USENIX Association, 2010.

[50] J. Ziv and A. Lempel. A Universal Algorithm for Sequen-

tial Data Compression. IEEE Trans. Inf. Theor., 23(3):
337–343, Sept. 1977.

[51] J. Ziv and A. Lempel. Compression of Individual Se-
quences Via Variable-Rate Coding. Information Theory,
IEEE Transactions on, 24(5):530–536, 1978.

huanliu.wordpress.com/2011/01/24/the-true-cost-of-an-ecu/
huanliu.wordpress.com/2011/01/24/the-true-cost-of-an-ecu/

	Introduction
	Aggregator Data Structures
	The External Memory (EM) Model
	EM Model for Compressed Memory
	Data Structure Alternatives
	GroupBy-Aggregate in the EM Model

	Compressed Buffer Trees
	Partial Aggregation Objects (PAOs)
	The CBT API
	CBT Operation

	Implementation
	Performance Optimizations
	Memory Optimizations

	Evaluation
	Applications
	Comparison with Hashtable-based Aggregators
	Cost model

	CBT Factor Analysis
	Design features
	CBT Parameters
	Workload Properties

	Related Work
	Future Work
	Conclusion

