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Abstract
Peer-to-peer has emerged in recent years as a promising ap-
proach to providing Video-on-Demand streaming. The design
space, however, is vast and still not well understood—yet
choosing the right approach is critical to system performance.
This paper takes a fresh look at the p2p VoD design space
using a simple analytical model that focuses on the alloca-
tion of uplink bandwidth resource for different chunks across
peers. We describe a fundamental tradeoff that exists between
system throughput, sequentiality of downloaded content and
robustness to heterogeneous network conditions and node
capacities, and we prove that no system can achieve all three
simultaneously. Empirical results from Emulab confirm the
analysis and show how one might implement efficient peer-
to-peer VoD streaming with an appropriate balance of the
tradeoff.

Categories and Subject Descriptors
D.2.2 [Computer-Communication Networks]: Distributed
Systems —Applications; D.4 [Performance of Systems]:
Modeling techniques

General Terms
Performance, Design, Load Balancing

Keywords
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1. INTRODUCTION
Despite the wide success of peer-to-peer for bulk file transfers,
and substantial interest in using peer-to-peer for streaming
transfers such as Video-on-Demand (VoD) [9, 12, 4, 6, 24,
23], several fundamental questions remain unanswered about
the design of streaming P2P systems. Today’s systems, suc-
cessful or otherwise, typically select one or a few streaming
strategies from the (huge) design space, but without a concrete
grounding in why those choices work well.
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The key differentiator between traditional P2P bulk trans-
fers and streaming transfers is the requirement for approx-
imately in-order delivery to the client. In this paper, we
carefully examine the design space of techniques that attempt
to meet this requirement. We demonstrate, both analytically
and empirically, that the in-order retrieval requirement by
playback creates a tension between three desirable attributes:
• (T)hroughput: the average completion time for peers to

download the entire file;
• (R)obustness: the ability to withstand heterogeneous

network conditions such as churn and node capacities;
• (S)equentiality: the degree to which the file is retrieved

sequentially.
We prove that achieving all three attributes of this “TRS
tradeoff” at the same time is impossible. We examine this
tension in detail in Section 4.

To understand the essentials of this tradeoff, we define a
per-chunk capacity model focusing on the allocation of uplink
bandwidth resources among different chunks. Thus, we cast
the tradeoff as a load balancing problem in resource alloca-
tion. The model makes it possible to analyze and compare
many seemingly irrelevant techniques proposed or deployed
in P2P VoD systems, such as chunk prefetching in order to
have more chunks to share with others [1, 5, 12, 25, 28] or
biasing selection towards neighbors who are less useful to
other peers [1, 28]. Using our model, we show that all of
these techniques succeed by balancing the per-chunk capacity.
In Section 5, we apply the model to other approaches, such
as network coding, segment random, and hybrid schemes that
mix rarest random and sequential downloads.

The results from the modeling and analysis are not merely
theoretical. Section 6 demonstrates, through implementation
in a popular open-source BitTorrent client, that the schemes
perform comparably in practice to the theoretical projections.
An important result of this evaluation is showing that many
previous designs (most of which were not directly compared
against each other) act similarly to sustain throughput by
slightly relaxing in-order delivery. The specific algorithmic
details appear to matter less than where these approaches
move to in the trade-off space.

In the following two sections, we give an overview of
P2P VoD systems and their design goals. In Section 4 we
elaborate on the TRS tradeoff analytically. Schemes that
balance the tradeoff are examined in Section 5. Section 6



presents empirical results. Section 7 discusses related work,
and we conclude in Section 8.

2. P2P BACKGROUND
In a traditional centralized solution for content distribution,
large clusters of servers host the VoD content. These servers
require substantial capital investment as well as administra-
tion, power, cooling, and maintenance. In response, recent
attention has focused on using P2P systems to augment or
replace these central VoD servers. P2P techniques seek to
improve throughput for bulk downloads by having clients
download pieces of the file in parallel from multiple sources
(peers) who are simultaneously downloading the same file.
The potential advantages of this approach include cost sav-
ings, scalability, and ease of deployment. Popular peer-to-
peer systems such as Gnutella, Napster, and BitTorrent [8]
helped P2P transfers become one of the major components of
Internet traffic.

Peer-to-peer systems generally work as follows. Content
providers insert into the system new files which are divided
into chunks (8 to 256 KB in size commonly). The client
software computes a hash, such as SHA-1, for each chunk
in the file. It then creates a recipe for reconstructing the
file that lists the chunk hashes and their size or offset. By
downloading each chunk listed in the recipe and placing them
in order, other clients can reassemble the original file. Many
P2P systems also identify the entire file using the hash of the
whole file contents.

Clients that want to download this file first download the
recipe. The clients then use some discovery process to locate
other peers in the system and to determine what chunks of the
file each of those peers has. The P2P client software contacts
some of these peers in parallel, identifies which chunks the
peers have that it wants, and downloads some of those chunks.
During the transfer, the peers typically exchange bitmaps
with each other to keep each other up to date about which
chunks they have finished downloading (and can therefore
make available to other peers).

P2P file transfer and VoD systems differ from live stream-
ing systems [10, 13, 29, 15, 3] in two significant ways. First,
VoD and file-sharing have an advantage in that they can im-
pose longer buffering times when needed, and they can buffer
well in advance of playback when possible. In contrast, live
streaming operates under more strict timing constraints, and
content cannot be downloaded long before its playback time.
Second, live streaming has the advantage that its clients are
playing the content in rough synchrony, ensuring that most
clients have the needed content at any given time. In practice,
these constraints mean that solutions for live streaming look
much more like multicast—creating high-bandwidth dissem-
ination meshes, etc., that require very careful coordination
between peers [10, 13]. In contrast, as we show in the later
sections, relatively simple mechanisms work well for VoD-
style workloads.

The design space of P2P VoD systems is quite large and
has a number of dimensions, but the most important ones

are chunk selection—which chunk to download next; ser-
vice selection—which peer to download it from; client se-
lection—which other peers to serve. In this work, we study
and implement these three design choices and show that they
have drastic effects on the downloading order and system
throughput. Note that many other design decisions, orthogo-
nal to the decisions we evaluate in this paper, also affect the
performance of P2P systems. For example, some systems
break the file into chunks of the same, static size [8]; oth-
ers dynamically determine the chunk boundaries [20] using
content-based methods such as Rabin fingerprinting. The
original BitTorrent used a central “tracker” to permit peers to
locate other peers downloading the same file; newer variants
can use a distributed index structure such as a Distributed
Hash Table (DHT) to accomplish the same goal. We discuss
in Section 7 the relationship of significant related work on
creating incentives for peers to upload [8, 18, 19], making
efficient use of the network by finding nearby peers [27], and
using strategies such as network coding to simplify data dis-
tribution [26]. In general, we believe that optimizations that
we explore to these underlying mechanisms apply to a broad
spectrum of P2P systems

3. VOD GOALS
Different from conventional P2P file sharing systems de-
signed to distribute files among a large number of users with
low total downloading time, VoD streaming requires short
buffering time because users wish to begin playing the down-
loaded content as soon as possible—certainly before the en-
tire transfer completes. Throughout this paper, we define the
buffering time as the minimal setup delay to ensure playback
never runs out of useful chunks after it begins.1

With fixed playback rate encoded in the content (usually
400 Kbps–2 Mbps for standard definition video and 10 Mbps
or more for high definition video), the buffering time depends
on two underlying factors:
(1) Throughput: the number of bytes downloaded per sec-

ond.
(2) Sequentiality: the order of chunk arrival. Because

chunks of the video must be played back in order, their
arrival pattern is critical (e.g., video playback cannot be-
gin until at least the first chunk in the video has arrived).

Figure 1 illustrates the interplay between buffering time,
throughput and sequentiality, calculated from real experiment
traces. The dotted curve is the number of chunks downloaded
by time t and the solid curve is the number of useful chunks,
which is a subset of chunks in a contiguous sequence from
the start of the file. The total time to download the video
(determined by overall system throughput) is the rightmost
point on the solid curve. The slope of the dashed “playback”
line is the playback rate, and the x-intercept of this line is the
buffering time.

1 Note that if a user starts playback earlier, given the same useful chunk
arrival pattern, the playback needs to pause later and wait until there are
enough useful chunks. In that case, the total amount of buffering and re-
buffering time will be the same as our buffering time.
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(a) Rarest random (used for file sharing e.g. BitTorrent)
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(b) Naive sequential (change BitTorrent client to
download in order)

Figure 1: Buffering time by different chunk selection strate-
gies.

From Figure 1(a), the rarest random strategy used by Bit-
Torrent for file sharing shows high throughput (short down-
loading time) but the buffering time is almost as long as
entire downloading because of the poor sequentiality. As a
result the playback is bounded by the tangent line of the solid
curve (useful chunks). Naive sequential (forcing BitTorrent
to download chunks sequentially), as shown in Figure 1(b),
has a desirable useful chunk arrival pattern since almost all
downloaded chunks are useful. This strategy, however, is not
scalable because the throughput collapses 2 and it takes a long
time to finish downloading. The playback is bounded by the
completion time.

Figure 1 highlights the importance of high throughput and
good sequentiality for low buffering time. However it is also
extremely important for a p2p system to withstand dynamic
network conditions such as churn and bandwidth heterogene-
ity. Thus the third desirable property is robustness:

(3) Robustness: the ability to maintain high throughput
in face of network conditions such as node failure, ar-
rival/departure and heterogeneity of users’ bandwidth.

2Most peers possessing the same collection of chunks fail to help each
other, but only compete for the seed’s uploading uploading resources and
get a low downloading speed. With new and empty peers joining the system,
starting to download and catching up with others quickly, the competition is
getting even worse.

4. TRS TRADEOFF
In this section we present a fundamental tradeoff in P2P VoD
streaming: it is impossible to achieve maximal throughput,
with purely sequential retrieval while being perfectly robust
to variation at the same time. We prove that a P2P VoD
system can achieve at most two of the three attributes, but not
all three at the same time. Three real-world examples help
explain the design space:
• BitTorrent’s pure rarest random strategy, illustrated in Fig-

ure 2(a), ensures high throughput and robustness, but its
downloading is completely non-sequential (Figure 1(a)).

• Peers using pure sequential downloading among all neigh-
bors in a greedy manner as illustrated in Figure 2(b) can
retrieve content fully in order. This scheme, however, runs
the risk of throughput collapse because the peers request
chunks from the same sources which leads to a low utiliza-
tion of system resources (Figure 1(b)).

• A system that sets up a linear “perfect cascade” of chunks
from the source through each peer may achieve high
throughput while delivering the file sequentially as in Fig-
ure 2(c), but is not robust—one slow peer will bottleneck
the entire system.

In this section, we investigate the TRS tradeoff in detail.

4.1 Model Assumptions and Metrics
In this paper, we study a P2P VoD “swarm” where the served
file is divided into M chunks of size b bytes each and peers
arrive with a constant rate λ . To simplify the analysis, the
following assumptions are made in our model:
• Steady state: The system operates in steady state, i.e., the

rate of departures equals the rate of new arrivals and thus
the population size of the swarm is stable.

• Uplink capacity: The bottleneck for disseminating the file
is the peers’ uplink bandwidth (not the downlinks) for most
recent network environments [22]. All peers have the same
uplink capacity Up which is fully saturated [2]. We move
the argument of heterogeneity into robustness.

• Seeding capacity: The uploading capacity of the seed in
the swarm is Us. Peers leave the system after downloading
M chunks. The model can represent multiple seeds as a
single seed with larger Us.

• Bandwidth allocation: Seed and peers allocate their up-
link bandwidth capacity uniformly among the chunks that
they are serving (not necessarily all chunks that they have
downloaded).
The notation used in this model is listed in Table 1. Given

this model, we define metrics for throughput, robustness and
sequentiality.

4.1.1 Throughput
There has been a significant amount of previous work study-
ing the throughput of P2P systems [21, 16], but most of this
literature focuses on deriving total throughput or average
number of peers with an assumption of uniform chunk dis-
tribution. Such a simplification is reasonable in file sharing



(a) Rarest Random: peers download rare
chunks, becoming useful to the others despite
having few chunks

(b) Naive Sequential: peers with fewer
chunks can get help from those with more but
not vise versa, which makes chunks near the
start have more sources.

(c) Cascading: peers only download from a
subset of neighbors and a chain is formed to
propagate chunks.

Figure 2: Each of the three schemes can achieve two attributes. Arrows represent data transfer

λ arrival rate (peers/sec)
M number of chunks (usually large)
b chunk size (bytes)
ri average number of sources for chunk i
Ci per-chunk capacity of chunk i (chunk/sec)
gi seed’s fraction of uplink bandwidth dedicated to

chunk i
fi average fraction of peer uplink bandwidth dedicated

to chunk i
Us seed’s uplink capacity (bytes/sec)
Up peer’s uplink capacity (bytes/sec)
N average number of peers in the system
T average downloading time (sec)

Table 1: Formula Notation

systems where all chunks are equally important, but not true
in streaming applications where peers prefer chunks close
to their own playback position. Therefore in this paper, we
propose a per-chunk capacity model focusing on the resource
allocation of uplink capacities to different chunks.

We define per-chunk capacity Ci as the sum of the share of
the uplink bandwidth allocated for chunk i from the seed and
all other peers. Ci is the maximal rate at which the system
can replicate chunk i. Obviously the sum of Ci cannot exceed
the total uplink capacity in the system:

C1 +C2 + . . .+CM ≤Us +NUp. (1)

From Eq. (1), having more peers (i.e., larger N) in the swarm
can improve the per-chunk capacity.

To calculate a specific Ci, assume the seed allocates a frac-
tion gi (∈ [0,1]) of its uplink bandwidth to chunk i, and on
average a peer allocates fi (∈ [0,1]). gi and fi are determined
by the streaming schemes (i.e., chunk selection, service selec-
tion and client selection as defined in Section 2). Following
the assumption of bandwidth allocation, each peer allocates
its uplink capacity uniformly to all chunks that have been
downloaded and serving. Since the seed has all chunks, gi
equals 1/M. The aggregate capacity for chunk i can be de-

noted by:

Ci = giUs +N fiUp, (2)

where giUs is the bandwidth contributed by the seed and
N fiUp is the total bandwidth contributed by all N peers in
the system. Although in the analysis we assume all peers are
homogeneous for simplicity, Section 6 includes an evaluation
of systems with heterogeneous peers.

Given Ci, Theorem 1 relates the maximal arrival rate to the
minimal per-chunk capacity in a system in steady state.

Theorem 1. The maximal arrival rate λmax that a system in
steady state can sustain is bounded by the minimal per-chunk
capacity divided by the chunk size b:

λmax ≤Cmin/b = min
i=1...M

{
Ci

}
/b (3)

Proof A(t) and D(t) are the number of peers that arrive into
and depart from the system up to time t. Qi(t) is the number
of copies of chunk i that have been replicated up to time t
(including the copies already gone with peer departure and
copies still in the system). Qi(T ) is at least D(T ) because all
peers that depart have already downloaded chunk i, and at
most A(T ) because all peers that have joined the system need
this chunk only once. Therefore,

D(T )≤ Qi(T )≤ A(T ), i = 1,2, · · · ,M.

By definition A(T )/T is the arrival rate, D(T )/T is the de-
parture rate, and in steady state the arrival rate equals the
departure rate, thus

λ =
A(T )

T
=

Qi(T )
T

=
D(T )

T
. (4)

Qi(T )/T is the rate of replicating chunk i, which is
bounded by the per-chunk capacity Ci/b. Therefore λ ≤Ci/b.
Since this inequality holds for i = 1,2, · · ·M, we can conclude
λmax ≤Cmin/b.

Discussion: Bottleneck chunk To sustain an arrival process
with rate λ , the system must allocate uplink resources such



that even the bottleneck chunk k is assigned per-chunk ca-
pacity bλ . Since the seed contributes gkUs and each peer
contributes fkUp, according to Eq. (2) there must be N peers
in the system to satisfy the arrival process where

N =
bλ −gkUs

fkUp
. (5)

Applying Little’s Law N = λT to Eq. (5), the average
downloading time is:

T =
b

fkUp
− gkUs

λ fkUp
. (6)

There is a lower bound on T . Note that the minimal per-chunk
capacity is always less or equal than the average per-chunk
capacity, i.e. Cmin ≤ (Us +NUp)/M. Applying Theorem 1,

λ ≤
Us +NUp

bM
. (7)

Substituting N = λT in Eq. (7), the lower bound of T is

T ≥ bM
Up
− Us

λUp
. (8)

Note that bM is the file size and bM/Up is the time to down-
load the file with the assistance of a peer dedicating all its
uplink bandwidth.

4.1.2 Robustness
If peers have more available sources to download chunks,

• there is more flexibility to optimize delay or bandwidth in
a dynamic or heterogeneous environment;

• the peer can handle churn better when connections are lost
since it can quickly switch to other sources; but

• the benefits of additional peers for robustness diminish
relatively quickly: having a few choices is important, but
having a very large number is less so.

Therefore, we define our robustness metric based on the num-
ber of available sources. Let ri be the number of available
sources that each peer can download chunk i from. Note that
ri is not necessarily the number of peers actually having chunk
i in the system. Using specific client and service selection
policies that restrict a peer to only download from or upload
to a specific subset of other peers, ri can be smaller than the
number of actual sources. Given r̄ = (r1 + r2 + · · ·+ rM)/M
as the average number of available sources over all chunks
the robustness is defined as

R = 1− pr̄,

where p ∈ (0,1) denotes the probability of a peer being “bad”
(e.g., slow; failing; dropping the connection).3 Intuitively,
1− pr̄ is the probability of having at least one good source

3The precise value of p is relatively unimportant; the robustness curve
retains the same shape regardless.

to download from. Higher R indicates better robustness, but
additional sources provide diminishing returns.

In a system in steady state with N peers, r̄ is bounded. In
steady state the probability for a randomly selected peer to
have x chunks is 1/M, for x = 0,1, · · ·M− 1. Thus the ex-
pected number of chunks that a random peer has downloaded
is

M−1

∑
x=0

x · 1
M

=
M−1

2
.

Then the sum of ri over all chunks should be no more than
the total number of chunks in the system:

r̄ =
1
M

M

∑
i=1

ri ≤
1
M

M−1
2

N ≤ N
2
.

In other words, the average number of sources over chunks
is at most one half of the population size. Consequently, the
robustness metric is also bounded:

R≤ 1− pN/2. (9)

4.1.3 Sequentiality
To compare the sequentiality of different schemes, we first
define useful chunks as the sequential chunks from the begin-
ning of the file. Denote U(x) as the fraction of useful chunks
given x downloaded chunks. Based on U(x), we define the
sequentiality, S, of each scheme as the average “useful chunk
fraction” over all chunks:

S =
U(1)+U(2)+ · · ·+U(M)

M
(10)

S is always between 0 and 1 because it is an average over
fractions. A scheme that downloads chunks strictly in order
has a sequentiality of 1 while a scheme that downloads the
first chunk last has a sequentiality of 1/M, which is close to
0 when M is large.

4.2 Three Basic Schemes
4.2.1 Rarest Random
Using the Rarest Random policy, each peer maintains bitmaps
of all other peers indicating which chunks are available, then
downloads the rarest chunk available from each neighbor.
This scheme optimizes the even distribution of chunks, as
illustrated in Figure 2(a). Below, we show how this distri-
bution 1) produces a uniform per-chunk capacity Ci among
chunks, 2) minimizes average downloading time as arrival
rate λ scales, and 3) improves robustness by maximizing the
number of sources for each chunk to download in the system.

The chunks are uniformly distributed among peers, thus
the probability for a peer that has downloaded x chunks to
have any particular chunk i is x

M . Therefore for this peer,
chunk i obtains 1/x of the uplink bandwidth if it has been
downloaded already (with probability x

M ), and no share if it is
still missing (with probability 1− x

M ). As a result, on average



the fraction of the uplink bandwidth allocated to each chunk i
over all possible x is:

fi=
M−1

∑
x=0

1
M
(

x
M
· 1

x
+(1− x

M
) ·0)=M−1

M2 ≈
1
M

(M is large).

Substituting gi = fi = 1/M to Eq. (2), the per-chunk capacity
of each chunk by rarest random is uniform

Crr
min =Crr

1 = . . .=Crr
M =

Us

M
+

NUp

M
,

which is just 1/M (i.e. an equal share) of the total uplink
resource. The average downloading time is given by Eq. (6):

T rr =
bM
Up
− Us

λUp
.

T rr shows that the rarest random scheme scales well. When
the arrival rate λ is very large (i.e., the swarm is very large),
the average downloading time will still be at most bM

Up
which

is the average time to download the file with the assistance
of one peer dedicating its full uplink. In fact T rr is the lower
bound given in Eq. (8) so rarest random achieves perfect
throughput.

For robustness, let us first calculate the average number
of sources for chunk i. The probability to have a chunk i
given x downloaded chunks is x

M . In steady state, peers are
downloading equally rapidly so the number of peers having x
chunks (x = 0,1, · · · ,M−1) is approximated by N/M, so on
average the number of sources for chunk i is

rrr
i =

M−1

∑
x=0

N
M

x
M
≈ N

2
.

Each chunk i has the same number of sources on average.

Rrr = 1− pN/2.

Recall the upper bound of R in Eq.(9), so rarest random
achieves the best robustness in steady state.

For sequentiality, if a peer has downloaded x chunks, the
expected number of useful chunks is:

E
[
U(x)

]
= E

[
num of useful chunks

]
/x

=
x

∑
j=1

P
{ num of

useful
chunks

≥ j
}
/x =

1
x

x

∑
j=1

(M− j
x− j

)(M
x

) =
1

M− x+1

The metric of sequentiality according to Eq. (10) is:

Srr =
∑

M
x=1 E[U(x)]

M
=

1
M + 1

M−1 + · · ·+1
M

≈ lnM
M

When M is large, Srr approaches zero: rarest random delivers
content completely non-sequentially.

4.2.2 Naive Sequential
Each peer downloads the next unrequested chunk in the order
that those chunks would be played back, as illustrated in
Figure 2(b). In naive sequential, peers download from random
neighbors and serve all neighbors that send requests without
selection or priority.

Using naive sequential, all chunks downloaded are useful.
Also only peers with i, i+1, · · · ,M chunks have chunk i. If
the system is in steady state, the average number of peers
with 0,1, · · · ,M−1 chunks is N

M . So the number of sources
for chunk i is

rseq
i =

i−1

∑
x=0

N
M
·0+

M−1

∑
x=i

N
M
·1 =

(
1− i

M

)
N.

The chunk distribution is heavily biased toward early chunks.
For example, almost all peers (except the empty ones) have
chunk 1 and only the seed has chunk M (peers depart as soon
as they obtain this chunk).

As a result, CM is only contributed from the seed and we
have the minimal per-chunk capacity:

bλ
seq
max ≤Cmin ≤CM = f M

s Us <Us

CM , the bottleneck per-chunk capacity, does not scale as the
number of peers grows. This is a key difference from rarest
random, which can handle any arrival rate because its bot-
tleneck per-chunk capacity is proportional to the population
size. With naive sequential, if the arrival rate is higher than
the seed’s uplink, the departure rate will be smaller than the
arrival rate. And the population size will keep growing and
the system can never achieve steady state.

Given ri, the robustness is:

Rseq = 1− p∑
M
i=1 ri/M = 1− pN/2

Naive sequential is as robust as rarest random4.
Chunks are fetched in order, so all downloaded chunks

are useful. Naive sequential achieves the highest possible
sequentiality:

Sseq = 1

4.2.3 Cascading
In the previous two schemes, each peer can download from
and upload to all other peers. Thus, the uplink capacity of
each peer is shared by all chunks being downloaded. Down-
loading chunks strictly in order produces a skewed per-chunk
capacity distribution.

To balance the per-chunk capacity, client selection or ser-
vice selection policies can be applied to coordinate peers. For
example, peers may form a chain to propagate the chunks
from the source (seed), as illustrated in Figure 2(c). Peers
only upload to other peers the portion of chunks that their

4This observation emphasizes that throughput and robustness are different
metrics. Naive sequential obtains much lower throughput than rarest random,
but the low throughput is robust.



immediate downstream neighbor needs. As a result, each
peer uploads each chunk exactly once—hence, the per-chunk
capacity is uniform. Cascading is also referred to as a “single-
tree” scheme.

Peers depart from the cascade once they finish downloading
the last chunk. Thus, only the seed can serve the last chunk.
As a consequence, the per-chunk capacity can never exceed
the seed’s uplink. The per-chunk capacity is

Cmin =C1 = . . .=CM = min
{

Us,
NUp

M

}
.

If the seed is not the bottleneck, the downloading time is

T cas =
bM
Up

,

which shows that cascading almost achieves the perfect aver-
age downloading time.

A peer cannot download from any neighbor, but only the
direct upstream neighbor for all chunks. Therefore,

rcas
i = 1,

and consequently,

Rcas = 1− p.

Compared with naive sequential and rarest random, the aver-
age number of sources is much smaller for cascading. There-
fore, the robustness for cascading is the worst.

Cascading peers fetch chunks strictly in order, so the
scheme is fully sequential,

Scas = 1.

4.3 Tradeoff Theorem
So far we have investigated three simple schemes, which are
by no means the only choices in the design space. In fact other
schemes based on these basic three—e.g. mixing rarest ran-
dom with sequential or adaptive cascading by assisting slow
peers—will be considered in Section 5. However these three
schemes are the most representative because each scheme can
achieve perfectly two of the attributes—throughput, robust-
ness and sequentiality—but not all three.

In what follows, we prove that in fact the TRS tradeoff is
fundamental and that no scheme can meet such an objective.

Theorem 2. A P2P VoD system can not simultaneously max-
imize throughput, robustness and sequentiality.

Proof Sketch Assume a scheme exists that achieves max-
imal throughput, robustness and sequentiality at the same
time. The maximized throughput implies that Cmin = (Us +
NUp)/M which is achieved if and only if C1 = C2 = . . . =
CM = (Us +NUp)/M. Since this scheme also achieves pure
sequentiality (all chunks are downloaded in order), any peer
having chunk i also has chunk 1,2, · · · i−1. If the system can
also achieve perfect robustness (N/2 sources for each chunk),

peers have to serve all chunks they have downloaded. Since
each peer having i and j at the same time contribute the same
amount to Ci and C j and there are more peers having j, we
know C j <Ci, which contradicts the fact that throughput is
maximized.

Intuitively, this tradeoff is caused by the imbalanced re-
source allocation among different chunks due to the require-
ment of in-order delivery. In a system without delivery or-
der requirement, disseminating chunks in random order can
spread chunks uniformly throughout all peers and hence bal-
ance the uplink resource allocation. The sequential require-
ment breaks the balance because once chunk i is transferred
to some peer, it always has to compete for uplink resource
with chunk 1,2, · · · , i− 1, unless specific client and service
selection polices are used.

In summary: (1) The minimum per-chunk capacity bounds
the maximal arrival rate the system can sustain. To make the
system scalable, the per-chunk capacity should scale with
population size. (2) Rarest random maximizes throughput
and robustness but has poor sequentiality. (3) Naive pure
sequential downloading skews the chunk distribution and
leads to a biased per-chunk capacity. Though it achieves
perfect sequentiality, the system will nevertheless perform
badly. (4) To keep in-order delivery scalable, client and
service selection is necessary to force the peers to form a
cascade. In this way, the system obtains an evenly distributed
per-chunk capacity. But, this strategy has fewer available
sources from which to download each chunk, making the
system more vulnerable to churn and heterogeneity.

5. BALANCING THE TRADEOFF
One resolution to the tension between throughput, robust-
ness and sequentiality is to aim to achieve acceptable, but
not perfect, sequentiality and robustness, while maintaining
high throughput. Doing so takes advantage of two factors:
First, robustness provides diminishing returns; it may not be
necessary to provide optimal robustness. Second, the most
important metric for buffering time is the throughput of the
sequential download. We show that reducing the sequential-
ity of the transfer can, perhaps counter-intuitively, increase
the sequential throughput compared to a strictly sequential
scheme. In this section, we study schemes that download
chunks not strictly sequentially (see Figure 3).

5.1 Hybrid Strategy
One simple way to combine random and sequential download
is to download a chunk according to naive sequential with
probability s ∈ (0,1), and according to rarest random with
probability 1− s. This hybrid chunk selection strategy down-
loads a large sequential chunk of the file plus a number of
random chunks (as shown in Figure 3(a)).

We approximate this hybrid heuristic as follows: any time a
peer has downloaded x chunks, sx of them are downloaded by
the sequential component and placed consecutively from the
beginning of the file; (1− s)x of them are by rarest random
and scattered randomly among the remaining M− sx chunks.



(a) Hybrid: split bandwidth to fetch both
sequential and rarest random chunks

(b) Segment Random: download rarest random
chunks within sequential segments

(c) Network Coding: apply erasure coding for
chunks in each segment

Figure 3: Schemes that balance the tradeoff. Arrows represent data transfer.

Thus, Px,i, the probability of a peer to have chunk i, given it
has x chunks in total, is

Px,i =

{
1 when i≤ sx

(x− sx)/(M− sx) when i > sx . (11)

If this peer has x chunks, each chunk gets 1/x share of the
uplink bandwidth. The average fraction of uplink bandwidth
allocated to chunk i over all peers is

f hybrid
i =

∑
M−1
x=1 Px,i ·1/x

M
(12)

The seed evenly distributes the capacity, i.e. gi = 1/M.
Substituting Eq. (12) to Eq. (2), the minimal per-chunk capac-
ity Ci is

Cmin =CM =
Us

M
+

1
M

M−1

∑
x=0

1− s
M− sx

NUp (13)

The minimal per-chunk capacity Cmin varies dramatically with
s, the fraction of sequential downloading. Cmin is a decreasing
function of s∈ [0,1]. It is maximized for s= 0 (i.e. pure rarest
random) and minimized for s = 1 (i.e. pure naive sequential).
When 0 < s < 1 and M is large, Cmin can be approximated by

Cmin ≈
Us

M
+

(1− s)NUp

sM
ln

1
1− s

,

and T is calculated as

T hybrid =
s

(1− s) ln 1
1−s

(bM
Up
− Us

λUp

)
.

With smaller s (i.e., more bandwidth dedicated to rarest ran-
dom), T hybrid is improved.

Since a peer always dedicates a fraction s for sequential
fetch, the sequentiality will be at least s. Rarest random does
not substantially improve sequentiality until the file is done,

Shybrid ≈ s

The fraction of sequential downloading, s, serves as a de-
sign knob: higher s improves sequentiality but may reduce
the system throughput.

Discussion: Simple Bandwidth Division between sequen-
tial and random If a peer has downlink capacity d Mbps,
and the playback rate of the movie is q Mbps (d > q), a naive
streaming strategy would be downloading chunks sequen-
tially at rate q and randomly at d−q. However this simple
bandwidth division may not be the right choice. In terms of
the preceding analysis, this is a hybrid scheme with s = q/d.
When the downlink bandwidth d is close to the playback rate
q (i.e., s→ 1), the system tends to behave just like naive
sequential. As we know the naive sequential scheme is not
scalable, this scheme may not be able to support sequential
throughput larger than q Mbps.

Another option is adapting the ratio of sequential versus
rarest random dynamically, e.g., increasing (decreasing) s if
there are (not) enough useful chunks in the buffer as proposed
in [28]. If this adaptive hybrid is used, once a number of peers
run out of buffered useful chunks (e.g., due to congestion or a
temporary seed failure) and tune s higher together. As a result
downloading in the system will be more sequential and may
reduce the system throughput. On the other hand, the decreas-
ing throughput may, in turn, become a signal to encourage
peers to be more greedy, further degrading throughput. Thus,
this adaptive scheme has the risk of unstable throughput.

Choosing s dynamically in a distributed manner to optimize
sequential throughput is an interesting research question.

5.2 Segment Random
The Segment random strategy groups all M chunks of the file
into K segments, each of which consists of W chunks. Peers
using this strategy download each segment strictly in order,
but within each segment they fetch chunks according to rarest
random. This is illustrated in Fig. 3(b).

To simplify the derivation of the per-chunk capacity, as-
sume each peer allocates the same amount of uplink capacity
to the segments being downloaded. Since segments are down-
loaded sequentially, in steady state there are K− j+1

K N peers
that have segment j (partly or completely) if the total popula-
tion is N. In steady state, the rate of requesting and replicating
each segment equals the arrival rate λ , so each peer having
segment j receives λK

(K− j+1)N requests per time unit.
Assume each peer allocates bandwidth to a segment propor-

tionally to the number of requests received for this segment.



The request rate for segment j is λK
(K− j+1)N . Peers down-

loading the last segment have complete copies of segments
1,2, · · · ,K−1 and a part of segment K. Segment K obtains
the following fraction of the uplink bandwidth:

λK
(K−K+1)N

∑
K
j=1

λK
(K− j+1)N

=
1

∑
K
j=1

1
j

Only peers that are downloading the last segment contribute
to its upload capacity. There are N/K such peers. Therefore,
the average fraction of uplink allocated to chunks in the last
segment is:

f sr
M =

( 1
K

1
1+ 1

2 + · · ·+
1
K

)
/W ≈ 1

lnK ·M
.

Therefore
Csr

M =
Us

M
+

NUp

lnKM
.

Similar to naive sequential, the bottleneck per-chunk capacity
is CM . But note that f sr

M = 1
lnKM > 0: The downloading time

may be very large, but the system can sustain an arbitrary
arrival rate λ . The difference between segment random and
naive sequential is that peers downloading chunks in the last
segment can help upload this last segment, making the scheme
more scalable than naive sequential. When K = 1 (i.e., the file
consists of a single chunk), this scheme degenerates to rarest
random; when K = M, the scheme becomes naive sequential.

For sequentiality, all chunks downloaded before the current
segment (of size W ) are useful, thus a peer with x chunks has
at least x−W useful chunks, i.e.

x−W
x

< E[U(x)].

Therefore we can derive a lower bound of Ssr

Ssr >
1
M

M

∑
x=1

x−W
x

= 1−W lnM
M

When the segment size W is small or the number of chunks
M is large, segment random can achieve a high sequentiality
close to 1. A larger segment size increases throughput at the
cost of sequentiality.

Discussion: Using Erasure Coding. Proposed network cod-
ing techniques for P2P VoD [1] divide files into segments.
Within each segment, chunks are encoded so any received
chunk is useful with high probability. On the other hand, peers
cannot decode the content in a segment until it is complete.

Encoding creates more uploading opportunities for peers
targeting the same segments and hence improves the through-
put. The sequentiality is slightly worse than segment random
because decoding requires W independent coded chunks in
each segment.

Segment random and network coding do not fundamentally
change the TRS when we consider the per segment capacity
instead of per chunk capacity. The segment distribution is
still biased as most peers have segments in the beginning and
only the seed and a few peers can serve the last one and thus
the per-segment capacity is still imbalanced.

5.3 Many More in the Space
Due to space constraints, we have only discussed hybrid and
segment random in detail—two common techniques that aban-
don pure sequential downloading but aim at high sequential
throughput. Note that there are other ways to add randomness
to pure sequential transfers in order to smooth the per-chunk
capacity. For example,

• A variation of hybrid picks the next chunk to download
according to some heavy tail distribution in the chunk space
[6, 4].

• A variation of segment random uses a sliding window of
size W chunks. The beginning of the window is always the
first missing chunk in playback order. Within the sliding
window, rarest random [23] or hybrid chunk selection [28]
can be used.

Other strategies trade robustness for throughput, e.g.:

• Multi-cascading (multi-tree) extends cascading (single-
tree) so that each peer has multiple upstream/downstream
neighbors to achieve good sequentiality while pursuing
better robustness against heterogeneity and churn. The
number of trees, however, is far smaller than N/2 (the av-
erage number of sources in rarest random) and cannot be
as robust as rarest random.

In summary, all of the schemes in the design space are sub-
ject to the TRS tradeoff. Their goals are therefore necessarily
the same: to smooth the per-chunk capacity to ensure that the
systems scale well, by trading small amounts of robustness or
sequentiality for increased overall throughput and to ensure
that all peers have useful chunks to upload to other peers.

Discussion: Optimal Scheme? It is unclear that there is
one optimal scheme because depending on the deployment
scenario, robustness and sequentiality may be more or less
important; the ratio of the peer’s link capacity to the playback
rate may vary, and so on. This may help explain the profusion
of schemes to solve the problems identified herein. An inter-
esting observation is that robustness has diminishing returns
as the number of sources grows. In most cases, it makes more
sense to give up perfect robustness to optimize throughput
and sequentiality.

6. EVALUATION
The analysis in previous sections was necessarily simplified.
In this section, to verify the analytical results and show the
tradeoff in the real world, we evaluate the performance of
several schemes empirically using Emulab.Due to space con-
straints, we have omitted PlanetLab results, which generally
agree with the Emulab results below. Please see our tech
report for an expanded evaluation.

6.1 Experiment Setup
Implementation: We implement the schemes in a Python
implementation of the BitTorrent protocol, BitTornado 0.3.17.
Our modifications consist of changes in the chunk, service
and client selection algorithms. We disabled the tit-for-tat



policy because it is incompatible with schemes where peers
download sequentially from neighbors they cannot help in
return (e.g., naive sequential and cascading).

Topology: The experiments use one seed with up to 50
peers. We emulate a configuration similar to that of a P2P-
assisted VoD service, with peers on the same cable head-end
or DSLAM serving each other: the nodes are connected to the
same switch via asymmetric links with capacity of 10 Mbps
up, 20 Mbps down and 10 ms latency (this configuration
is similar to a fast cable package today). In addition, we
also run experiments with heterogeneous nodes (one third are
significantly slower: 2 Mbps up and 5 Mbps down).

Workload: Each peer runs our BitTornado client to down-
load a 197 MB video, which is divided into 754 chunks of
size 256 KB.

Method: A seed is serving during the entire experiment.
Peers join the swarm at a uniform spacing of λ peers per
minute, for λ = 2,4,6,8,12. We choose an open-loop arrival
to reflect more closely real P2P system arrivals. Once peers
finish downloading the file, they leave the system without
seeding to others.

6.2 TRS Tradeoff in Emulation
To illustrate the tradeoff, we compare the throughput of dif-
ferent schemes in Figure 4(a) and the sequentiality in Fig-
ure 4(b). We then change one third of the peers to be sig-
nificantly slower (2 Mbps up and 5 Mbps down) as shown
in Figure 4(c), in order to show the robustness of schemes
against performance variation.

Tradeoff From Figure 4, we observe the tradeoff among
throughput, sequentiality and robustness.

Rarest random achieves the highest throughput of all
schemes, close to the uplink capacity (10 Mbps). Even with
slow peers, the average throughput is still close to the average
uplink capacity (7.33 Mbps). Throughput remains high as the
arrival rate grows, which implies that this scheme scales well.
The sequentiality, however, is less than 1%, which means the
delivery is completely non-sequential and is not suitable for
streaming applications.

Naive sequential achieves almost 90% sequentiality (see
below for why). However, it does not maintain high through-
put. The scheme is effective only when the arrival rate is very
low (λ = 2 peers/min)—there are fewer peers online at the
same time, so each gets more of the seed’s capacity. As more
peers join the swarm, the throughput collapses quickly.

Cascading helps peers download both sequentially (> 99%)
and quickly (7−8 Mbps). Unfortunately, the presence of slow
peers cause the throughput to drop substantially compared
to that of rarest random; the cascade is not robust to peer
heterogeneity.

Hybrid, with 70% or 20% sequential downloading, bal-
ances rarest random and naive sequential. Although its se-
quentiality is worse than naive sequential, its throughput is
drastically higher. In fact, at a high arrival rate, both hybrid

schemes achieve higher sequential throughput than naive
sequential does, while, of course, also attaining higher over-
all throughput. In other words, the throughput increase from
adding modest amounts of rarest random is larger than the cor-
responding decrease in sequentiality. 20% sequential hybrid
achieves throughput very close to that of pure rarest random,
and its throughput remains high as the arrival rate increases.
This throughput gain does come at the cost of substantially
reduced sequentiality.

Segment Random also achieves a balance of rarest random
and naive sequential. As the arrival rate grows, its perfor-
mance begins to drop, showing its sequential bias.

Model Accuracy Figure 4 also shows the results predicted
by our models.

The model predicts the throughput trend as λ increases, but
it overestimates the throughput of rarest random, cascading
and hybrid-20%seq because it omits overhead from setting
up connections, exchanging bitmaps and switching peers.
The model underestimates the throughput of hybrid-70%seq
and segment random particularly when the arrival rate is low.
There are two reasons for this discrepancy: (1) We assume for
simplicity that the seed will allocate its capacity uniformly
across M chunks; in reality the allocation is biased because,
as one of the few sources for those chunks, the seed receives
more requests for them than for other chunks. In a system
with only a few peers where the seed’s contribution can domi-
nate the per-chunk capacity, this bias substantially improves
the throughput. (2) We could not allocate enough nodes
to completely measure the steady state of slower schemes.
When the arrival rate is high, schemes such as naive sequen-
tial, hybrid-70%seq and segment random require more nodes
in steady state than we could obtain. Since the experiments
end before the steady state, the throughput measured is higher
than the real throughput in steady state.

The sequentiality of naive sequential, hybrid 70%seq and
segment random are slightly lower than the model predicts.
Peers in naive sequential, hybrid 70%seq and segment ran-
dom download chunks from multiple sources. Chunks are
requested sequentially, and most arrive in order, but some
chunks are served by busy peers that take a long time to
arrive. Those “late” chunks, while few, reduce the sequen-
tiality. Only cascading achieves perfect sequentiality: each
peer downloads only from its upstream peer, so chunks must
arrive in the requested order.

6.3 Buffering Time
In Figure 5, we compare the buffering time of all schemes
with and without slow peers.

The normal case where peers have the same uplink is shown
in Figure 5(a). Cascading achieves the lowest buffering time,
close to 0. This result makes sense because buffering time de-
pends only on throughput and sequentiality, which cascading
does very well at. The buffering time of naive sequential, due
to the low and non-scalable throughput, is the highest, even
though this scheme downloads chunks sequentially. Rarest
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Figure 4: Comparing schemes. “+” represents the model prediction for corresponding schemes.
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Figure 5: The buffering time of different schemes. Playback
rate is 7 Mbps

random performs notably worse than hybrid and segment
random especially when arrival rate is low due to the bad
chunk arrival pattern. But when arrival rate is high, the buffer-
ing time becomes better than hybrid-70%seq and segment
random because it has better throughput.

With a few slow peers (Figure 5(b)), the buffering time
of cascading becomes dramatically larger due to the lack
of ability to deal with heterogeneity. Hybrid and segment
random outperform rarest random when arrival rate is low.
With increasing arrival rate, a scheme suffers less in terms
of buffering time if it has a larger rarest random component
(which helps system scale better).

7. RELATED WORK
Inspired by the success of BitTorrent in file sharing, P2P VoD
has been an extremely active area of research and deployment,
with much research analyzing various design trade-offs. Many
academic and commercial systems [9, 12, 6, 24, 1, 4, 23, 28]
implement one or more of the policies discussed in this pa-
per, including popular and effective variants of the hybrid
strategy [4, 12, 6], variants of segment random [23, 24], and
network coding [1]. Available research and documentation
about these systems often demonstrates that the systems do
work, but does not thoroughly explore the questions of why
and when the systems work. Comparative studies such as
Redcarpet [1], and studies of hybrid live streaming [31, 30]
studied several different strategies, but to our knowledge, this
paper is the first to comprehensively examine the fundamen-
tal limitations involved in designing streaming p2p systems,
and how the major design choices for these systems (chunk
selection and client/source selection) move through this space
of tradeoffs.

Analytical models of P2P live streaming/VoD. In [14], a
simple stochastic fluid model is developed to seek the charac-
teristics of P2P live streaming systems such as buffering and
playback lags. Recent works [31, 30] study the tradeoff be-
tween the startup delay and continuity in P2P live streaming
systems and propose combining rarest random and sequential
downloading. The startup delay in P2P VoD systems is also
analyzed in [17] for rarest random, purely sequential retrieval
and a proposed scheme similar to cascading.

Generally agreeing with this prior work, our analytical and
empirical results focus more on the resource contention raised
by the order of chunk downloading and a framework to un-
derstand why and how to balance the resource allocation. In
addition, we complement our analytical model with a real
p2p client implementation, thus deriving useful insight about
the behavior of real systems; while we presented the material
in this paper with the analysis first, the process of develop-
ing it depended strongly upon a back-and-forth between the
analysis and the experimental results.



Incentives, caching, and prefetching. Encouraging [8, 18,
19]and enabling [11] clients to share more data plays an im-
portant role in the success of p2p systems. The interaction
of existing incentive structures with VoD systems is an inter-
esting and largely unaddressed question. BulletMedia [25]
proposes to make peers proactively cache so as to help servers.

One encouraging result from our work is that either source
or client selection can effectively increase sequential through-
put, lending flexibility to designers trying to implement incen-
tive schemes. Further, using the hybrid scheme that our work
suggests performs best has the side effect of enabling tit-for-
tat mechanisms to work with streaming workloads, because
peers will again have chunks of data to share with each other.

Locality. Recent work shows that identifying and preferring
peers that are “closer” in the network sense can improve
throughput and reduce traffic on Internet backbones [27, 7].
As with incentives, above, we believe that these approaches
are complimentary to our analysis, since they provide peers
with a wide choice of sources from which to download, al-
lowing locality techniques room to be effective.

Coding. Coding is a popular approach for transmitting data
in many distributed systems, including video dissemina-
tion [26]. The key benefit of coding is to avoid explicit
coordination (or at least weaken dependence on it) by simpli-
fying scheduling and/or deal with unreliable transmissions.
In this paper we discuss network coding as a generalization
of segment random.

8. CONCLUSION
This paper presented a systematic examination of the de-
sign for peer-to-peer VoD through a combination of analysis
and evaluation of a BitTorrent-derived prototype. The TRS
tradeoff—a tension between throughput, sequentiality and
robustness—is our main focus in this paper. The analysis
of this tradeoff sheds light both on which transfer strategies
are most effective, and why they are so. We apply the per-
chunk capacity model to provide insights into schemes in
the design space including rarest random, naive sequential,
cascading, and two schemes that attempt to strike a balance in
the tradeoff—hybrid and segment random. Empirical results
from Emulab are used to confirm the analytical results.
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