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Abstract
Critical network management applications increasingly
demand fine-grained flow level measurements. How-
ever, current flow monitoring solutions are inadequate
for many of these applications. In this paper, we present
the design, implementation, and evaluation ofCSAMP,
a system-wide approach for flow monitoring. The de-
sign of CSAMP derives from three key ideas: flow sam-
pling as a router primitive instead of uniform packet sam-
pling; hash-based packet selection to achieve coordina-
tion without explicit communication; and a framework
for distributing responsibilities across routers to achieve
network-wide monitoring goals while respecting router
resource constraints. We show thatCSAMP achieves
much greater monitoring coverage, better use of router
resources, and enhanced ability to satisfy network-wide
flow monitoring goals compared to existing solutions.

1 Introduction
Network operators routinely collect flow-level measure-
ments to guide several network management applica-
tions. Traditionally, these measurements were used for
customer accounting [9] and traffic engineering [13],
which largely rely on aggregate traffic volume statistics.
Today, however, flow monitoring assists several other
critical network management tasks such as anomaly de-
tection [19], identification of unwanted application traf-
fic [6], and even forensic analysis [38], which need to
identify and analyze as many distinct flows as possible.
The main consequence of this trend is the increased need
to obtain fine-grained flow measurements.

Yet, because of technological and resource constraints,
modern routers cannot each record all packets or flows
that pass through them. Instead, they rely on a vari-
ety ofsamplingtechniques to selectively record as many
packets as their CPU and memory resources allow. For
example, most router vendors today implement uniform
packet sampling (e.g., Netflow [5]); each router indepen-
dently selects a packet with a sampling probability (typ-
ically between0.001 and 0.01) and aggregates the se-
lected packets into flow records. While sampling makes
passive measurement technologically feasible (i.e., oper-
ate within the router constraints), the overall fidelity of
flow-level measurements is reduced.

There is a fundamental disconnect between the in-
creasing requirements of new network management ap-
plications and what current sampling techniques can pro-
vide. While router resources do scale with technological

advances, it is unlikely that this disconnect will disap-
pear entirely, as networks continue to scale as well. We
observe that part of this disconnect stems from a router-
centric view of current measurement solutions. In to-
day’s networks, routers record flow measurements com-
pletely independentlyof each other, thus leading to re-
dundant flow measurements and inefficient use of router
resources.

We argue that a centralized system that coordinates
monitoring responsibilities across different routers can
significantly increase the flow monitoring capabilities of
a network. Moreover, such a centralized system sim-
plifies the process of specifying and realizing network-
wide flow measurement objectives. We describe Coordi-
nated Sampling (CSAMP), a system for coordinated flow
monitoring within an Autonomous System (AS).CSAMP

treats a network of routersas a system to be managed in a
coordinated fashionto achieve specific measurement ob-
jectives. Our system consists of three design primitives:

• Flow sampling: CSAMP uses flow sampling [15] in-
stead of traditional packet sampling to avoid the sam-
pling biases against small flows—a feature of particular
importance to the new spectrum of security applications.
At the same time, flow sampling preserves the fidelity of
traffic volume estimation and thus the accuracy of tradi-
tional traffic engineering applications.
• Hash-based coordination: CSAMP uses a hash-based
selection primitive to eliminate duplicate measurements
in the network. This allows different routers to monitor
disjoint sets of flows without requiring explicit commu-
nication between routers, thus eliminating redundant and
possibly ambiguous measurements across the network.
• Network-wide optimization: Finally, CSAMP uses an
optimization framework to specify and satisfy network-
wide monitoring objectives while respecting router re-
source constraints. The output of this optimization is
then translated into per-routersampling manifeststhat
specify the set of flows that each router is required to
record.

We address several practical aspects in the design and
implementation ofCSAMP. We implement efficient al-
gorithms for computing sampling manifests that scale to
large tier-1 backbone networks with hundreds of routers.
We provide practical solutions for handling multi-path
routing and realistic changes in traffic patterns. We also
implement a prototype using an off-the-shelf flow collec-
tion tool.



We demonstrate thatCSAMP is fast enough to re-
spond in real time to realistic network dynamics. Us-
ing network-wide evaluations on the Emulab testbed, we
also show thatCSAMP naturally balances the monitor-
ing load across the network, thereby avoiding reporting
hotspots. We evaluate the benefits ofCSAMP over a wide
range of network topologies.CSAMP observes more than
twice as many flows compared with traditional uniform
packet sampling, and is even more effective at achiev-
ing system-wide monitoring goals. For example, in the
case of the minimum fractional flow coverage across all
pairs of ingress-egress pairs, it provides significant im-
provement over other flow monitoring solutions. ISPs
can derive several operational benefits fromCSAMP, as
it reduces the reporting bandwidth and the data manage-
ment overheads caused by duplicated flow reports. We
also show thatCSAMP is robust with respect to errors in
input data and realistic changes in traffic.

2 Related Work
The design ofCSAMP as a centrally managed network-
wide monitoring system is inspired by recent trends in
network management. In particular, recent work has
demonstrated the benefits of a network-wide approach
for traffic engineering [13, 41] and network diagno-
sis [19, 20, 23]. Other recent proposals suggest that a
centralized approach can significantly reduce manage-
ment complexity and operating costs [1, 2, 14].

Despite the importance of network-wide flow moni-
toring, there have been few attempts in the past to de-
sign such systems. Most of the related work focuses on
the single-router case and on providing incremental so-
lutions to work around the limitations of uniform packet
sampling. This includes work on adapting the packet
sampling rate to changing traffic conditions [11, 17],
tracking heavy-hitters [12], obtaining better traffic es-
timates from sampled measurements [9, 15], reducing
the overall amount of measurement traffic [10], and data
streaming algorithms for specific applications [18, 21].

Early work on network-wide monitoring has focused
on the placement of monitors at appropriate locations to
cover all routing paths using as few monitors as possi-
ble [4, 35]. The authors show that such a formulation is
NP-hard, and propose greedy approximation algorithms.
In contrast,CSAMP assumes a given set of monitoring lo-
cations along with their resource constraints and, there-
fore, is complementary to these approaches.

There are extensions to the monitor-placement prob-
lem in [35] to incorporate packet sampling. Cantieni
et al. also consider a similar problem [3]. While the
constrained optimization formulation in these problems
shares some structural similarity to our approach in Sec-
tion 4.2, the specific contexts in which these formulations
are applied are different. First,CSAMP focuses on flow

sampling as opposed to packet sampling. By using flow
sampling,CSAMP provides a generic flow measurement
primitive that subsumes the specific traffic engineering
applications that packet sampling (and the frameworks
that rely on it) can support. Second, while it is reason-
able to assume that the probability of a single packet be-
ing sampled multiple times across routers is negligible,
this assumption is not valid in the context of flow-level
monitoring. The probability of two routers sampling the
same flow is high as flow sizes follow heavy-tailed dis-
tributions [7, 40]. Hence,CSAMP uses mechanisms to
coordinate routers to avoid duplicate flow reporting.

To reduce duplicate measurements, Sharma and By-
ers [33] suggest the use of Bloom filters. While mini-
mizing redundant measurements is a common high-level
theme betweenCSAMP and their approach, our work dif-
fers on two significant fronts. First,CSAMP allows net-
work operators to directly specify and satisfy network-
wide objectives, explicitly taking into account (possi-
bly heterogeneous) resource constraints on routers, while
their approach does not. Second,CSAMP uses hash-
based packet selection to implement coordinationwith-
out explicit communication, while their approach re-
quires every router to inform every other router about the
set of flows it is monitoring.

Hash-based packet selection as a router-level primitive
was suggested in Trajectory Sampling [8]. Trajectory
Sampling assigns all routers in the network acommon
hash range. Each router in the network records the pas-
sage for all packets that fall in this common hash range.
The recorded trajectories of the selected packets are then
used for applications such as fault diagnosis. In contrast,
CSAMP uses hash-based selection to achieve the oppo-
site functionality: it assignsdisjoint hash ranges across
multiple routers so that different routers monitor differ-
ent flows.

3 Motivation
We identify five criteria that a flow monitoring system
should satisfy: (i) provide high flow coverage, (ii) min-
imize redundant reports, (iii) satisfy network-wide flow
monitoring objectives (e.g., specifying some subsets of
traffic as more important than others or ensuring fairness
across different subsets of traffic), (iv) work within router
resource constraints, and (v) be general enough to sup-
port a wide spectrum of flow monitoring applications.
Table 1 shows a qualitative comparison of various flow
monitoring solutions across these metrics.

Packet sampling implemented by routers today is in-
herently biased toward large flows, thus resulting in poor
flow coverage. Thus, it does not satisfy the requirements
of many classes of security applications [25]. In addition,
this bias increases redundant flow reporting.

There exist solutions (e.g., [12, 18, 21]) that operate



Uniform Packet Data Streaming Heavy-hitter Flow sampling Flow sampling CSAMP
Sampling Algorithms monitoring (low-rate) (high-rate)

(e.g. [3, 5]) (e.g., [18, 21]) (e.g., [12])
High flow coverage × × × × √ √
Avoiding redundant measurements × × × × ×

√

Network-wide flow monitoring goals × × × × ×
√

Operate within resource constraints
√ √ √ √

×
√

Generality to support many applications × × × × √ √

Table 1: Qualitative comparison across different deployment alternatives available to network operators.

efficiently within router resource constraints, but either
lack generality across applications or, in fact,reduceflow
coverage. For example, techniques for tracking flows
with high packet counts (e.g., [10, 12]) are attractive
single-router solutions for customer accounting and traf-
fic engineering. However, they increase redundant mon-
itoring across routers without increasing flow coverage.

Flow sampling is better than other solutions in terms
of flow coverage and avoiding bias toward large flows.
However, there is an inherent tradeoff between the flow
coverage and router resources such as reporting band-
width and load. Also, flow sampling fails to achieve
network-wide objectives with sufficient fidelity.

As Table 1 shows, none of the existing solutionssi-
multaneouslysatisfy all the criteria. To do so, we de-
part from the router-centric approach adopted by exist-
ing solutions and take a more system-wide approach. In
the next section, we describe howCSAMP satisfies these
goals by considering the routers in the network as a sys-
tem to be managed in a coordinated fashion to achieve
network-wide flow monitoring objectives.

4 Design
In this section, we present the design of the hash-based
flow sampling primitive and the optimization engine
used inCSAMP. In the following discussion, we assume
the common 5-tuple (srcIP, dstIP, srcport, dstport, proto-
col) definition of an IP flow.

4.1 Router primitives
Hash-based flow sampling:Each router has asampling
manifest– a table of hash ranges indexed using a key.
Upon receiving a packet, the router looks up the hash
range using a key derived from the packet’s header fields.
It computes the hash of the packet’s 5-tuple and samples
the packet if the hash falls within the range obtained from
the sampling manifest. In this case, the hash is used as
an index into a table of flows that the router is currently
monitoring. If the flow already exists in the table, it up-
dates the byte and packet counters (and other statistics)
for the flow. Otherwise it creates a new entry in the table.

The above approach implements flow sampling [15],
since only those flows whose hash lies within the hash
range are monitored. Essentially, we can treat the hash
as a function that maps the input 5-tuple into a random
value in the interval[0, 1]. Thus, the size of each hash

range determines the flow sampling rate of the router for
each category of flows in the sampling manifest.

Flow sampling requires flow table lookups for each
packet; the flow table, therefore, needs to be imple-
mented in fast SRAM. Prior work has shown that main-
taining counters in SRAM is feasible in many situa-
tions [12]. Even if flow counters in SRAM are not fea-
sible, it is easy to add a packet sampling stage prior to
flow sampling to make DRAM implementations possi-
ble [17]. For simplicity, however, we assume that the
counters can fit in SRAM for the rest of the paper.
Coordination: If each router operates in isolation, i.e.,
independently sampling a subset of flows it observes, the
resulting measurements from different routers are likely
to contain duplicates. These duplicate measurements
represent a waste of memory and reporting bandwidth
on routers. In addition, processing duplicated flow re-
ports incurs additional data management overheads.

Hash-based sampling enables a simple but powerful
coordination strategy to avoid these duplicate measure-
ments. Routers are configured to use the same hash func-
tion, but are assigned disjoint hash ranges so that the hash
of any flow will match at most one router’s hash range.
The sets of flows sampled by different routers will there-
fore not overlap. Importantly, assigning non-overlapping
hash ranges achieves coordinationwithoutexplicit com-
munication. Routers can thus achieve coordinated tasks
without complex distributed protocols.

4.2 Network-wide optimization
ISPs typically specify their network-wide goals in terms
of Origin-Destination (OD) pairs, specified by the
ingress and egress routers. To achieve flow monitoring
goals specified in terms of OD-pairs,CSAMP’s optimiza-
tion engine needs the traffic matrix (the number of flows
per OD-pair) and routing information (the router-level
path(s) per OD-pair), both of which are readily available
to network operators [13, 41].

Assumptions and notation: We make two assumptions
to simplify the discussion. First, we assume that the traf-
fic matrix (number of IP flows per OD-pair) and routing
information for the network are given exactly and that
these change infrequently. Second, we assume that each
OD-pair has a single router-level path. We relax these
assumptions in Section 4.4 and Section 4.5.



Each OD-pairOD i (i = 1, . . . , M ) is characterized
by its router-level pathPi and the numberTi of IP flows
in a measurement interval (e.g., five minutes).

Each routerRj (j = 1, . . . , N ) is constrained by two
resources: memory (per-flow counters in SRAM) and
bandwidth (for reporting flow records). (Because we as-
sume that the flow counters are stored in SRAM, we do
not model packet processing constraints [12].) We ab-
stract these into a single resource constraintLj , the num-
ber of flows routerRj can record and report in a given
measurement interval.

Let dij denote the fraction of the IP flows ofOD i that
routerRj samples. IfRj does not lie on pathPi, then
the variabledij will not appear in the formulation. For
i = 1, . . . , M , letCi denote the fraction of flows onOD i

that is monitored.

Objective: We present a general framework that is flex-
ible enough to support several possible flow monitoring
objectives specified as (weighted) combinations of the
differentCi values. As a concrete objective, we consider
a hybrid measurement objective that maximizes the total
flow-coverage across all OD-pairs (

∑

i Ti × Ci ) subject
to ensuring the optimal minimum fractional coverage per
OD-pair (mini{Ci}).

Problem maxtotgivenfrac(α):

Maximize
∑

i

(Ti × Ci), subject to

∀j,
∑

i:Rj∈Pi

(dij × Ti) ≤ Lj (1)

∀i, Ci =
∑

j:Rj∈Pi

dij (2)

∀i, ∀j, dij ≥ 0 (3)

∀i, Ci ≤ 1 (4)

∀i, Ci ≥ α (5)

We define a linear programming (LP) formulation that
takes as a parameterα, the desired minimum fractional
coverage per OD-pair. Givenα, the LP maximizes the
total flow coverage subject to ensuring that each OD-pair
achieves a fractional coverage at leastα, and that each
router operates within its load constraint.

We briefly explain each of the constraints. (1) ensures
that the number of flows thatRj is required to monitor
does not exceed its resource constraintLj . As we only
consider sampling manifests in which the routers onPi

for OD i will monitor distinct flows, (2) says that the frac-
tion of traffic of OD i that has been covered is simply
the sum of the fractional coveragesdij of the different
routers onPi. Because eachCi represents a fractional
quantity we have the natural upper boundCi ≤ 1 in

(4). Since we want to guarantee that the fractional cov-
erage on each OD-pair is greater than the desired min-
imum fractional coverage, we have the lower bound in
(5). Since thedij define fractional coverages, they are
constrained to be in the range[0, 1]; however, the con-
straints in (4) subsume the upper bound on eachdij and
we impose the non-zero constraints in (3).

To maximize the total coverage subject to achieving
the highest possible minimum fractional coverage, we
use a two-step approach. First, we obtain the optimal
minimum fractional coverage by considering the prob-
lem of maximizingmini{Ci} subject to constraints (1)–
(4). Next, the value ofOptMinFrac obtained from this
optimization is used as the inputα to maxtotgivenfrac.

The solution to the above two-step procedure,d∗ =
〈d∗ij〉1≤i≤M,1≤j≤N provides a sampling strategy that
maximizes the total flow coverage subject to achieving
the optimal minimum fractional coverage per OD-pair.

4.3 Sampling manifests
The next step is to map the optimal solution into asam-
pling manifestfor each router that specifies its monitor-
ing responsibilities (Figure 1). The algorithm iterates
over theM OD-pairs. For eachOD i, the variableRange

is advanced in each iteration (i.e., per router) by the frac-
tional coveraged∗ij provided by the current router (lines
4 and 5 in Figure 1). This ensures that routers on the path
Pi for OD i are assigned disjoint ranges. Thus, no flows
are monitored redundantly.

Once a router has received its sampling manifest, it
implements the algorithm shown in Figure 2. For each
packet it observes, the router first identifies the OD-pair.
Next, it computes a hash on the flow headers (the IP 5-
tuple) and checks if the hash value lies in the assigned
hash range for the OD-pair (the function HASH returns
a value in the range[0, 1]). That is, the key used for
looking up the hash range (c.f., Section 4.1) is the flow’s
OD-pair. Each router maintains aFlowtable of the set of
flows it is currently monitoring. If the packet has been se-
lected, then the router either creates a new entry (if none
exists) or updates the counters for the corresponding en-
try in theFlowtable.

4.4 Handling inaccurate traffic matrices
The discussion so far assumed that the traffic matrices are
known and fixed. Traffic matrices are typically obtained
using estimation techniques (e.g., [41, 42]) that may have
estimation errors.

If the estimation errors are bounded, we scale the
sampling strategy appropriately to ensure that the new
scaled solution will operate within the router resource
constraints and be near-optimal in comparison to an op-
timal solution for the true (but unknown) traffic matrix.



GENERATESAMPLINGMANIFEST(d∗ = 〈d∗ij〉)

// i ranges over all OD-pairs
1 for i = 1, . . . , M do
2 Range ← 0

// j ranges over routers
3 for j = 1, . . . , N do
4 HashRange(i, j) ← [Range,Range + d∗ij)
5 Range ← Range + d∗ij
6 ∀j,Manifest(j) ← {〈i,HashRange(i, j)〉|d∗ij > 0}

Figure 1: Translating the optimal solution into a sam-
pling manifest for each router

COORDSAMPROUTER(pkt ,Manifest)

// Manifest = 〈i,HashRange(i, j)〉
1 OD ← GETODPAIR ID(pkt)

// HASH returns a value in[0, 1]
2 hpkt ← HASH(FLOWHEADER(pkt))
3 if hpkt ∈ Hashrange(OD , j) then
4 Create an entry inFlowtable if none exists
5 Update byte and packet counters for the entry

Figure 2: Algorithm to implement coordinated sampling
on routerRj

Suppose the estimation errors in the traffic matrix
are bounded, i.e., ifTi and T̂i denote the estimated
and actual traffic forOD i respectively, then∀i,Ti ∈
[T̂i(1 − ǫ), T̂i(1 + ǫ)]. Here, ǫ quantifies how much
the estimated traffic matrix (i.e., our input data) differs
with respect to the true traffic matrix. Suppose the op-
timal sampling strategy for̂T = 〈T̂i〉1≤i≤M is d̂ =

〈d̂ij〉1≤i≤M,1≤j≤N , and that the optimal sampling strat-
egy forT = 〈Ti〉1≤i≤M is d∗ = 〈d∗ij〉1≤i≤M,1≤j≤N .

A sampling strategyd is T -feasible if it satisfies con-
ditions (1)–(4) forT . For aT -feasible strategyd, let
β(d,T ) = mini{Ci} denote the minimum fractional
coverage, and letγ(d,T ) =

∑

i Ti × Ci =
∑

i Ti ×
(
∑

j dij) denote the total flow coverage. Settingd′ij =

d∗ij(1 − ǫ), we can show thatd′ is T̂ -feasible, and1

β(d′, T̂ ) ≥

(

1 − ǫ

1 + ǫ

)

β(d̂, T̂ )

γ(d′, T̂ ) ≥

(

1 − ǫ

1 + ǫ

)2

γ(d̂, T̂ ).

For example, withǫ = 1%, usingd′ yields a worst case
performance reduction of 2% in the minimum fractional
coverage and 4% in the total coverage with respect to the
optimal strategŷd.

1For brevity, we do not show the full derivation of these results and
refer the reader to the accompanying technical report [31].

4.5 Handling multiple paths per OD-pair
Next, we discuss a practical extension to incorporate
multiple paths per OD-pair, for example using equal cost
multi-path routing (ECMP).2

Given the routing and topology information, we can
obtain the multiple routing paths for each OD-pair and
can compute the number of flows routed across each of
the multiple paths. Then, we treat each of the different
paths as a distinct logical OD-pair with different individ-
ual traffic demands. As an example, supposeOD i has
two pathsP1

i andP2
i . We treatP1

i andP2
i as indepen-

dent OD-pairs with traffic valuesT 1
i andT 2

i . This means
that we introduce additionaldij variables in the formula-
tion. In this example, in (1) we expand the termdij ×Ti

for routerRj to bed1
ij ×T 1

i +d2
ij ×T 2

i if Rj lies on both
P1

i andP2
i .

However, when we specify the objective function and
the sampling manifests, we merge these logical OD-
pairs. In the above example, we would specify the
network-wide objectives in terms of the total coverage
for theOD i, Ci = C 1

i + C 2
i . This merging procedure

also applies to the sampling manifests. For example, sup-
poseRj occurs on the two paths in the above example,
and the optimal solution has valuesd1

ij and d2
ij corre-

sponding toP1
i and P2

i . The sampling manifest sim-
ply specifies thatRj is responsible for a total fraction
dij = d1

ij + d2
ij of the flows inOD i.

5 System Architecture
Figure 3 depicts the overall architecture ofCSAMP. The
centralized optimization engine computes and dissemi-
nates sampling manifests based on the traffic matrix and
routing information continuously measured in the net-
work. This engine also assigns an identifier to every
OD-pair and propagates this information to the ingress
routers. The ingress routers determine the OD-pair and
mark packets with the identifier. Each router uses the
OD-pair identifier and its sampling manifest to decide if
it should record a specific flow. In order to handle traffic
dynamics, the optimization engine recalculates the traffic
matrix periodically based on the observed flow reports to
generate and distribute new sampling manifests. Such
a centralized approach is consistent with the operating
model of modern ISPs, where operators push out router
configuration files (e.g., routing tables, ACLs) and col-
lect information from the routers.

To complete the description of theCSAMP system, we
describe the following mechanisms: 1) obtaining OD-
pair information for packets; 2) responding to long- and
short-term traffic dynamics; 3) managing memory re-

2ECMP-enabled routers make forwarding decisions on a per-IP-
flow rather than on a per-packet basis. Thus, we need not be concerned
with multiple packets from a single flow traversing different router-
level paths.
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Figure 3: An overall view of the architecture of the
CSAMP system. The optimization engine uses up-to-date
traffic and routing information to compute and dissemi-
nate sampling manifests to routers.

sources on routers; 4) computing the sampling manifests
efficiently; and 5) reacting to routing dynamics.

5.1 OD-pair identification
Each router, on observing a packet, must identify the
OD-pair to which the packet belongs. There are prior
approaches to infer the OD-pair for a given packet based
on the source and destination IP addresses and routing
information [13]. However, such information may not
be immediately discernible to interior routers from their
routing tables due to prefix aggregation. Ingress routers
are in a better position to identify the appropriate egress
when a packet enters the network using such techniques.
Thus the ingress routers mark each packet header with
the OD-pair identifier. Interior routers can subsequently
extract this information. In practice, the OD-pair identi-
fier can either be added to the IP-header or to the MPLS
label stack. Note that the multi-path extension (Sec-
tion 4.5) does not impose additional work on the ingress
routers for OD-pair identification. In both the single-
path and multi-path cases, an ingress router only needs
to determine the egress router and the identifier for the
ingress-egress pair, and need not distinguish between the
different paths for each ingress-egress pair.

The identifier can be added to the IP-id field in a man-
ner similar to other proposals that rely on packet marking
(e.g., [22, 29, 39]). This 16-bit field allows assigning a
unique identifier to each OD-pair in a network with up
to 256 border routers (and 65,536 OD-pairs), which suf-
fices for medium-sized networks. For larger ISPs, we use
an additional encoding step to assign identifiers to OD-
pairs so that there are no conflicts in the assignments.
For example,OD i andOD i′ can be assigned the same
identifier if Pi andPi′ do not traverse a common router
(and the same interfaces on that router) or, if they do, the
common router is not assigned logging responsibility for
one of them. We formulate this notion of non-conflicting
OD-pairs as a graph coloring problem, and run a greedy
coloring algorithm on the resulting conflict graph. Using
this extension, the approach scales to larger ISPs (e.g.,
needing fewer than 10 bits to encode all OD-pairs for
a network with 300 border routers). In the interest of
space, we do not discuss this technique or the encoding
results further.

While the above approach to retrofit OD-pair identi-
fiers within the IP header requires some work, it is easier
to add the OD-pair identifier as a static label in the MPLS
label stack. In this case, the space required to specify
OD-pair identifiers is not a serious concern.

5.2 Dealing with traffic dynamics
To ensure that the flow monitoring goals are achieved
consistently over time, the optimization engine must be
able to predict the traffic matrix to compute the sampling
manifests. This prediction must take into account long-
term variations in traffic matrices (e.g., diurnal trends),
and also be able to respond to short-term dynamics (e.g.,
on the scale of a few minutes).

Long-term variations in traffic matrices typically
arise from predictable time-of-day and day-of-week ef-
fects [28]. To handle these, we use historical traffic ma-
trices as inputs to the optimization engine to compute
the sampling strategy. For example, to compute the man-
ifests for this week’s Fri. 9am-10am period, we use the
traffic matrix observed during the previous week’s Fri.
9am-10am period.

The optimization engine also has to respond to less
predictable short-term traffic variations. Using histori-
cal traffic matrices averaged over long periods (e.g., one
week) runs the risk ofunderfitting; important structure
present over shorter time scales is lost due to averag-
ing. On the other hand, using historical traffic matrices
over short periods (e.g., 5-minute intervals) may result in
overfitting, unnecessarily incorporating details specific
to the particular historical period in question.

To handle the long and short-term traffic dynamics, we
take the following heuristic approach. Suppose we are
interested in computing sampling manifests for every 5-



minute interval for the Fri. 9am-10am period of the cur-
rent week. To avoid overfitting, we do not use the traffic
matrices observed during the corresponding 5-minute in-
tervals that make up the previous week’s Fri. 9am-10am
period. Instead, we take the (hourly) traffic matrix for
the previous week’s Fri. 9am-10am period, divide it by
12 (the number of 5-minute segments per hour), and use
the resulting traffic matrixT old as input data for com-
puting the manifests for the first 5-minute period. At the
end of this period, we collect flow data from each router
and obtain the traffic matrixT obs from the collected flow
reports. (If the fractional coverage forOD i with the cur-
rent sampling strategy isCi andxi sampled flows are
reported, thenT obs

i = xi

Ci
, i.e., normalizing the number

of sampled flows by the total flow sampling rate.)
Given the observed traffic matrix for the current mea-

surement periodT obs and the historical traffic matrix
T old , a new traffic matrix is computed using aconser-
vative updatepolicy. The resulting traffic matrixTnew

is used as the input for obtaining the manifests for the
next 5-minute period.

The conservative update policy works as follows.
First, check if there are significant differences between
the observed traffic matrixT obs and the historical input

dataT old . Letδi =
|Tobs

i −Told
i |

Told
i

denote the estimation er-

ror for OD i. If δi exceeds a threshold∆, then compute
a new traffic matrix entryTnew

i , otherwise useT old
i . If

T obs
i is greater thanT old

i , then setTnew
i = T obs

i . If
T obs

i is smaller thanT old
i , check the resource utilization

of the routers currently responsible for monitoringOD i.
If all these routers have residual resources available, set
Tnew

i = T obs
i ; otherwise setTnew

i = T old
i .

The rationale behind this conservative update heuristic
is that if a router runs out of resources, it may result in
underestimating the new traffic on OD-pairs for which it
is responsible (i.e.,T obs is an under-estimate of the ac-
tual traffic matrix). UpdatingTnew with T obs for such
OD-pairs is likely to cause a recurrence of the same over-
flow condition in the next 5-minute period. Instead, we
err on the side of overestimating the traffic for each OD-
pair. This ensures that the information obtained for the
next period is reliable and can help make a better deci-
sion when computing manifests for subsequent intervals.

The only caveat is that this policy may provide lower
flow coverage since it overestimates the total traffic vol-
ume. Our evaluations with real traffic traces (Section 6.3)
show that this performance penalty is low and the heuris-
tic provides near-optimal traffic coverage.

5.3 Flow records in SRAM
We assume that the flow table is maintained in (more ex-
pensive) SRAM. Thus, we need a compact representation
of the flow record in memory, unlike Netflow [5] which
maintains a 64-byte flow record in DRAM. We observe

that the entire flow record (the IP 5-tuple, the OD-pair
identifier, and counters) need not actually be maintained
in SRAM; only the flow counters (for byte and packet
counts) need to be in SRAM. Thus, we can offload most
of the flow fields to DRAM and retain only those rel-
evant to the online computation: a four byte flow-hash
(for flowtable lookups) and 32-bit counters for packets
and bytes, requiring only 12 bytes of SRAM per flow
record. To further reduce the SRAM required, we can
use techniques for maintaining counters using a combi-
nation of SRAM and DRAM [43]. We defer a discussion
of handling router memory exhaustion to Section 7.

5.4 Computing the optimal solution
In order to respond in near-real time to network dynam-
ics, computing and disseminating the sampling manifests
should require at most a few seconds. Unfortunately, the
simple two-step approach in Section 4.2 requires a few
hundreds of seconds on large ISP topologies and thus
does not scale. We discovered that its bottleneck is the
first step of solving the modified LP to findOptMinFrac.

To reduce the computation time we implement two
optimizations. First, we use a binary search proce-
dure to determineOptMinFrac. This was based on
experimental evidence that solving the LP specified by
maxtotgivenfrac(α) for a givenα is faster than solving
the LP to findOptMinFrac. Second, we use the insight
thatmaxtotgivenfrac(α) can be formulated as a special
instance of a MaxFlow problem. These optimizations re-
duce the time needed to compute the optimal sampling
strategy to at most eleven seconds even on large tier-1
ISPs with more than 300 routers.

Binary search: The main idea is to use a binary search
procedure over the value ofα using the LP formulation
maxtotgivenfrac(α). The procedure takes as input an
error parameterǫ and returns a feasible solution with
a minimum fractional coverageα∗ with the guarantee
thatOptMinFrac − α∗ ≤ ǫ. The search keeps track of
αlower , the smallest feasible value known (initially set to
zero), andαupper , the highest possible value (initially set

to
P

j
Lj

P

i
Ti

). In each iteration, the lower and upper bounds
are updated depending on whether the current valueα
is feasible or not and the current valueα is updated to
αlower+αupper

2
. The search starts fromα = αupper , and

stops if the gapαupper − αlower is less thanǫ, and re-
turnsα∗ = αlower at this stopping point.

Reformulation using MaxFlow: We formulate the
LPmaxtotgivenfrac(α) as an equivalent MaxFlow prob-
lem, specifically a variant of traditional MaxFlow prob-
lems that has additional lower-bound constraints on edge
capacities. The intuition behind this optimization is that
MaxFlow problems are typically more efficient to solve



than general LPs.
We construct the following (directed) graphG =

〈V, E〉. The set of vertices inG is

V = {source, sink} ∪ {od i}1≤i≤M ∪ {rj}1≤j≤N

Eachod i in the above graph corresponds to OD-pair
OD i in the network and eachrj in the graph corresponds
to routerRj in the network.

The set of edges isE = E1 ∪ E2 ∪ E3, where

E1 = {(source, od i)}1≤i≤M

E2 = {(rj , sink)}1≤j≤N

E3 = {(od i, rj)}i,j:Rj∈Pi

Let f(x, y) denote the flow on the edge(x, y) ∈ E,
and letUB(x, y) andLB(x, y) denote the upper-bound
and lower-bound on edge capacities inG. Our objective
is to maximize the flowF from source to sink subject to
the following constraints.

∀x,

(

∑

y

f(x, y) −
∑

y

f(y, x)

)

=







F x = source

−F x = sink

0 otherwise

We specify lower and upper bounds on the flow on
each edge as:

∀x, ∀y,LB(x, y) ≤ f(x, y) ≤ UB(x, y)

The upper-bounds on the edge capacities are: (i) the
edges from thesource to od i have a maximum capacity
equal toTi (the traffic for OD-pairOD i), and (ii) the
edges from eachrj to thesink have a maximum capacity
equal toLj (resource available on each routerRj).

UB((x, y)) =







Ti x = source, y = od i

Lj x = rj , y = sink

∞ otherwise

We introduce lower bounds only on the edges from
thesource to eachod i, indicating that eachOD i should
have a fractional flow coverage at leastα:

LB((x, y)) =

{

α × Ti x = source, y = od i

0 otherwise

We use the binary search procedure discussed earlier,
but use this MaxFlow formulation to solve each iteration
of the binary search instead of the LP formulation.

5.5 Handling routing changes
The CSAMP system receives real-time routing updates
from a passive routing and topology monitor such as
OSPF monitor [32]. Ideally, the optimization engine
would recompute the sampling manifests for each rout-
ing update. However, recomputing and disseminating

sampling manifests to all routers for each routing up-
date is expensive. Instead, the optimization engine uses
a snapshot of the routing and topology information at the
beginning of every measurement interval to compute and
disseminate manifests for the next interval. This ensures
that all topology changes are handled within at most two
measurement intervals.

To respond more quickly to routing changes, the opti-
mization engine canprecomputesampling manifests for
different failure scenarios in a given measurement cy-
cle. Thus, if a routing change occurs, an appropriate
sampling manifest corresponding to this scenario is al-
ready available. This precomputation reduces the latency
of adapting to a given routing change to less than one
measurement interval. Since it takes only a few seconds
(e.g., 7 seconds for 300 routers and 60,000 OD-pairs) to
compute a manifest on one CPU (Section 6.1), we can
precompute manifests for all single router/link failure
scenarios with a moderate (4-5×) level of parallelism.
While precomputing manifests for multiple failure sce-
narios is difficult, such scenarios are also relatively rare.

5.6 Prototype implementation
Optimization engine: Our implementation of the algo-
rithms for computing sampling manifests (Section 5.4)
consists of 1500 lines of C/C++ code using theCPLEX
callable library. The implementation is optimized for re-
peated computations with small changes to the input pa-
rameters, in that it carries state from one solution over
to the next. Solvers likeCPLEX typically reach a so-
lution more quickly when starting “close” to a solution
than when starting from scratch. Moreover, the solu-
tions that result tend to have fewer changes to the pre-
ceding solutions than would solutions computed from
scratch, which enables reconfigured manifests to be de-
ployed with fewer or smaller messages. We implement
this optimization for both our binary search algorithm
and when recomputing sampling manifests in response
to traffic and routing dynamics.
Flow collection: We implemented aCSAMP extension to
theYAF flow collection tool.3 Our choice was motivated
by our familiarity with YAF, its simplicity of implemen-
tation, and because it is a reference implementation for
the IETF IPFIX working group. The extensions to YAF
required 200 lines of additional code. The small code
modification suggests that many current flow monitor-
ing tools can be easily extended to realize the benefits of
CSAMP. In our implementation, we use the BOB hash
function recommended by Molina et al. [26].

6 Evaluation
We divide our evaluation into three parts. First, we
demonstrate that the centralized optimization engine and

3http://tools.netsa.cert.org/yaf



the individual flow collection processes inCSAMP are
scalable in Section 6.1. Second, we show the practical
benefits that network operators can derive fromCSAMP

in Section 6.2. Finally, in Section 6.3, we show that the
system can effectively handle realistic traffic dynamics.

In our experiments, we compare the performance of
different sampling algorithms at a PoP-level granularity,
i.e., treating each PoP as a “router” in the network model.
We use PoP-level network topologies from educational
backbones (Internet2 and GÉANT) and tier-1 ISP back-
bone topologies inferred by Rocketfuel [34]. We con-
struct OD-pairs by considering all possible pairs of PoPs
and use shortest-path routing to compute the PoP-level
path per OD-pair. To obtain the shortest paths, we use
publicly available static IS-IS weights for Internet2 and
GÉANT and inferred link weights [24] for Rocketfuel-
based topologies.

Topology (AS#) PoPs OD-pairs Flows Packets
×10

6 ×10
6

NTT (2914) 70 4900 51 204
Level3 (3356) 63 3969 46 196
Sprint (1239) 52 2704 37 148
Telstra (1221) 44 1936 32 128
Tiscali (3257) 41 1681 32 218
GÉANT 22 484 16 64
Internet2 11 121 8 32

Table 2: Parameters for the experiments

Due to the lack of publicly available traffic matrices
and aggregate traffic estimates for commercial ISPs, we
take the following approach. We use a baseline traffic
volume of 8 million IP flows for Internet2 (per 5-minute
interval).4 For other topologies, we scale the total traffic
by the number of PoPs in the topology (e.g., given that
Internet2 has 11 PoPs, for Sprint with 52 PoPs the traf-
fic is 52

11
× 8 = 37 million flows). These values match

reasonably well with traffic estimates reported for tier-
1 ISPs. To model the structure of the traffic matrix, we
first annotate PoPk with the populationpk of the city
to which it is mapped. We then use a gravity model
to obtain the traffic volume for each OD-pair [33]. In
particular, we assume that the total traffic between PoPs
k andk′ is proportional topk × pk′ . We assume that
flow size (number of packets) is Pareto-distributed, i.e.,
Pr(Flowsize > x packets) = ( c

x
)γ , x ≥ c with γ = 1.8

andc = 4. (We use these as representative values; our re-
sults are similar across a range of flow size parameters.)
Table 2 summarizes our evaluation setup.

6.1 Micro-benchmarks
In this section, we measure the performance ofCSAMP

along two dimensions – the cost of computing sampling

4The weekly aggregate traffic on Internet2 is roughly 175TB. Ig-
noring time-of-day effects, this translates into 0.08TB per 5-minute in-
terval. Assuming an average flow size of 10KB, this translates into
roughly 8 million flows.

manifests and the router overhead.

AS PoP-level (secs) Router-level (secs)
Bin-LP Bin-MaxFlow Bin-LP Bin-MaxFlow

NTT 0.53 0.16 44.5 10.9
Level3 0.27 0.10 24.6 7.1
Sprint 0.01 0.08 17.9 4.8
Telstra 0.09 0.03 9.6 2.2
Tiscali 0.11 0.03 9.4 2.2
GÉANT 0.03 0.01 2.3 0.3
Internet2 0.01 0.005 0.20 0.14

Table 3: Time (in seconds) to compute the optimal sam-
pling manifest for both PoP- and router-level topologies.
Bin-LP refers to the binary search procedure without the
MaxFlow optimization.

Computing sampling manifests: Table 3 shows the
time taken to compute the sampling manifests on an In-
tel Xeon 2.80 GHz CPU machine for different topolo-
gies. For every PoP-level topology we considered, our
optimization framework generates sampling manifests
within one second, even with the basic LP formulation.
Using the MaxFlow formulation reduces this further. On
the largest PoP-level topology, NTT, with 70 PoPs, it
takes only 160 ms to compute the sampling manifests
with this optimization.

We also consider augmented router-level topologies
constructed from PoP-level topologies by assuming that
each PoP has four edge routers and one core router, with
router-level OD-pairs between every pair of edge routers.
To obtain the router-level traffic matrix, we split the inter-
PoP traffic uniformly across the router-level OD-pairs
constituting each PoP-level OD-pair.

Even with 5× as many routers and 16× as many OD-
pairs as the PoP-level topologies, the worst case compu-
tation time is less than 11 seconds with the MaxFlow op-
timization. These results show thatCSAMP can respond
to network dynamics in near real-time, and that the opti-
mization step is not a bottleneck.
Worst-case processing overhead:CSAMP imposes ex-
tra processing overhead per router to look up the OD-
pair identifier in a sampling manifest and to compute a
hash over the packet header. To quantify this overhead,
we compare the throughput (on multiple offline packet
traces) of running YAF in full flow capture mode, and
running YAF with CSAMP configured to log every flow.
Note that this configuration demonstrates the worst-case
overhead because, in real deployments, aCSAMP in-
stance would need to compute hashes only for packets
belonging to OD-pairs that have been assigned to it, and
update flow counters only for the packets it has selected.
Even with this worst-case configuration the overhead of
CSAMP is only 5% (not shown).
Network-wide evaluation using Emulab: We use Em-
ulab [37] for a realistic network-wide evaluation of our
prototype implementation. The test framework consists



of support code that (a) sets up network topologies; (b)
configures and runs YAF instances per “router”; (c) gen-
erates offline packet traces for a given traffic matrix; and
(d) runs real-time tests using theBitTwist5 packet
replay engine with minor modifications. The only dif-
ference between the design in Section 4 and our Em-
ulab setup is with respect to node configurations. In
Section 4, sampling manifests are computed on a per-
router basis, but YAF processes are instantiated on a
per-interface basis. We map router-level manifests to
interface-level manifests by assigning each router’s re-
sponsibilities across its ingress interfaces. For example,
if Rj is assigned the responsibility to logOD i, then this
responsibility is assigned to the YAF process instantiated
on the ingress interface forPi onRj .

We configureCSAMP in full-coverage mode, i.e., con-
figured to capture all flows in the network (in our formu-
lation this means setting the router resources such that
OptMinFrac = 1). We also consider the alternative full
coverage solution where each ingress router is configured
to capture all traffic on incoming interfaces. The metric
we compare is the normalized throughput of each YAF
instance running in the emulated network. Let the total
number of packets sent through the interface (in a fixed
interval of 300 seconds) on which the YAF process is in-
stantiated bepktsactual . Suppose the YAF instance was
able to process onlypktsprocessed packets in the same
time interval. Then the normalized throughput is defined

as
pktsprocessed

pktsactual
. By definition, the normalized throughput

can be at most 1.
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Figure 4: Comparing the CDF of normalized throughput
per-interface across the entire network

Our test setup is unfair toCSAMP for two reasons.
First, with a PoP-level topology, every ingress router is
also a core router. Thus, there are no interior routers on
which the monitoring load can be distributed. Second,
to emulate a router processing packets on each interface,
we instantiate multiple YAF processes on a single-CPU
Emulabpc3000 node. In contrast, ingress flow capture

5http://bittwist.sourceforge.net

needs exactly one process per Emulab node. In reality,
this processing would be either parallelized in hardware
(offloaded to individual linecards), or on multiple CPUs
per YAF process even in software implementations, or
across multiple routers in router-level topologies.

Figure 4 shows the distribution of the normalized
throughput values of each YAF instance in the emulated
network. Despite the disadvantageous setup, the normal-
ized packet processing throughput ofCSAMP is higher.
Given the 5% overhead due to hash computations men-
tioned before, this result might appear surprising. The
better throughput ofCSAMP is due to two reasons. First,
each per-interface YAF instance incurs per-packet flow
processing overheads (look up flowtable, update coun-
ters, etc.) only for the subset of flows assigned to it.
Second, we implement a minor optimization that first
checks whether the OD-pair (identified from IP-id field)
for the packet is present in its sampling manifest, and
computes a hash only if there is an entry for this OD-
pair. We also repeated the experiment by doubling the
total traffic volume, i.e., using 16 million flows instead of
8 million flows. The difference between the normalized
throughputs is similar in this case as well. For exam-
ple, the minimum throughput with ingress flow capture
is only 85%, whereas forCSAMP the minimum normal-
ized throughput is 93% (not shown). These results show
that by distributing responsibilities across the network,
CSAMP balances the monitoring load effectively.

6.2 Benefits ofCSAMP

It is difficult to scale our evaluations to larger topolo-
gies using Emulab. Therefore, we implemented a custom
packet-level network simulator (roughly 2500 lines of
C++) to evaluate the performance of different sampling
approaches. For all the sampling algorithms, the simu-
lator uses the same network topology, OD traffic matrix,
and IP flow-size distribution for consistent comparisons.

We consider two packet sampling alternatives: (i) uni-
form packet sampling with a sampling rate of 1-in-100
packets at all routers in the network, and (ii) uniform
packet sampling at edge routers (this may reflect a fea-
sible alternative for some ISPs [13]) with a packet sam-
pling rate of 1-in-50 packets. We also consider two flow
sampling variants: (iii) constant-rate flow sampling at all
routers with a sampling rate of 1-in-100 flows, and (iv)
maximal flow sampling in which the flow sampling rates
are chosen such that each node maximally utilizes its
available memory. In maximal flow sampling, the flow
sampling rate for a router ismin(1, l

t
), wherel is the

number of flow records it is provisioned to hold andt
is the total number of flows it observes. Both constant-
rate and maximal flow sampling alternatives are hypo-
thetical; there are no implementations of either available
in routers today. We consider them along withCSAMP
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Figure 5: ComparingCSAMP with packet sampling and hypothetical flow sampling approaches

to evaluate different intermediate solutions in the overall
design space, with current packet sampling approaches
at one end of the spectrum andCSAMP at the other. The
metrics we consider directly represent the criteria in Ta-
ble 1.

CSAMP and the two flow sampling alternatives are
constrained by the amount of SRAM on each router.
We assume that each PoP in the network is provi-
sioned to hold up to 400,000 flow records. Assuming
roughly 5 routers per PoP, 10 interfaces per router, and
12 bytes per flow record, this requirement translates into
400,000×12

5∗10 = 96 KB SRAM per linecard, which is well
within the 8 MB technology limit (in 2004) suggested
by Varghese [36]. (The total SRAM per linecard is
shared across multiple router functions, but it is reason-
able to allocate 1% of the SRAM for flow monitoring.)
Since packet sampling alternatives primarily operate in
DRAM, we use the methodology suggested by Estan and
Varghese [12] and impose no memory restrictions on the
routers. By assuming that packet sampling operates un-
der no memory constraints, we provide it the best possi-
ble flow coverage (i.e., we underestimate the benefits of
CSAMP).

Coverage benefits:Figure 5(a) compares the total flow
coverage obtained with different sampling schemes for
the various PoP-level topologies (Table 2). The total

flow coverage ofCSAMP is 1.8-3.3× that of the uni-
form packet sampling approaches for all the topolo-
gies considered. Doubling the sampling rate for edge-
based uniform packet sampling only marginally im-
proves flow coverage over all-router uniform packet sam-
pling. Among the two flow sampling alternatives, con-
stant rate flow sampling uses the available memory re-
sources inefficiently, and the flow coverage is9-16× less
thanCSAMP. Maximal flow sampling uses the memory
resources maximally, and therefore is the closest in per-
formance. Even in this case,CSAMP provides 14-32%
better flow coverage. While this represents only a mod-
est gain over maximal flow sampling, Figures 5(b) and
5(c) show that maximal flow sampling suffers from poor
minimum fractional coverage and increases the amount
of redundancy in flow reporting.

Figure 5(b) compares the minimum fractional cover-
age per OD-pair.CSAMP significantly outperforms all al-
ternatives, including maximal flow sampling. This result
shows a key strength ofCSAMP to achieve network-wide
flow coverage objectives, which other alternatives fail to
provide. In addition, the different topologies vary signif-
icantly in the minimum fractional coverage, in compar-
ison to the total coverage. For example, the minimum
fractional coverage for Internet2 and GÉANT is signif-
icantly higher than other ASes even though the traffic



volumes in our simulations are scaled linearly with the
number of PoPs. We attribute this to the unusually large
diagonal and near-diagonal elements in a traffic matrix.
For example, in the case of Telstra, the bias in the popu-
lation distribution across PoPs is such that the top few
densely populated PoPs (Sydney, Melbourne, and Los
Angeles) account for more than 60% of the total traffic
in the gravity-model based traffic matrix.
Reporting benefits: In Figure 5(c), we show the ratio
of the number ofduplicate flow recordsreported to the
total number of distinct flow reports reported. The ab-
sence ofCSAMP in Figure 5(c) is because of the assign-
ment of non-overlapping hash-ranges to avoid duplicate
monitoring. Constant rate flow sampling has little du-
plication, but it provides very low flow coverage. Uni-
form packet sampling can result in up to 14% duplicate
reports. Edge-based packet sampling can alleviate this
waste to some extent by avoiding redundant reporting
from transit routers. Maximal flow sampling incurs the
largest amount of duplicate flow reports (as high as 33%).

Figure 5(d) shows themaximum reporting bandwidth
across all PoPs. We normalize the reporting bandwidth
by the bandwidth required forCSAMP. The reporting
bandwidth forCSAMP and flow sampling is bounded by
the amount of memory that the routers are provisioned
with; memory relates directly to the number of flow-
records that a router needs to export. The normalized
load for uniform packet sampling can be as high as four.
ThusCSAMP has the added benefit of avoiding reporting
hotspots unlike traditional packet sampling approaches.
Summary of benefits: CSAMP significantly outper-
forms traditional packet sampling approaches on all four
metrics. Unlike constant rate flow sampling,CSAMP effi-
ciently leverages the available memory resources. While
maximal flow sampling can partially realize the benefits
in terms of total flow coverage, it has poor performance
with respect to the minimum fractional flow coverage
and the number of duplicated flow reports. Also, as net-
work operators provision routers to obtain greater flow
coverage, this bandwidth overhead due to duplicate flow
reports will increase.

6.3 Robustness properties
To evaluate the robustness of our approach to realistic
traffic changes, we consider a two-week snapshot (Dec
1–14, 2006) of (packet sampled) flow data from Inter-
net2. We map each flow entry to the corresponding net-
work ingress and egress points using the technique out-
lined by Feldmann et al. [13].6 We assume that there are
no routing changes in the network, and that the sampled
flow records represent the actual traffic in the network.

6Since IP-addresses are anonymized by zero-ing out the last 11 bits,
there is some ambiguity in egress resolution. However, thisdoes not
introduce a significant bias as less than 3% of the flows are affected.

(SinceCSAMP does not suffer from flow size biases there
is no need to renormalize the flow sizes by the packet
sampling rate.) For this evaluation, we scale down the
per-PoP memory to 50,000 flow records. (Due to packet
sampling, the dataset contains fewer unique flows than
the estimate in Table 2.)
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Figure 6: Comparing total traffic coverage vs. the opti-
mal solution

Figure 6 compares the total flow coverage using our
approach for handling traffic dynamics (Section 5.2) with
the optimal total flow coverage (i.e., if we use the ac-
tual traffic matrix instead of the estimated traffic ma-
trix to compute manifests). As expected, the optimal
flow coverage exhibits time-of-day and day-of-week ef-
fects. For example, during the weekend, the coverage
is around 70% while on the weekdays the coverage is
typically in the 20-50% range. The result confirms that
relying on traffic matrices that are based on hourly av-
erages from the previous week gives near-optimal total
flow coverage and represents a time scale of practical in-
terest that avoids both overfitting and underfitting (Sec-
tion 5.2). Using more coarse-grained historical informa-
tion (e.g., daily or weekly averages) gives sub-optimal
coverage (not shown). Figure 6 also shows that even
though the conservative update heuristic (Section 5.2)
overestimates the traffic matrix, the performance penalty
arising from this overestimation is negligible.

Figure 7 shows that using the per-hour historical es-
timates alone performs poorly compared to the optimal
minimum fractional coverage. This is primarily because
of short-term variations that the historical traffic matri-
ces cannot account for. The conservative update heuris-
tic significantly improves the performance in this case
and achieves near-optimal performance. These results
demonstrate that our approach of using per-hour histori-
cal traffic matrices combined with a conservative update
heuristic is robust to realistic traffic dynamics.



Fri 12/8 12/9 12/10 12/11 12/12 12/13 12/14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Five minute timeslot index

M
in

im
um

 fr
ac

tio
na

l c
ov

er
ag

e

 

 

Optimal
Per−hour
Per−hour + Conservative update

Figure 7: Comparing the minimum fractional coverage
vs. the optimal solution

7 Discussion and Future Work

Reliance on OD-pair identifiers: A key limitation of
our design is the reliance on OD-pair identifiers. This
imposes two requirements: (i) modifications to packet
headers, and (ii) upgrades to border routers to compute
the egress router [13] for each packet. While this as-
sumption simplifies our design, an interesting question is
whether it is possible to realize the benefits of aCSAMP-
like framework even when routers’ sampling decisions
are based only on local information.

Router memory exhaustion: Despite factoring in the
router memory constraints into the optimization frame-
work, a router’s flow memory might be exhausted due
to traffic dynamics. In our current prototype, we choose
not to evict flow records already in the flow memory, but
instead stop creating new flow records until the end of
the measurement cycle. The conservative update heuris-
tic (Section 5.2) will ensure that the traffic demands for
the particular OD-pairs that caused the discrepancy are
updated appropriately in the next measurement cycle.

In general, however, more sophisticated eviction
strategies might be required to prevent unfairness within
a given measurement cycle under adversarial traffic con-
ditions. For example, one such strategy could be to al-
locate the available flow memory across all OD-pairs in
proportion to their hash ranges and evict flows only from
those OD-pairs that exceed their allotted share. While
this approach appears plausible at first glance, it has the
side effect that traffic matrices will not be updated prop-
erly to reflect traffic dynamics. Thus, it is important to
jointly devise the eviction and the traffic matrix update
strategies to prevent short-term unfairness, handle poten-
tial adversarial traffic conditions, and minimize the error
in estimating traffic matrices. We intend to pursue such

strategies as part of future work.

Transient conditions inducing loss of flow coverage or
duplication: A loss in flow coverage can occur if a
router that has been assigned a hash range for an OD-pair
no longer sees any traffic for that OD-pair due to a rout-
ing change. Routing changes will not cause any duplica-
tion if the OD-pair identifiers are globally unique. How-
ever, if we encode OD-pair identifiers without unique as-
signments (see Section 5.1), then routing changes could
result in duplication due to OD-pair identifier aliasing.
Also, due to differences in the time for new configura-
tions to be disseminated to different routers, there is a
small amount of time during which routers may be in in-
consistent sampling configurations resulting in some du-
plication or loss.

Applications of CSAMP: CSAMP provides an efficient
flow monitoring infrastructure that can aid and enable
many new traffic monitoring applications (e.g., [6, 16,
19, 30, 38]). As an example application that can ben-
efit from better flow coverage, we explored the possi-
bility of uncovering botnet-like communication structure
in the network [27]. We use flow-level data from Inter-
net2 and inject 1,000 synthetically crafted single-packet
flows into the original trace, simulating botnet command-
and-control traffic.CSAMP uncovers 12× (on average)
more botnet flows compared to uniform packet sampling.
We also confirmed thatCSAMP provides comparable or
better fidelity compared to uniform packet sampling for
traditional traffic engineering applications such as traffic
matrix estimation.

8 Conclusions

Flow-level monitoring is an integral part of the suite of
network management applications used by network oper-
ators today. Existing solutions, however, focus on incre-
mentally improving single-router sampling algorithms
and fail to meet the increasing demands for fine-grained
flow-level measurements. To meet these growing de-
mands, we argue the need for a system-wide rather than
router-centric approach for flow monitoring.

We presentedCSAMP, a system that takes a network-
wide approach to flow monitoring. Compared to cur-
rent solutions,CSAMP provides higher flow coverage,
achieves fine-grained network-wide flow coverage goals,
efficiently leverages available monitoring capacity and
minimizes redundant measurements, and naturally load
balances responsibilities to avoid hotspots. We also
demonstrated that our system is practical: it scales to
large tier-1 backbone networks, it is robust to realistic
network dynamics, and it provides a flexible framework
to accommodate complex policies and objectives.
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