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ABSTRACT
This paper presents the architecture and motivation for a cluster-
based, many-core computing architecture for energy-efficient, data-
intensive computing. FAWN, a Fast Array of Wimpy Nodes, con-
sists of a large number of slower but efficient nodes coupled with
low-power storage. We present the computing trends that motivate
a FAWN-like approach, for CPU, memory, and storage. We follow
with a set of microbenchmarks to explore under what workloads
these FAWN nodes perform well (or perform poorly), and briefly
examine scenarios in which both code and algorithms may need to
be re-designed or optimized to perform well on an efficient plat-
form. We conclude with an outline of the longer-term implications
of FAWN that lead us to select a tightly integrated stacked chip-
and-memory architecture for future FAWN development.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Dis-
tributed Systems; D.4.2 [Operating Systems]: Storage Manage-
ment; D.4.8 [Operating Systems]: Performance—Measurements

General Terms
Performance, Experimentation, Measurement

Keywords
Design, Energy Efficiency, Performance, Measurement, Cluster
Computing, Flash

1. INTRODUCTION

Power is becoming an increasingly large financial and scaling bur-
den for computing. The direct and related cost of power in large
data centers is a growing fraction of their cost—up to 50% of
the three-year total cost of owning a computer —to the point that
companies such as Microsoft, Google, and Yahoo! have built
new data centers close to large and cost-efficient hydroelectric
power sources [13]. Datacenter density is limited by their abil-
ity to supply and cool 10–20 kW of power per rack and up to
10–20 MW per datacenter [17]. Future datacenters may require
as much as 200 MW [17], and today, datacenters are being con-
structed with dedicated electrical substations to feed them. While

Brands and names are the property of their respective owners.

power constraints have pushed the processor industry toward multi-
core architectures, energy-efficient alternatives to traditional disk
and DRAM-based cluster architectures have been slow to emerge.

As an energy-efficient alternative for data-intensive computing,
we present a cluster architecture called a Fast Array of Wimpy
Nodes, or FAWN. A FAWN consists of a large number of slower
but efficient nodes that each draw only a few watts of power, cou-
pled with low-power storage. We have explored prototype FAWN
nodes ranging from five-year old, 500MHz embedded devices us-
ing CompactFlash storage, to more modern Intel Atom-based nodes
with fast solid-state drives.

In this paper, we describe the long-lasting, fundamental trends in
the scaling of computation and energy that suggest that the FAWN
approach will become suitable for increasing classes of workloads.
First, as we show in Section 2, slower, simpler processors can be
more efficient: they use fewer joules of energy per instruction than
higher speed processors. Second, dynamic power scaling tech-
niques are less effective than reducing a cluster’s peak power con-
sumption. After examining CPU scaling trends, we similarly exam-
ine the same scaling questions for both memory capacity/speed and
for storage.

We then summarize our experience with real FAWN architectures
for a variety of workloads: seek-bound, I/O-throughput bound,
memory-bound, and CPU-bound. FAWN can be several times more
efficient than traditional systems for I/O-bound workloads, and on
par with or more efficient for many memory and CPU-limited ap-
plications (Section 3).

Our experiences highlight several challenges to achieving the po-
tential energy efficiency benefits of the FAWN approach. Existing
software may not run as well on FAWN nodes which have lim-
ited resources (e.g., memory capacity, CPU cache sizes); achieving
good performance often requires new algorithms and optimizations.
Existing low-power hardware platforms have high fixed power costs
that diminish the potential efficiency returns. We explore these is-
sues in Sections 2 and 3. We conclude with a future vision for
FAWN-like hardware by exploring the construction of low-GHz,
many-core systems for data-intensive applications in Section 4.

2. COMPUTING TRENDS

The FAWN approach to building well-matched cluster systems has
the potential to achieve high performance and be fundamentally
more energy-efficient than conventional architectures for serving
massive-scale I/O and data-intensive workloads. We measure sys-
tem performance in work done per second and measure energy-
efficiency in work done per Joule (equivalently, performance per
Watt). FAWN is inspired by several fundamental trends:
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Figure 1: Max speed (MIPS) vs. Instruction efficiency
(MIPS/W) in log-log scale. Numbers gathered from publicly-
available spec sheets and manufacturer product websites as of
2009.

Increasing CPU-I/O Gap Over the last several decades, the gap
between CPU performance and I/O bandwidth has continually
grown. For data-intensive computing workloads, storage, network,
and memory bandwidth bottlenecks often cause low CPU utiliza-
tion.

FAWN Approach: To efficiently run I/O-bound data-intensive,
computationally simple applications, FAWN uses lower frequency,
simpler processors selected to reduce I/O-induced idle cycles while
maintaining high performance. The reduced processor speed then
benefits from a second trend:

CPU power consumption grows super-linearly with speed Op-
erating processors at higher frequency requires more energy, and
techniques to mask the CPU-memory bottleneck come at the cost
of energy efficiency. Branch prediction, speculative execution, out-
of-order execution and increasing the amount of on-chip caching
all require additional processor die area; modern processors dedi-
cate as much as half their die to L2/3 caches [15]. These techniques
do not increase the speed of basic computations, but do increase
power consumption, making faster CPUs less energy efficient.

FAWN Approach: A FAWN cluster’s slower CPUs dedicate more
transistors to basic operations. These CPUs execute significantly
more instructions per Joule than their faster counterparts (Figure 1):
multi-GHz superscalar quad-core processors can execute approxi-
mately 100 million instructions per Joule, assuming all cores are
active and avoid stalls or mispredictions. Lower-frequency in-
order CPUs, in contrast, can provide over 1 billion instructions per
Joule—an order of magnitude more efficient while still running at
1/3rd the frequency.

Worse yet, running fast processors below their full capacity
draws a disproportionate amount of power:

Dynamic power scaling on traditional systems is surprisingly
inefficient A primary energy-saving benefit of dynamic voltage
and frequency scaling (DVFS) was its ability to reduce voltage as
it reduced frequency [30], but modern CPUs already operate near
minimum voltage at the highest frequencies.

Even if processor energy was completely proportional to load,
non-CPU components such as memory, motherboards, and power
supplies have begun to dominate energy consumption [4], requiring
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Figure 2: Processor efficiency when adding 0.1W of fixed sys-
tem overhead.

that all components be scaled back with demand. As a result, run-
ning a modern, DVFS-enabled system at 20% of its capacity may
still consume over 50% of its peak power [28]. Despite improved
power scaling technology, systems remain most energy-efficient
when operating at peak utilization. Given the difficulty of scaling all
system components, we must therefore consider “constant factors”
for power when calculating a system’s instruction efficiency. Fig-
ure 2 plots processor efficiency when adding a fixed 0.1W cost for
basic system components such as 10Mbps Ethernet (e.g., the Intel
82552V consumes 59mW at idle). Because these overheads dwarf
the CPU power draw of tiny sensor-type processors that consume
only micro-Watts, their efficiency as a cluster node drops signifi-
cantly. The best operating point exists in the middle of the curve,
where the fixed costs are amortized while still providing energy ef-
ficiency.

The 0.1W fixed overhead in Figure 2 demonstrates that even a
tiny amount of power draw can reduce the efficiency of extremely
slow processors. In practice, these “fixed” costs vary depending
on the platform. For example, a high end server processor would
need a higher speed network with higher power draw to balance its
processing capabilities, and so the fixed costs would be different
than those for a slower balanced system.

The important lesson is that system designers must choose the
processor that takes into account the unavoidable fixed costs of
the rest of the system, and must engineer away the avoidable fixed
costs. The system that best eliminates these avoidable fixed costs
in relation to its processing capability will therefore see gains in
energy efficiency. For example, SeaMicro’s SM10000 consists of
a custom networking fabric to connect its 512 Intel Atom nodes to
amortize the power cost of networking in comparison to the proces-
sor power draw [25].

Newer techniques aim for energy proportionality by turning ma-
chines off and using VM consolidation, but the practicality of these
techniques is still being explored. Many large-scale systems often
operate below 50% utilization, but opportunities to go into deep
sleep states are few and far between [4], while “wake-up” or VM
migration penalties can make these techniques less energy-efficient.
Also, VM migration may not apply for some applications, e.g.,
if datasets are held entirely in DRAM to guarantee fast response
times.



Even if techniques for dynamically scaling below peak power
were effective, operating below peak power capacity has one more
drawback:

Peak power consumption limits data center density Data centers
must be provisioned for a system’s maximum power draw. This re-
quires investment in infrastructure, including worst-case cooling re-
quirements, provisioning of batteries for backup systems on power
failure, and proper gauge power cables. FAWN significantly re-
duces maximum power draw in comparison to traditional cluster
systems that provide equivalent performance, thereby reducing in-
frastructure cost, reducing the need for massive over-provisioning,
and removing one limit to the achievable density of data centers.

Finally, energy proportionality alone is not a panacea: systems
ideally should be both proportional and efficient at 100% load. In
this paper, we show that there is significant room to improve energy
efficiency, and the FAWN approach provides a simple way to do so.

2.1 Memory trends

The previous section examined the trends that cause CPU power to
increase drastically with an increase in sequential execution speed.
In pursuit of a balanced system, one must ask the same question of
memory and storage as well.

Understanding DRAM power draw DRAM has, at a high level,
three major categories of power draw:

Idle/Refresh power draw: DRAM stores bits in capacitors; the
charge in those capacitors leaks away and must be periodically re-
freshed (the act of reading the DRAM cells implicitly refreshes the
contents). As a result, simply storing data in DRAM requires non-
negligible power.

Precharge and read power: The power consumed inside the
DRAM chip. When reading a few bits of data from DRAM, a larger
line of cells is actually precharged and read by the sense amplifiers.
As a result, random accesses to small amounts of data in DRAM
are less power-efficient than large sequential reads.

Memory bus power: A significant fraction of the total memory
system power draw—perhaps up to 40%—is required for transmit-
ting read data over the memory bus back to the CPU or DRAM
controller.

Design tradeoffs Designers can somewhat improve the efficiency
of DRAM (in bits read per joule) by clocking it more slowly, for
the same reasons mentioned for CPUs. In addition, both DRAM
access latency and power grow with the distance between the CPU
(or memory controller) and the DRAM: without additional ampli-
fiers, latency increases quadratically with trace length, and power
increases at least linearly. This effect creates an intriguing tension
for system designers: Increasing the amount of memory per CPU
simultaneously increases the power cost to access a bit of data. The
reasons for this are several: To add more memory to a system, desk-
tops and servers use a bus-based topology that can handle a larger
number of DRAM chips; these buses have longer traces and lose
signal with each additional tap. In contrast, the low-power DRAM
used in embedded systems (cellphones, etc.), LPDDR, uses a point-
to-point topology with shorter traces, limiting the number of mem-
ory chips that can be connected to a single CPU, and reducing sub-
stantially the power needed to access that memory.
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Figure 3: Power increases with rotational speed and platter
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2.2 Storage Power Trends
The energy draw of magnetic platter-based storage is related to
several device characteristics, such as storage bit density, capac-
ity, throughput, and latency. Spinning the platter at faster speeds
will improve throughput and seek times, but requires more power
because of the additional rotational energy and air resistance. Ca-
pacity increases follow bit density improvements and also increase
with larger platter sizes, but air resistance increases quadratically
with larger platter sizes, so larger platters also require more power
to operate.

Figure 3 demonstrates this tradeoff by plotting the efficiency ver-
sus speed for several modern hard drives, including enterprise, mo-
bile, desktop, and “Green” products.1 The fastest drives spin at
between 10-15K RPM, but they have a relatively low energy effi-
ciency as measured by MB per Joule of max sustained sequential
data transfer. The 2.5” disk drives are nearly always more energy
efficient than the 3.5” disk drives. The most efficient drives are
2.5” disk drives running at 5400 RPM. Energy efficiency therefore
comes at the cost of per-device storage capacity for magnetic hard
drives.

Our preliminary investigations into flash storage power trends
indicate that the number of IOPS provided by the device scales
roughly linearly with the power consumed by the device, likely be-
cause these devices increase performance through chip parallelism
instead of by increasing the speed of a single component.

3. WORKLOADS

In this section, we describe under what conditions a FAWN archi-
tecture can provide superior energy efficiency, and where traditional
architectures can be as efficient, or in some cases, more energy-
efficient than low-power systems.

1The figure uses MB/s data from vendor spec sheets, which are often best-case
outer-track numbers. The absolute numbers are therefore somewhat higher than what
one would expect in typical use, but the relative performance comparison is likely
accurate.



3.1 Metrics
Evaluating large systems using only performance metrics such as
throughput or latency is slowly falling out of favor as energy and
space constraints inform the design of modern large scale systems.
There are several metrics for energy efficiency, but the one we fo-
cus on is “work done per Joule” of energy, or equivalently, “perfor-
mance per Watt.”

Low-power VLSI designs have alternatively looked at the
“energy-delay product,” which multiplies the amount of energy to
do an amount of work with the time it takes to do that amount of
work. This penalizes solutions that reduce the amount of energy
by reducing performance for energy efficiency gains. Others have
gone further by proposing using “energy delay2” to further penalize
solutions that simply reduce voltage at the expense of performance.

However, for large-scale cluster computing applications that are
consuming a significant fraction of energy in datacenters world-
wide, “work done per Joule” is an appropriate metric. This metric
relies on being able to parallelize workloads, which is often explic-
itly provided by data-intensive computing models such as MapRe-
duce [10] that harness data-parallelism.

More specifically, when the amount of work is fixed but paral-
lelizable, one can use a larger number of slower machines yet still
finish the work in the same amount of time—for example, ten nodes
running at one-tenth the speed of a traditional node. If the aggregate
power used by those ten nodes is less than that used by the tradi-
tional node, then the ten-node solution is more energy-efficient.

3.2 Taxonomy
We begin with a broad classification of the types of workloads
found in data-intensive computing whose solution requires large-
scale datacenter deployments:

1. I/O-bound workloads
2. Memory/CPU-bound workloads
3. Latency-sensitive, but non-parallelizable workloads
4. Large, memory-hungry workloads

The first of these workloads, I/O-bound workloads, have run-
ning times that are determined primarily by the speed of the I/O
devices (typically disks for data-intensive workloads). I/O-bound
workloads can be either seek- or scan-bound, and represent the low-
hanging fruit for the FAWN approach, as described in our earlier
work [2]. In the next sections, we discuss two examples of I/O-
bound workloads: key-value storage and large sorts.

The second category includes CPU and memory-bound work-
loads, where the running time is limited by the speed of the CPU or
memory system. The last two categories represent workloads where
the FAWN approach may be less useful. Latency-sensitive work-
loads require fast responses times to provide, for example, an ac-
ceptable user-experience; anything too slow (e.g., more than 50ms)
impairs the quality of service unacceptably. Finally, large, memory-
hungry workloads frequently access data that can reside within the
memory of traditional servers (on the order of a few to 10s of gi-
gabytes per machine today). As we describe in Section 3.6.2, the
data structure created in grep when searching for millions of short
phrases requires several gigabytes of memory and is accessed ran-
domly. This causes frequent swapping on FAWN nodes with lim-
ited memory, but fits entirely in DRAM on modern servers.

System / Storage QPS Watts Queries
Joule

Embedded Systems
Alix3c2 / Sandisk(CF) 1298 3.75 346

Modern Systems
Server i7 / Fusion-io 61494 194 317.0
Desktop i7 / X25-E (x6) 59448 98.0 606.6
Atom / X25-E 10760 22.3 482.5

Table 1: Query performance and efficiency for different ma-
chine configurations. The Atom node is a prototype.

3.3 Key-value Workload
Our prior work proposed the Fast Array of Wimpy Nodes (FAWN)
architecture, which uses a large number of FAWN nodes that
act as data storage/retrieval nodes [2]. These nodes use energy-
efficient, low-power processors combined with low-power storage
and a small amount of DRAM. We compare FAWN-type systems
with traditional architectures to understand which system is more
energy-efficient in terms of work done per Joule. For all experi-
ments where we measure energy efficiency, we use a “Watts Up?”
power meter that integrates power draw at the wall socket and re-
ports the power consumed in Watts once per second [29]. We cal-
culate the number of Joules consumed during the course of each
experiment to compute energy efficiency values, and report the av-
erage power draw during the course of the experiment where appro-
priate.

Table 1 presents an update of the exploration that we began in
our previous work. It shows the rate at which various node configu-
rations can service requests for random key-value pairs (1 KB val-
ues) from an on-disk dataset, via the network. When we began this
work over two years ago, the best embedded system (Alix3c2) using
CompactFlash (CF) storage was six times more power-efficient (in
queries/joule) than a 2008-era low-power desktop equipped with a
contemporary SATA-based flash device (see [2] for these numbers).

Since our initial exploration, however, the low-power server mar-
ket has expanded dramatically. We recently benchmarked several
modern systems to understand which platform can provide the high-
est queries per Joule for persistent key-value storage. We have in-
cluded in our comparisons three different systems that all use mod-
ern flash devices. At the high-end server level (Server i7), we use a
dual-socket quad-core, rackmount Intel Core i7 (Nehalem) proces-
sor system with 16 GB of DRAM and an 80 GB Fusion-io ioDrive
on a PCI-e interface. To approximate a modern low-power server,
we used a prototype Intel Pineview Atom-based system with two
1.8GHz cores, 2 GB of DRAM and an Intel X25-E SATA-based
SSD. Unfortunately, production versions of this system were not
available at the time we conducted this research: The prototype
had only a 100 Mbps Ethernet, which limited its performance, and
the motherboard used low-efficiency voltage converters, which in-
creased its power consumption. Between these extremes, we con-
figured a “desktop” Core i7-based system with a single quad-core
Core i7 860, 2 GB of DRAM, and 6 X25-E SATA drives. We at-
tempted to balance this system by adding two SATA PCI-e cards
because the motherboard supported only 4 SATA ports. We also re-
duced the power of this system by replacing the 40 W graphics card
with a PCI card, and removed several extra DRAM chips for this
particular experiment; through these efforts we reduced the desktop
idle power to 45 W.



Table 1 shows that both the high-end server and desktop sys-
tem could serve about 60,000 1 KB queries per second from flash
(queries and responses are over the network); the server’s power
draw was 194 W averaged over the length of the experiment,
whereas the desktop’s was far less at 98 W. Thus, the desktop sys-
tem was twice as energy-efficient as the server machine. In contrast,
the Atom system could only provide 10,760 queries per second be-
cause it was limited by the 100 Mbps Ethernet. Despite drawing
only 22.3 W, its limited performance placed its energy efficiency in
between the other two systems.

There are two interesting observations to be made about these re-
sults. First, we note that the 60,000 queries/sec that both the server
and the desktop provided is below saturation of the storage devices:
The Fusion-io can provide 100,000 4 KB random reads per sec-
ond and each X25-E can theoretically provide 35,000 4 KB random
reads based on filesystem benchmarking tools such as iozone [16]
and fio [1]. Understanding this disparity is a topic of ongoing work.
However, we note that when all values are retrieved from the filesys-
tem buffer cache and avoid going to the device driver, the i7 systems
can saturate a 1 Gbps network with requests, suggesting that the
problem is specific to the I/O interface between our software and
the flash devices.

Some of the performance bottlenecks may be fixed through soft-
ware optimization while others may be more fundamentally related
to the required processing or hardware architecture of the individ-
ual systems. None of the modern systems above are perfectly bal-
anced in their use of CPU, memory and I/O, so we cannot make
a strong conclusion about which platform will eventually be the
most energy-efficient once any software bottlenecks are removed.
But the main takeaway is that the lower-power systems (Atom and
Desktop i7) are currently significantly more energy-efficient than
traditional server architectures, and understanding the bottlenecks
of each system should inform the design of future energy-efficient
and balanced platforms for persistent key-value storage.

3.4 Memory-bound workloads
In the previous section, we discussed workloads whose working
sets were large enough to require access to disks or flash, and that
the computations on that data are simple enough to make the work-
load I/O-bound. In the next few sections, we explore some worst-
case workloads designed to be more energy-efficient on traditional,
high-power, high-speed systems than low-power, low-speed sys-
tems.

3.4.1 Cache-bound Microbenchmark

Workload description: We created a synthetic memory-bound
benchmark that takes advantage of out-of-order execution and large
caches. This benchmark repeatedly performs a matrix transpose
multiplication, reading the matrix and vector data from memory and
writing the result to memory. We chose matrix transpose specif-
ically to have poor locality. The matrix data is in row-major for-
mat, which means that the transpose operation cannot sequentially
stream data from memory. Each column of the matrix is physically
separated in memory, requiring strided access and incurring more
frequent cache evictions when the matrix does not fit entirely in
cache.

The vector multiplications are data-independent to benefit from
instruction reordering and pipelining, further biasing the workload
in favor of modern high-speed, complex processors. We ran the
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benchmark with various input matrix sizes. We estimate the metric
of performance, FLOPS (floating point operations per second) as
the number of multiply operations performed, though we note that
this workload is more memory-intensive than CPU-intensive.2

Evaluation hardware: In this experiment, we compared only
the i7-Desktop to our Atom chipset; the i7-Server’s large fixed
costs make it less efficient than the i7-Desktop in all cases. The i7-
Desktop operates 4 cores at a max of 2.8GHz, though we used the
Linux CPU ondemand scheduler to choose the appropriate speed
for each workload. The i7 860 has a 32 KB L1 cache and a 256 KB
L2 cache per core, and also has an 8 MB L3 cache shared across
all 4 cores. We enabled two-way Hyper-threading (Simultaneous
Multi-Threading) so that the system exposed 8 “processors” to the
operating system. Finally, we removed all but one X25-E and one
2 GB DRAM DIMM to further reduce power. At idle, the power
consumed by the machine was 40 W and at full load reached 130 W.

The Atom’s processor cores each have a 24 KB L1 data cache
and a 512 KB L2 cache. Two-way hyper-threading was enabled,
exposing 4 “processors” to the OS. At idle, the Atom system con-
sumed 18 W and at full load would reach 29 W.

Results: Figure 4 shows the energy efficiency (in KFLOPS/W)
of our matrix multiply benchmark as a function of the size of the
matrix being multiplied. When the matrix fits in the L1 data cache
of both the i7-Desktop and the Atom, the Atom is roughly twice as
efficient as the i7-Desktop. As the matrix size exceeds the L1 data
cache, most memory accesses hit in L2 cache, and the efficiency
drops by nearly a factor of two for both systems, with the Atom
retaining higher energy efficiency.

The i7-Desktop’s efficiency drops even further as the matrix size
exhausts the 256 KB of L2 cache per core and accesses hit in L3.
As the matrix size overflows the L2 cache on the Atom, most ac-
cesses then fall back to DRAM and efficiency remains flat there-
after. Meanwhile, the matrix size fits within the 8 MB L3 cache of
the i7. Once the matrix grows large enough, most of its accesses

2Comparing the FLOPS numbers here to those found in other CPU-intensive bench-
marks such as in the Green500 competition will underestimate the actual computational
capabilities of the platforms we measured, because this benchmark primarily measures
memory I/O, not floating point operations.
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then fall back to DRAM, and its energy efficiency drops below that
of the Atom.

The main takeaway of this experiment is that when the working
set fits in the same caches of each architecture, the Atom is up to
twice as energy-efficient as the i7-Desktop. However, when the
workload fits in the L2/L3 cache of the i7-Desktop but exhausts the
Atom’s on-die cache, the i7-Desktop is considerably more efficient,
sometimes by a factor of four.

In other words, workloads that are cache-resident on a traditional
system but not on a FAWN can be more efficient on the traditional
system simply because of the amount of cache available on tradi-
tional systems.

The above experiment used OpenMP to run multiple threads si-
multaneously, eight threads on the i7-Desktop and four threads on
the Atom. Running multiple threads is required to fully tax the CPU
and memory systems of each node. We also ran the same experi-
ment with one thread, to see how efficiency scales with load. Fig-
ure 5 shows that with one thread, the i7-Desktop is more efficient
regardless of the size of the matrix.

This can be explained by fixed power costs. The i7-Desktop run-
ning one thread consumed 70 W (versus 40 W at idle), and the Atom
running one thread consumed 20 W (versus 18 W at idle). The
Atom platform we evaluated therefore has a large cost of not oper-
ating at full capacity. Its energy-proportionality is much worse than
that of the i7-Desktop. Because the Atom was, at best, only twice
as energy efficient as the i7-Desktop for this worst-case workload at
100% load, the inefficient chipset’s power overhead dominates the
CPU power and reduces the energy efficiency at low-load signifi-
cantly.3

3.4.2 JouleSort

The above microbenchmark described a tightly controlled cache
size-bound experiment showing that differences in cache sizes can
significantly impact energy efficiency comparisons. But these dis-
continuities appear in more real world macrobenchmarks as well.
More specifically, in this section we look at sorting many small

3In the case of our particular system, many of the fixed energy costs are due to
non-“server” components: the GPU and video display circuitry, extra USB ports, and
so on. Some components, however, such as the Ethernet port, cannot be eliminated.
These same factors preclude the use of extremely low-power CPUs, as discussed in
Section 2.

records and describe our experiences competing for the 2010 10GB
JouleSort competition. Our best system consists of a machine with
a low-power server processor and five flash drives, sorting the 10GB
dataset in 21.2 seconds (±0.227s) seconds with an average power
of 104.9W (±0.8W). This system sorts the 10GB dataset using only
2228 Joules (±12 J), providing 44884 (±248) sorted records per
Joule.

Our entry for the 10GB competition tried to use the most energy-
efficient platform we could find that could hold the dataset in mem-
ory to enable a one-pass sort. We decided to use a one-pass sort on
this hardware over a two-pass sort on more energy efficient hard-
ware (such as Intel Atom-based boards) after experimenting with
several energy efficient hardware platforms that were unable to ad-
dress enough memory to hold the 10GB dataset in memory. The
low-power platforms we tested suffered from either a lack of I/O
capability or high, relative fixed power costs, both stemming from
design decisions made by hardware vendors rather than being in-
formed by fundamental properties of energy and computing.

Hardware: Our system uses an Intel Xeon L3426 1.86GHz
quad-core processor (with two hyperthreads per core, TurboBoost-
enabled) paired with 12GB of DDR3-1066 DRAM (2 DIMMS were
4GB modules and the other 2 DIMMS were 2GB modules). The
mainboard is a development board from 2009 based on an Intel
3420 chipset (to the best of our knowledge, this confers no specific
power advantage compared to off-the-shelf versions of the board
such as the Supermicro X8SIL-F or Intel S3420GPV Server Board),
and we used a Prolimatech “Megahalems” fanless heatsink for the
processor.

For storage, we use four SATA-based Intel X25-E flash drives
(three had a 32GB capacity and one had 64GB), and one PCIe-
based Fusion-io ioDrive (80GB). We use a 300W standard ATX
power supply (FSP300) with a built-in and enabled cooling fan.

The storage devices were configured as follows: one small par-
tition of a 32GB X25-E contained the OS. The other three X25-Es,
the leftover portions of the OS disk, and the Fusion-IO (partitioned
into three 10GB partitions) were arranged in a single partition soft-
ware RAID-0 configuration. Both the input and output file were lo-
cated in a single directory within this partition. We used a Fusion-io
in addition to 4 X25-Es because the SATA bus exists on the DMI
bus with a bandwidth limitation of 10Gbps in theory and slightly
less in practice. The Fusion-io was in a PCIe slot that is independent
of the DMI bus and had a much higher bandwidth to the processor
and memory system. Using both types of devices together therefore
allowed us to more easily saturate the I/O and CPU capabilities of
our system.

System power and software: The total power consumption of
the system peaks at about 116 W during the experiment, but as men-
tioned below, averages about 105W over the duration of the sort
runs. While we do not have individual power numbers for each
component during the experiment, the {processor, DRAM, moth-
erboard, power supply} combination consumes about 31 W at idle,
the Fusion-io adds 6W at idle, and each X25-E adds about 1W to
the idle power consumption for a total of 43 W at idle with all com-
ponents attached.

All of our results are using Ubuntu Linux version 9.04 with
kernel version 2.6.28 for driver compatibility with the Fusion-io
device. We used ext4 with journaling disabled on the RAID-0
device. We use the gensort utility provided by the competi-
tion organizers (http://sortbenchmark.org) to create the
108 100-byte records and use valsort to validate our final out-

http://sortbenchmark.org


Time (s) Power (W) Energy (J) SRecs/J
Run 1 21.278 105.4 2242.5 44593
Run 2 21.333 104.1 2219.8 45049
Run 3 21.286 104.9 2232.6 44791
Run 4 21.454 104.1 2233.7 44769
Run 5 20.854 106.0 2211.5 45218
Avg 21.241 104.9 2228.0 44884
Error 0.227 0.849 12.273 247.564

Table 2: Summary of JouleSort Experiment Results.

In CPU Out CPU Input BW Output BW
Util Util (MB/s) (MB/s)

Run 1 343 628 973.71 1062
Run 2 339 651 953.29 1074
Run 3 339 613 971.82 1056
Run 4 336 622 975.61 1050
Run 5 343 646 976.56 1081
Avg 340 632 970.198 1065
Error 3 16.078 9.626 12.759

Table 3: JouleSort CPU and bandwidth statistics.

put file. For sorting, we used a trial version of NSort software
(http://www.ordinal.com).

Results: Our results are summarized in the Table 2. Our system
improves upon the January 2010 Daytona winner by nearly a factor
of two, and also improves upon the January 2010 Indy winner by
26% [5]. The January 2010 Indy winner group’s more recent en-
try closes this gap to 5% for the Indy designation and 12% for the
Daytona designation.

We log the statistics provided by NSort for comparison with [9].
Table 3 summarizes the information (Utilization measured out of a
total of 800% and bandwidth measured in terms of MB/s for reading
and writing the data).

Experiences: Our submission used a server-class system as op-
posed to a low-power component system like the Intel Atom. The
dominating factor in this choice was the ability of our server sys-
tem to hold the entire 10GB dataset in DRAM to enable a one-pass
sort—in this case, the energy efficiency benefits of performing a
one-pass sort outweighed the hardware-based energy efficiency of
low-power platforms that must perform a two-pass sort. Our sub-
mission tried to use the most energy-efficient platform we could
find that allowed for a one-pass sort, and this turned out to use the
low-frequency Xeon platform described above. Below, we describe
some details about what other systems we tried before settling on
the entry system described above.

Alternative Platforms: We tried several alternative low-power
configurations based on the Intel Atom as part of our research into
the FAWN approach [2]. In particular, we began with the Zotac Ion
board based on an Intel Dual-core Atom 330 (also used by Beck-
mann et. al) paired with 4 Intel X25-E drives. Without any spe-
cial software tweaking, we were able to get approximately 35000
SRecs/J at an average power of about 33W. We also tried to use the
NVidia GPU available on the Ion to do a portion of the sorting, but
found that the I/O was the major bottleneck regardless.

We also experimented with a single core Atom board by Advan-
tech paired with 1 X25-E, and a dual-core Atom Pineview develop-

Workload i7-Desktop Atom
SHA-1

MB/s 360 107
Watts 75 19.1
MB/J 4.8 5.6

SHA-1 multi-process
MB/s 1187 259
Watts 117 20.7
MB/J 10.1 12.51

RSA
Sign/s 8748 1173.5
Verify/s 170248 21279.0
Watts 124 21.0
Sign/J 70.6 55.9
Verify/J 1373 1013

Table 4: Encryption Speed and Efficiency

ment board with two X25-Es. These boards were both lower power
than the Zotac Ion—the Pineview board moved from a three-chip
to a two-chip solution, placing the graphics and memory controllers
on-die, thus reducing chipset power slightly. We also tried attach-
ing a Fusion-io board to a dual-core Atom system, but because the
Fusion-io currently requires significant host processing and mem-
ory, the Atom could not saturate the capabilities of the drive and so
was not currently a good fit.

3.5 CPU-bound workloads

The memory-bound workloads in the previous section required
frequent memory accesses per computation across a large dataset
Next, we look at a CPU-intensive task: cryptography. Table 4
shows several assembly-optimized OpenSSL speed benchmarks on
the i7-Desktop and Atom systems described above. On SHA-1
workloads, we find that the Atom-based platform is slightly more
efficient in terms of work done per Joule than the i7-Desktop archi-
tecture, and for RSA sign/verify, the reverse is true.

This flip in efficiency appears to be due to the optimization
choices made in the assembly code versions of the algorithms. The
OpenSSL “C” implementations of both SHA-1 and RSA are both
more efficient on the Atom; we hypothesize that the asm version
is tuned for high-performance CPUs. The SHA-1 assembly imple-
mentation, in contrast, was recently changed to use instructions that
also work well on the Atom, and so its efficiency again exceeds that
of the i7-Desktop. These results suggest that, first, CPU-bound op-
erations can be as or more efficient on low-power processors, and
second, they underscore that nothing comes for free: code must
sometimes be tweaked, or even rewritten, to run well on these dif-
ferent architectures.

3.6 Limitations

FAWN and other low-power many-core cluster architectures may
be unsuited for some datacenter workloads. These workloads can
be broadly classified into two categories: latency-sensitive, non-
parallelizable workloads and memory-hungry workloads.

http://www.ordinal.com


3.6.1 Latency-sensitive, non-parallelizable

As mentioned previously, the FAWN approach of reducing speed
for increased energy efficiency relies on the ability to parallelize
workloads into smaller discrete chunks, using more nodes in paral-
lel to meet performance goals; this is also known as the scale-out
approach. Unfortunately, not all workloads in data-intensive com-
puting are currently amenable to this type of parallelism.

Consider a workload that requires encrypting a 64 MB chunk of
data within 1 second, and assume that a traditional node can opti-
mally encrypt at 100 MB/sec and a FAWN node at 20 MB/sec. If the
encryption cannot be parallelized, the FAWN node will not encrypt
data fast enough to meet the strict deadline of 1 second, whereas
the traditional node would succeed. Note that if the fastest system
available was insufficient to meet a particular latency deadline, par-
allelizing the workload here would no longer be optional for either
architecture. Thus, the move to many-core architectures (with indi-
vidual core speed reaching a plateau) poses a similar challenge of
requiring application parallelism.4

3.6.2 Memory-hungry workloads

Workloads that demand large amounts of memory per process are
another difficult target for FAWN architectures. We examined a
workload derived from a machine learning application that takes a
massive-data approach to semi-supervised, automated learning of
word classification. The problem reduces to counting the num-
ber of times each phrase, from a set of thousands to millions of
phrases, occurs in a massive corpus of sentences extracted from the
Web. Our results are promising but challenging. FAWN converts
a formerly I/O-bound problem into a memory size-bound prob-
lem, which requires algorithmic and implementation attention to
work well. The Alix3c2 nodes can grep for a single pattern at
25 MB/sec, close to the maximum rate the CF can provide. How-
ever, searching for thousands or millions of phrases with the naive
Aho-Corasick algorithm in grep requires building a DFA data
structure that requires several gigabytes of memory. Although this
structure fit in the memory of conventional architectures equipped
with 8–16 GB of DRAM, it quickly exhausted the 256 MB of
DRAM on each individual FAWN node.

To enable this search to function on a node with tight memory
constraints, we optimized the search using a rolling hash function
and large bloom filter to provide a one-sided error grep (false pos-
itive but no false negatives) that achieves roughly twice the energy
efficiency (bytes per second per Watt) as a conventional node [20].

However, this improved efficiency came at the cost of consider-
able implementation effort. Our experience suggests that efficiently
using FAWN nodes for some scan-based workloads will require
the development of easy-to-use frameworks that provide common,
heavily-optimized data reduction operations (e.g., grep, multi-word
grep, etc.) as primitives. This represents an exciting avenue of fu-
ture work: while speeding up hardware is difficult, programmers
have long excelled at finding ways to optimize CPU-bound prob-
lems.

An interesting consequence of this optimization was that the
same techniques to allow the problem to fit in DRAM on a FAWN

4Indeed, this challenge is apparent to the designers of next-generation crypto-
graphic algorithms: Several of the entrants to the NIST SHA-3 secure hash compe-
tition include a hash-tree mode for fast, parallel cryptographic hashing. The need for
parallel core algorithms continues to grow as multi- and many-core approaches find
increased success. We believe this general need for parallel algorithms will help make
the FAWN many-core approach even more feasible.

node drastically improved cache performance on more conventional
architectures: We were able to apply the techniques we developed
to double the speed of virus scanning on desktop machines [8].

3.7 Lessons Learned
In this section, we summarize some of the lessons we have learned
about applying FAWN to a broader set of workloads. We break
down these lessons into two different categories: software chal-
lenges and hardware challenges.

3.7.1 Software Challenges

A recurring theme that arises in working with FAWN systems is
that existing software often does not run as well on FAWN node
platforms. When deploying out-of-the-box software on FAWN and
finding poor efficiency results, it is critically important to identify
precisely the characteristics of the workload or the software that
reduce efficiency. For example, many applications are becoming
increasingly memory hungry as server-class hardware makes more
memory per node available. As we have shown, the working set size
of a cache- or memory-bound application can be an important factor
in the FAWN vs. traditional comparison. If these applications can-
not reduce their working set size, this is a fundamental limitation
that FAWN systems may not overcome. Fortunately, many algo-
rithmic changes to software can improve memory efficiency to the
point where the application’s performance on a FAWN platform sig-
nificantly increases. This emphasizes that writing efficient software
on top of efficient hardware has a large role in improving energy
efficiency.

Memory efficiency is not the only software challenge to over-
come when considering FAWN systems. By shrinking the CPU–
I/O gap, more balanced systems may become CPU-bound when
processing I/O by exposing previously unimportant design and im-
plementation inefficiencies. In our work, for example, we have
observed that the Linux block layer—designed and optimized for
rotating media—imposes high per-request overhead that makes it
difficult to saturate a modern flash drive using a single or dual-core
Atom processor. We have made several kernel changes to the block
layer, such as improving hardware interrupt handling and eliminat-
ing the entropy pool calculation on each block request, in an ef-
fort to eliminate CPU bottlenecks. While we have been moderately
successful (we have improved I/O throughput by over 60% on an
Atom platform), we continue to explore more software optimiza-
tions to see if we can make better use of the I/O capability avail-
able on newer Atom boards with more SATA ports. Additionally,
Linux versions after 2.6.28 include several small modifications to
the block layer that better support flash SSDs, which should im-
prove performance for both low-power and traditional systems.

3.7.2 Hardware Challenges

Many of today’s hardware platforms appear capable of further im-
provements to energy efficiency, but are currently limited in prac-
tice due to several factors, many of which are simply due to choices
made by hardware vendors of low-power platforms:

High idle/fixed cost power: The boards we have used all idled
at 15-20W even though their peak is only about 10-15W higher.
Fixed costs affect both traditional processors and low-power CPUs
alike, but the proportionally higher fixed-cost to peak-power ratio



on available Atom platforms diminishes some of the benefits of the
low-power processor.

IO and bus limitations: When exploring the sort benchmark,
we found it difficult to find systems that provided sufficient I/O to
saturate the processor. Most Atom boards provided only two SATA
drive connectors. While Supermicro recently released one with six
ports, they were connected to the CPU over a bandwidth-limited
DMI bus; this bus provides 10Gbps in each direction, which can
support only four X25-E SSDs reading at 250MB/second. These
limitations may reflect the fact that these processors are not aimed
at the server market in which I/O typically receives more emphasis.

The market for ultra low power server systems has greatly
expanded over the last several years, with companies such as
SeaMicro, Marvell, Calxeda and ZT Systems all producing low-
power datacenter computing platforms. We expect many of the
non-fundamental hardware challenges to disappear as competition
drives further innovation, but many of the fundamental challenges
(e.g., the unavoidable fixed power costs posed by having an onboard
Ethernet chip or I/O controllers) will always play a large role in de-
termining the most efficient balance and absolute speed of CPU and
I/O on an energy-efficient platform.

4. IMPLICATIONS AND OUTLOOK

In Section 2, we outlined several power scaling trends for modern
computer systems. Our workload evaluation in the previous section
suggested that these trends hold for CPU in real systems—and that,
as a result, using slower, simpler processors represents an oppor-
tunity to reduce the total power needed to solve a problem if that
problem can be solved at a higher degree of parallelism.

In this section, we draw upon the memory scaling trends we dis-
cussed to present a vision for a future FAWN system: Individual
“nodes” consisting of a single CPU chip with a modest number
of relatively low-frequency cores, with a small amount of DRAM
stacked on top of it, connected to a shared interconnect. This archi-
tecture is depicted in Figure 6. The reasons for such a choice are
several:

Many, many cores: The first consequence of the scaling trends
is clear: A future energy-efficient system for data-intensive work-
loads will have many, many cores, operating at quite modest fre-
quencies. The limits of this architecture will be the degree to which
algorithms can be parallelized (and/or load-balanced), and the static
power draw imposed by CPU leakage currents and any hardware
whose power draw does not decrease as the size and frequency of
the cores decrease.

However, the move to many-core does not imply that individual
chips must have modest capability. Indeed, both Intel and startups
such as Tilera have demonstrated prototypes with 48–100 cores on
a single chip. Such a design has the advantage of being able to
cheaply interconnect cores on the same chip, but suffers from lim-
ited off-chip IO and memory bandwidth compared to the amount of
CPU on chip.

Less memory, stacked: We chose a stacked DRAM approach be-
cause it provides three key advantages: Higher DRAM bandwidth,
lower DRAM latency (perhaps half the latency of a traditional
DIMM bus architecture) and lower DRAM power draw. The disad-
vantage is the limited amount of memory available per chip. Using
the leading edge of today’s DRAM technologies, an 8Gbit DRAM
chip could be stacked on top of a small processor; 1GB of DRAM
for a single or dual-core Atom is at the low end of an acceptable

Figure 6: Future FAWN vision: Many-core, low-frequency chip
with stacked DRAM per core.

amount of memory for many workloads. From the matrix multipli-
cation workload in the previous section, we expect that this decision
will result in a similar efficiency “flip-flop”: Workloads that fit in
memory on a single FAWN node with 1GB of DRAM would run
much more efficiently than they would on a comparable large node,
but the FAWN node would be less efficient for the range of prob-
lems that exceed 1GB but are small enough to fit in DRAM on a
more conventional server.

However, the challenges posed by this architecture raise several
issues:

Optimization back in vogue: Software efficiency was once a com-
munity focus: ekeing every last drop of performance or resource
from a system was a laudable goal. With the rapid growth of
data-intensive computing and a reliance on Moore’s law, today’s
developers are less likely to optimize resource utilization, instead
focusing on scalability at the detriment of node efficiency [3]. In-
stead, the focus has been on scalability, reliability, manageability,
and programmability of clusters. With a FAWN-like architecture,
each node has fewer resources, making the job of the program-
mers harder. Our prior work has shown that the limited amount
of memory per node has required the design of new algorithms [20]
and careful balance of performance and memory footprint for in-
memory hashtables [2]. These difficulties are compounded by the
higher expected node count in FAWN architectures—not only does
resource utilization become more important, these architectures
will further stress scalability, reliability, and manageability.

Heterogeneity: The existence of problems for which conventional
server architectures still reign suggests that clusters must embrace
heterogeneity in computing resources. Today’s large-scale systems
already must deal with heterogeneity because of arbitrary node fail-
ures and cluster purchasing schedules, but the existence of more
energy-efficient, slower nodes will require that application and in-
frastructure software treat them as first-class resources with energy
metrics playing a larger role in resource allocation decisions.

Metrics: We have so far evaluated energy efficiency in work done
per Joule, which combines performance and power together as the
only metrics. However, energy’s impact on data-intensive com-
puting is more broad—recent work has shown that platforms such
as the Atom have other externalities, such as increased variability



and latency, which affects service level agreements and other such
quality of service metrics [21]. Indeed, we believe a better, gen-
eral metric to focus on improving is “Quality of Service per Joule”
(QoS/J), which captures average, worst-case and baseline perfor-
mance requirements in one metric. A focus of our ongoing work is
to improve Quality of Service per Joule without microarchitectural
redesigns (when possible), and also to carefully devise metrics to
properly capture and quantify these more difficult externalities.

5. RELATED WORK

FAWN follows in a long tradition of ensuring that systems are bal-
anced in the presence of scaling challenges and of designing sys-
tems to cope with the performance challenges imposed by hardware
architectures.

System Architectures: JouleSort [23] is a recent energy effi-
ciency benchmark; its authors developed a SATA disk-based “bal-
anced” system coupled with a low-power (34 W) CPU that signif-
icantly out-performed prior systems in terms of records sorted per
joule. The results from this earlier work match our own in finding
that a low-power CPU is easier to balance against I/O to achieve
efficient sorting performance.

More recently, several projects have begun using low-power
processors for datacenter workloads to reduce energy consump-
tion [7, 19, 11, 27, 14, 18]. The Gordon [7] hardware architecture
argues for pairing an array of flash chips and DRAM with low-
power CPUs for low-power data intensive computing. A primary
focus of their work is on developing a Flash Translation Layer suit-
able for pairing a single CPU with several raw flash chips. Simu-
lations on general system traces indicate that this pairing can pro-
vide improved energy efficiency. CEMS [14], AmdahlBlades [27],
and Microblades [18] also leverage low-cost, low-power commod-
ity components as a building block for datacenter systems, sim-
ilarly arguing that this architecture can provide the highest work
done per dollar and work done per joule. Microsoft has recently
begun exploring the use of a large cluster of low-power systems
called Marlowe [19]. This work focuses on taking advantage of
the very low-power sleep states provided by this chipset (between
2–4 W) to turn off machines and migrate workloads during idle pe-
riods and low utilization, initially targeting the Hotmail service. We
believe these advantages would also translate well to FAWN, where
a lull in the use of a FAWN cluster would provide the opportunity
to significantly reduce average energy consumption in addition to
the already-reduced peak energy consumption that FAWN provides.
Dell recently begun shipping VIA Nano-based servers consuming
20–30 W each for large webhosting services [11].

Considerable prior work has examined ways to tackle the “mem-
ory wall.” The Intelligent RAM (IRAM) project combined CPUs
and memory into a single unit, with a particular focus on energy ef-
ficiency [6]. An IRAM-based CPU could use a quarter of the power
of a conventional system to serve the same workload, reducing to-
tal system energy consumption to 40%. FAWN takes a thematically
similar view—placing smaller processors very near flash—but with
a significantly different realization. Notably, our vision for a fu-
ture FAWN with stacked DRAM grows closer to the IRAM vision,
though avoiding the embedded DRAM that plagued the IRAM im-
plementation. Similar efforts, such as the Active Disk project [22],
focused on harnessing computation close to disks. Schlosser et
al. proposed obtaining similar benefits from coupling MEMS with
CPUs [24].

Sleeping: A final set of research examines how and when to put
machines to sleep. Broadly speaking, these approaches examine the
CPU, the disk, and the entire machine. We believe that the FAWN
approach compliments them well. Because of the data-intensive
focus of FAWN, we focus on several schemes for sleeping disks:
Hibernator [31], for instance, focuses on large but low-rate OLTP
database workloads (a few hundred queries/sec). Ganesh et al. pro-
posed using a log-structured filesystem so that a striping system
could perfectly predict which disks must be awake for writing [12].
Finally, Pergamum [26] used nodes much like our FAWN nodes
to attach to spun-down disks for archival storage purposes, noting
that the nodes consume much less power when asleep. The sys-
tem achieved low power, though its throughput was limited by the
nodes’ Ethernet.

6. CONCLUSION

This paper presented the computing trends that motivate our Fast
Array of Wimpy Nodes (FAWN) architecture, focusing on the con-
tinually increasing CPU-Memory and CPU-I/O gap and the super-
linear increase in power vs. single-component speed. Our eval-
uation of a variety of workloads, from worst-case seek-bound I/O
workloads to pure CPU or memory benchmarks, suggests that over-
all, lower frequency nodes can be substantially more energy effi-
cient than more conventional high-performance CPUs. The excep-
tions lie in problems that cannot be parallelized or whose working
set size cannot be split to fit in the cache or memory available to
the smaller nodes. These trends point to a realistic, but difficult,
path for energy efficient computing: Accepting tight constraints on
per-node performance, cache, and memory capacity, together with
using algorithms that scale to an order of magnitude more process-
ing elements. While many data-intensive workloads may fit this
model nearly out-of-the-box, others may require substantial algo-
rithmic and implementation changes.
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