
Practical Batch-Updatable External Hashing with Sorting

Hyeontaek Lim∗ David G. Andersen† Michael Kaminsky‡

Abstract
This paper presents a practical external hashing scheme that
supports fast lookup (7 microseconds) for large datasets (mil-
lions to billions of items) with a small memory footprint
(2.5 bits/item) and fast index construction (151 K items/s
for 1-KiB key-value pairs). Our scheme combines three key
techniques: (1) a new index data structure (Entropy-Coded
Tries); (2) the use of sorting as the main data manipulation
method; and (3) support for incremental index construction
for dynamic datasets. We evaluate our scheme by building
an external dictionary on flash-based drives and demonstrate
our scheme’s high performance, compactness, and practical-
ity.

1 Introduction
As the amount of data stored in large-scale storage systems
continues to grow, so does the importance of algorithms and
data structures to provide resource-efficient access to that
data. In this paper, we address the question of external
hashing: using a small amount of RAM to efficiently locate
data stored on a (large) external disk or flash drive. Our
solution, Entropy-Coded Tries, provides three properties that
are important in practice: It is memory and disk efficient; it
provides fast access; and, by using sorting as its fundamental
organizing method, is easy to engineer for high performance
and reliability.

Traditional external hashing schemes put emphasis on
the construction and evaluation speed of the hash function
or the asymptotic size of the generated hash function [6, 7,
9]. However, in modern data-intensive systems, external
hashing faces three challenges driven by technology and
application trends:

• Flash drives: Flash provides fast random access
speed—typically 20,000 to 1,300,000 I/Os per second
(IOPS) [2, 3], compared to only a few hundred IOPS
for hard drives. Flash also has fast sequential I/O, often
exceeding 250 MB/s. Prior studies of external hashing
only considered its use on slow hard disks; these sys-
tems, therefore, were not designed to take full advan-
tage of high flash performance.
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• Growing cost of memory: DRAM has become increas-
ingly expensive and power-hungry relative to both disk
and flash storage. As a result, the need for memory-
efficient external hashing has grown—not only in
asymptotic space use, but also in actual space use when
storing millions to billions of keys.

• Mission-critical storage systems: Services ranging
from Google and Facebook to end-user software such
as web browsers use external hashing to build a highly
memory-efficient external dictionary, which stores a
large number of key-value pairs on disk or flash and
provides fast retrieval of the data items. Ensuring the
correctness and high performance of this dictionary is
both critical and difficult; using a well-studied software
component—sorting—as the main building block of ex-
ternal hashing can help achieve these goals.

The contributions of this paper are three-fold:

1. Entropy-Coded Tries (ECT): ECT is a minimal per-
fect hashing (MPH) scheme that uses an array of highly-
compressed tries on a sorted dataset in external stor-
age. Given n distinct input keys, we assign unique
values in the range [0,n− 1] to the input keys, whose
order (or index) is determined by the hash values of
the keys; we represent the mapping from the keys to
their indices as tries, each of which is compressed using
a new trie compression technique—a combination of
Huffman coding and Elias-gamma coding that exploits
the underlying statistical properties of tries created from
hashed keys. ECT requires only 2.5 bits per key on av-
erage for an in-memory index (close to minimal perfect
hashing’s information-theoretic lower bound of approx-
imately 1.44 bits per key [10]) and 7 microseconds to
lookup a key. This CPU requirement can be reduced
for very fast SSDs by trading some space efficiency.

2. Sort as a basic building block of efficient exter-
nal hashing: We demonstrate that the use of a
well-engineered sort implementation can provide high-
performance indexing in ECT and even speed up other
external hashing schemes that are not originally based
on sorting. In particular, we develop a modified ver-
sion of EPH [9] that uses sorting instead of partition-
ing, and show substantial performance improvements
over its original partition-based scheme. ECT, which



natively uses sorting, in turn outperforms both parti-
tioning and sorting versions of EPH. In addition, sort
provides two engineering benefits: (1) The system de-
sign becomes easy to understand and implement; and
(2) the system can drop the index and fall back to bi-
nary search whenever desired. Further, a simple assess-
ment of the system’s correctness is possible by using
a sort implementation that has been widely adopted in
data processing systems.

3. Incremental updates for dynamic datasets: In work-
loads dealing with dynamic datasets, it is crucial to in-
corporate a series of updates into the existing dataset
quickly. We show the benefits of supporting incre-
mental updates in ECT as well as in our version of
EPH. To handle batched updates, we do not perform
the entire index construction on the pre-existent data;
we partition/sort new changes only, and then sequen-
tially merge the new changes into the previously in-
dexed items while generating new in-memory structures
during the merge. This incremental process incurs less
I/O than the full construction of the dataset, which re-
duces update time.

2 Design
This section presents the design of Entropy-Coded Tries
(ECT). It first presents a high-level overview of ECT and
then describes major components of the ECT scheme in
detail.

2.1 Overview ECT supports O(1) retrieval of data items
stored in external storage using approximately 2.5 bits of
DRAM per key on average. It does so by keeping the data
sorted in hash order (the order of the keys after applying a
hash function to them), grouping adjacent keys into virtual
buckets (each of which contains keys that share the same
hash prefix of a certain length), and creating an efficient
trie-based index for each virtual bucket to quickly locate
the index of a particular pre-hashed key within that virtual
bucket.

Figure 1 depicts the ECT construction process. Each
box represents an item, and the height of the gray bar
indicates the relative order of the item’s hashed key. Our
scheme sorts the dataset on flash and builds a trie for each
disjoint group of adjacent keys (virtual bucket) in memory.
During construction, the only data manipulation is sort, as
virtual bucketing and trie construction do not move data on
flash.

Figure 2 shows the data structures generated by the
ECT scheme. A two-level index stores internal indexing
information: the in-memory location of the compressed trie
representation and the on-flash location of the first item of
each virtual bucket. This internal index has an additional
benefit in that it allows dense storage of other ECT data

structures: (1) Compressed tries, one of which is generated
for each virtual bucket, are stored contiguously in memory to
achieve a small memory footprint; and (2) sorted hashkeys
(and associated values) are kept on flash without wasting
storage space.

In the following subsections, we detail the algorithms
and data structures used by ECT.

2.2 Sorting in Hash Order ECT uses external sort as
its sole data manipulation mechanism. Unlike many other
indexing schemes, ECT does not require a specific procedure
to construct a structured data layout (e.g., B-tree) or a custom
data layout (e.g., EPH [9]). ECT directly applies external
sort to the input dataset to obtain the final data layout for
which ECT constructs an index. As sort is a well-established
building block for many algorithms and systems, ECT can
take advantage of readily-available sort implementations to
achieve high performance and reliability [4, 15]. These
sort implementations are carefully tuned for a wide range of
systems (e.g., low I/O and computational demands), which
greatly reduces the engineering effort needed to deliver high
performance with ECT.

The unique feature of ECT with respect to sort is that
it does not use the original key as the sort key. Instead,
it hashes each key and uses this hashed result as the sort
key. The choice of the hashing function is flexible as
long as it provides a reasonably uniform distribution of
hash values with very low or zero probability of collisions.
Ideally, universal hashing [5] yields the best result for the
subsequent steps, while using a conventional cryptographic
hash function (e.g., SHA-1) also produces acceptable results
for the workloads in our experiments.

We will refer to the hash value of each original key as a
hashkey or simply as a key. Using hashed keys enables two
important design aspects of ECT, as we explain further.

2.3 Virtual Bucketing After sorting the hashkeys,1 ECT
groups sets of adjacent keys into virtual buckets, partitioned
by their k most significant bits (MSBs), as illustrated in
Figure 1. As shown in Figure 2, the process of looking up
a key involves first examining its MSBs to determine which
virtual bucket it falls into. ECT consults a two-level index to
find, for each virtual bucket, the location of the compressed
trie index in memory, and the starting location on flash where
keys for this bucket are stored.

The virtual bucketing process does not move data on
storage: It merely represents a grouping for the trie indexing.
Each virtual bucket’s trie is compressed and decompressed
independently. Compressing and reading a trie takes time
roughly linear in the size of the trie, but larger tries compress

1In our implementation, this step occurs while sort is emitting the sorted
keys; the process need not be complete for virtual bucketing to begin, which
eliminates the need for re-reading sorted hashkeys from flash.
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Figure 1: Workflow of the construction of ECT.
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Figure 2: Constructed ECT data structures in memory
and on flash.

more efficiently than small tries. As a result, the virtual
bucket size g, which determines how many bits k should
be used in bucketing, provides a way to trade space savings
and lookup time. We show in Appendix A that the size of
the largest bucket, which relates to the maximum amount of
computation required for each lookup, is proportional to the
average size of the buckets.

Virtual bucketing adds marginal memory overhead to
index the buckets. Since both the in-memory and on-flash
locations of the buckets are monotonically increasing, ECT
can efficiently encode these offsets by using a two-level
index. ECT records the absolute offset of every 64th bucket
(when each bucket contains 256 keys on average; i.e., g =
256, k = log2 (n/256)), and for each group of 64 buckets, it
maintains the offset of individual buckets relative to the first
bucket in the same bucket group. The upper level offsets
use wide integers (64-bit integers in our implementation),
and the lower level offsets use smaller 16-bit integers to
save memory. Because of the narrow data type of the lower
level, larger buckets (i.e., more than 256 keys per bucket on
average) would require more upper level offsets (e.g., every
32nd bucket or more frequent) to avoid an overflow in the
lower level. When the average bucket size is 256 keys, the
two-level index for in-memory and on-flash locations adds
insignificant space overhead of approximately 0.133 bits per
key for a practical number (< 264) of keys.

2.4 Compressed Tries Hashkeys in each bucket are in-
dexed by a binary trie. Similar to conventional tries, this
trie represents a key with the path from the root node to a
leaf node corresponding to that key, where each edge repre-
sents one bit of the key. As a result, the trie has a one-to-one
correspondence between its leaf nodes and hashkeys; the i-th
leaf node among all leaf nodes in the trie corresponds to the
i-th smallest hashkey. A key lookup on the trie is essentially

finding a leaf node corresponding to the key and counting the
other leaf nodes to the left of this leaf node.

However, unlike in the tries used for text search, ECT
uses unique prefixes of the hashkeys to remove unused
information. If a leaf node does not have a sibling node,
the leaf node is always removed from the trie, and its parent
node becomes a new leaf node. This process significantly
decreases the number of nodes in the trie while preserving
the relationship between leaf nodes and hashkeys. Further,
any internal node that becomes a new leaf node is an ancestor
to exactly one leaf node in the original trie of full-length
hashkeys. Accordingly, ECT can obtain the correct index
of a lookup key by using a prefix of the key when traversing
the trie: ECT can stop descending as soon as it arrives at a
leaf node.

ECT reduces the amount of memory used to store the
trie by applying compression. The compressed trie is repre-
sented recursively as follows:

Rep(T ) =


EC(0, |T |) if |T |= 0 or 1,
EC(|Left(T )|, |T |) Rep(Left(T )) Rep(Right(T ))

otherwise,

where

|T | = Number of keys indexed by T

(i.e., leaf nodes in T ),

Left(T ) = Left subtrie of T ,

Right(T ) = Right subtrie of T ,

EC(S,C) = Entropy code for symbol S in context of C.

This representation has a pre-order traversal structure
similar to the recursive encoding for binary trees [11], but
ours differs from the previous technique in the way it de-
scribes the left subtrie. When measuring the size of a trie,



we use the number of keys (i.e., leaf nodes), excluding inter-
nal nodes, of the left subtrie, and this enables an efficient en-
tropy coding. Since the trie uses hashkeys, the keys are uni-
formly distributed over the entire key space; in other words,
each bit of every key has the same probability of being 0 and
1. |Left(T )| therefore follows the binomial distribution of
N = |T | and P = 1/2. Based on this known statistical distri-
bution, we can encode the key counts using entropy coding.
Entropy coding uses the contextual information C = |T | to
find a suitable code for |Left(T )| because the distribution of
|Left(T )| depends on |T |. Note that for the trivial tries of
|T | ≤ 1, the entropy codes are simply an empty string, as the
trivial tries have only one form (i.e., no child nodes).

When decompressing the trie representation for a
lookup, C is initially set to the total number of keys in the
trie. |Left(T )| can be decoded from the head of the repre-
sentation, and |Right(T )| can be calculated by C−|Left(T )|,
since |Left(T )|+ |Right(T )| = |T | = C. Once |Left(T )| and
|Right(T )| are restored, ECT recurses into the subtries by
setting C to each subtrie size and using the rest of the trie
representation.

In order to use the CPU cache efficienctly, we use Huff-
man coding only for small tries. If Huffman coding is ap-
plied to large tries, the Huffman tree or table size required for
compressing and decompressing counts grows superlinearly,
and this burdens the CPU cache space. Thus, we avoid using
Huffman coding for a trie whose size is larger than a certain
threshold. We term this threshold hmax; when a trie con-
tains no more than hmax leaf nodes (i.e., C ≤ hmax), we use
static Huffman tables based on the binomial distributions; for
larger tries, we apply Elias-gamma coding [12]. The combi-
nation of these two entropy coding techniques reduces cache
misses by ensuring Huffman tables can comfortably fit in the
CPU cache; we investigate the effect of this combination in
Section 4.5.

To shrink the trie representation size further, we use the
same code for two special cases in each trie size: |Left(T )|=
0 and |Left(T )|= |T |. That is, if a trie has all keys on either
left side or right side, ECT treats them as the same because
they do not affect the lookup result (recall that we only
provide the correct index for a key that has been indexed,
not for every possible key). This optimization reduces the
compressed trie size by 0.4 bits/key.

We do not have to focus on the asymptotic space con-
sumption of the compressed trie representations because the
number of keys in a trie is practically small (e.g., around 256
keys), even when ECT indexes a large number of keys (e.g.,
billions of keys) across many virtual buckets. Therefore, we
focus on the expected space consumption for tries in this
range. Figure 3 plots the expected number of bits required
to store a trie as a function of the number of keys stored in it.
In this analysis, hmax is fixed to 64, and the result does not
include the space to store the total number of keys in the trie
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Figure 3: Expected size of the compressed representation of
a single trie containing a varying number of keys.

(i.e., |T | for the top-level). As the number of keys increases,
the representation size approaches 2.5 bits/key. Compared to
the underlying entropy of the trie, the combination of Huff-
man and Elias-gamma coding used in ECT achieves good
coding efficiency.

2.5 Incremental Updates By employing sort as the data
manipulation method, ECT can perform incremental updates
efficiently, reusing the previously built sorted dataset on
flash. Figure 4 illustrates the workflow of incremental
updates. Only new items (not the entire dataset) are sorted
and are then sequentially merged with the existing sorted
items. As this sequential merge does not reorder data
globally, it better uses the buffer memory for sort and thus
reduces the total amount of I/O. These savings become
significant as the size of the existing dataset grows larger
than the size of the new dataset, as demonstrated in our
evaluation (Section 4.4).

2.6 Sparse Indexing As an optimization for small items,
ECT can generate more compact indexes by applying the
idea of sparse indexes: addressing items in the disk block
level, rather than the byte level. Since disk and flash
drives are block-access oriented devices, they have a certain
minimum I/O size (e.g., a block of 512 bytes) defined by
their interface. Overheads from I/O operation processing and
the physical movement of mechanical parts (e.g., disk heads)
further increase the efficient minimum I/O size. Therefore,
byte addresses returned by an index save no I/O compared to
block addresses; by locating items in the block level, a sparse
index can yield the same performance while making it more
compact than byte-level dense indexes.

ECT realizes sparse indexing by pruning any subtrie that
belongs to the same block. When generating the representa-
tion of a subtrie, ECT keeps track of the start and end loca-
tions of the items indexed by that subtrie. If the subtrie con-
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Figure 4: Incremental updates of new items to the existing
dataset in ECT.
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Figure 5: Comparison to the workflow of the index
construction in External Perfect Hashing (EPH) [9].
Within each bucket, items are not ordered by global
hash order, but permuted by a local PHF or MPHF
specific to each bucket.

tains items of the same block (i.e., the start and end locations
share the same block), ECT simply omits further generation
of the subtrie representation. When handling a lookup, ECT
repeats the same process of location tracking; when it finds
a subtrie whose items fit in a single block, ECT stops decod-
ing subtries and reads the block from the device so that it can
search the queried item within the block.

Figure 6 shows expected compressed trie sizes by using
sparse indexing. The trie contains 256 keys, and hmax is 64.
With 8 or more items per block, a trie requires fewer than 1
bit per key in expectation.

The sparse indexing in ECT is stricter than k-perfect
hashing [8], which allows up to k hash collisions. ECT
generates an index with exactly k hash collisions (with an
exception of the last block that may contain fewer than k
items), and this leads to more efficient use of storage space.
Further, as this sparse indexing uses the same data layout
on flash, ECT can generate a new dense or sparse index
on already indexed items without repeating construction
process, allowing it to adapt to memory and performance
requirements quickly.

3 Comparison to Other Schemes
In this section, we discuss similarities and differences be-
tween ECT and other fast external hashing schemes, sum-
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Figure 6: Expected size of the compressed representation of
a single trie containing 256 items with a varying number of
items in a block.

marized in Table 1.2

3.1 External Perfect Hashing External Perfect Hashing
(EPH) [9] is a scalable external hashing scheme that requires
O(1) I/O operations for item retrieval and uses a small
amount of memory for the index. As shown in Figure 5,
EPH first partitions items into buckets using the hash values
of their keys. For each bucket, EPH constructs a perfect hash

2The CPU requirement of MMPH is from the original MMPH paper [6].



function (PHF) or a minimal perfect hash function (MPHF),
depending on the memory and storage space requirement.
Since PHFs and MPHFs result in a specific offset for each
key, the keys in the buckets are permuted (reordered) in
their PHF/MPHF order and stored on disk. EPH achieves
3.8 bits/key of memory use, which is 27% higher than 2.5
bits/key used by ECT.

The external memory (EM) algorithm [10], which is an
EPH variant that shares the same partitioning approach, still
requires 3.1–3.3 bits/key as MPH to index a large number of
keys that do not fit in memory.

Unlike EPH, ECT sorts all items in hash order, elimi-
nating the additional permutation step. As we show in Sec-
tion 4, EPH can benefit from being modified to use external
sort, but the permutation step adds overhead as indicated in
the experimental results (Section 4.2).

When performing incremental updates, EPH requires
additional steps to resolve item movement within and be-
tween buckets. There is no stable ordering within a bucket
across incremental updates in EPH because the order of each
key is determined by an MPHF specific to the bucket, and
this involves re-permutation of the items within a bucket
whenever a key is added to or removed from the bucket.
Worse, when the size of a bucket exceeds a certain limit or
shrinks to a very small size, EPH must split or merge the
buckets; as this data manipulation must be done separately
from the partitioning step of EPH, support for incremental
updates in EPH complicates the system design and imple-
mentation.

3.2 Monotone Minimal Perfect Hashing Monotone
Minimal Perfect Hashing (MMPH) [6, 7, 13], like ECT, uses
sorting as its data manipulation method, and builds its in-
dex on a sorted table. While ECT uses hash order for sort-
ing and trie construction, MMPH uses original keys, and
thus, requires a variable amount of computation and mem-
ory space depending on the key distribution and characteris-
tics. Among various low-level indexing methods for MMPH,
“hollow tries” provides the smallest hash function size—4.4
bits/key—for random keys [6], which is the best workload
for minimizing the index size.

Although MMPH shares several characteristics with
ECT in that both use sort, we focus our evaluation on
comparisons between ECT and EPH because both yield
smaller index sizes than MMPH.

4 Evaluation
This section presents the performance evaluation of an ex-
ternal dictionary using ECT as its index. As a comparison,
we modified the original EPH implementation, which only
supported a hash function interface, to provide the full func-
tionality of an external dictionary. Our modified version of
EPH can operate using its custom partitioning as well as us-

Component Specification

CPU Intel Core i7 860 (quad-core) @ 2.80 GHz
DRAM DDR3 4 GiB

SSD RAID-0 array of three Intel SSD 510
120 GB (MLC)

Table 2: Experimental system setup.

ing external sort similarly to ECT, as sort results are com-
patible with partition results. In addition, we implemented
optional incremental construction in ECT and extended EPH
to support the same incremental construction functionality,
because the original EPH implementation only supported in-
dex construction from scratch.

Throughout the evaluation, we explicitly indicate binary
prefixes (powers of 2) using “i” (e.g., MiB, GiB) to avoid
confusion with SI prefixes (powers of 10) (e.g., MB, GB).

4.1 Experiment Setup Table 2 shows the hardware con-
figuration for the experiments. All input, output, and tem-
porary data are stored on a RAID-0 array consisting of three
SATA SSDs, each of which provides up to 265 MB/s sequen-
tial read and 200 MB/s sequential write throughput.

We use the WEBSPAM-UK2007 URL list [1] as input
keys (on average 111 bytes per URL) and associated values
of 1000 bytes with each key.3 Due to the large size of the
key-value pairs, we use up to 24 million unique URLs at the
beginning of the URL list; as we use hashkeys, using the first
part of the URL list does not introduce skew in the input data.
Unless specified, this input is the standard workload in this
section.

In addition, to examine the performance with a large
number of items, we use 1 billion small key-value pairs,
which consist of 64-byte keys and 4-byte values. Each key is
hashed into 12 bytes at the beginning of the index construc-
tion, constituting a 16-byte key-value pair on flash during
and after construction to support later key-value retrieval.
While we could use the sparse indexing technique (Sec-
tion 2.6), we avoid using it for ECT to make a fair compar-
ison with EPH, which does not have an implementation for
the technique. This workload is denoted as small-item,
and its experiment result is shown in Section 4.6.

All experiments were performed on Ubuntu 11.04 (64-
bit), and we used Nsort [15] as an external sort implementa-
tion. Each configuration of the experiments involving time
measurements had three runs, and the range of the results is
indicated with an error bar.

3Note that using a 1000-byte value for each key significantly increases
both data size and construction cost compared to prior studies [6, 9], which
stored no key (and value) data in external storage; our study stores both key
and value data on flash to provide a dictionary interface (retrieval of a value
associated with a key).



External Perfect Hashing
(MPH version)

Monotone Minimal Per-
fect Hashing (MMPH)

Entropy-Coded Tries
(ECT)

Data manipulation method Partitioning with hash +
permutation by MPHFs

Sorting in original key
order

Sorting in hash order

Low-level index type MPH Various Compressed trie
I/O complexity for construction O(n) O(n) O(n)
Memory requirement for a large set of keys 3.8 bits/key ≥ 4.4 bits/key 2.5 bits/key
CPU requirement for an in-memory lookup 0.6 µs/lookup 7 µs/lookup 7 µs/lookup

Table 1: Summary of the comparison between ECT and other fast external hashing schemes.

64 128 192 256 384 512 1024 2048
Buffer size for partition/sort (MiB)

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
(K

ite
m

s/
se

c)

ECT Sort 4 cores
ECT Sort 1 core
EPH Sort 4 cores
EPH Sort 1 core
EPH Part 4 cores
EPH Part 1 core

Figure 7: Construction performance
with varying buffer size for parti-
tion/sort.
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Figure 8: Construction performance
with a varying number of items.
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Figure 9: Construction performance
for different combinations of in-
dexing and incremental construction
schemes. Each batch contains 4 M
new items.

4.2 Construction Initial construction of the external hash-
ing involves a large amount of I/O for input data, temporary
files, and output data. I/O is a major bottleneck for the over-
all construction process. Both Nsort and EPH provide a set-
table parameter that controls the size of in-memory buffer
space to use I/O efficiently for sorting and partitioning; thus,
determining the appropriate buffer size is important. An ex-
cessively large buffer may decrease overall performance be-
cause the OS page cache, which competes for the same main
memory space, is also important for reading the input data
and writing the final output.

Figure 7 shows the construction performance when us-
ing different buffer sizes for the partition and sort stage.
This experiment used 16 million key-value pairs, whose size
(about 16 GB) far exceeds the total memory size (4 GiB). For
both ECT and EPH, the sort versions that use only 1 core
(dotted lines) achieve the best performance using 512 MiB
for buffering, while the partition-based EPH (EPH Part) per-
forms best with a smaller buffer size of 192 MiB (Table 3).
This difference is because Nsort internally uses direct I/O
that bypasses the OS page cache, and thus its performance
is less susceptible to the reduced amount of the OS page
cache when the in-memory sort buffer size is large. With
4 cores (solid lines), ECT works best with 1024 MiB buffer
size. From this result, we can observe major performance

boosts when using multiple cores due to Nsort’s internal op-
timization, but not with EPH’s custom partitioning, because
EPH’s custom data partitioning code uses 1 core and does
not directly benefit from multiple cores. This demonstrates
the performance and engineering advantages of using a well-
understood and well-optimized primitive such as sorting for
the main data manipulation.

In the subsequent experiments, we used the best buffer
memory size for each configuration. Figure 8 plots the
construction performance with varying dataset size; we set
the buffer size based on the large dataset of 16 M items,
which shows that smaller dataset sizes have an insignificant
effect on the construction speed.

4.3 Index Size Despite its faster construction speed, ECT
generates a smaller index than EPH. To index 16 mil-
lion items of the given dataset, ECT used 5.02 MB (2.51
bits/key); EPH required 7.83 MB (3.92 bits/key) excluding
a fixed-size lookup table of 3 MiB, or 10.98 MB including
the lookup table (5.49 bits/key in total). ECT’s space con-
sumption is at least 36% lower than EPH’s and is close to
the analytical result shown in Figure 3.

4.4 Incremental Updates For datasets that are not fully
static, incremental updates improve the reconstruction speed



Throughput @ Buffer size

ECT Sort 4 cores 151 K items/s @ 1024 MiB
ECT Sort 1 core 138 K items/s @ 512 MiB
EPH Sort 4 cores 141 K items/s @ 512 MiB
EPH Sort 1 core 122 K items/s @ 512 MiB
EPH Part 4 cores 119 K items/s @ 192 MiB
EPH Part 1 core 114 K items/s @ 192 MiB

Table 3: Best construction performance of each
scheme.

Throughput Total CPU time

EPH 69.16 K queries/s 139.76 s
ECT 64.02 K queries/s 217.75 s

(difference) -7.4% +55.8%

Table 4: Random lookup performance with random
queries using 16 threads.

of the external hashing substantially. Figure 9 plots perfor-
mance boosts with incremental updates. The workload con-
structs an index using 4 M items. Then, it adds another 4 M
items on each batch to update the existing dataset. It repeats
this update up to 5 times until the final dataset size reaches
24 M items. As clearly shown, using incremental updates
outperforms versions that must rebuild the sorted/partitioned
dataset from scratch rather than reusing the previously or-
ganized data. The performance gap increases as the number
of updates increases—more than 20% with 5 updates. There-
fore, allowing incremental updates is important to improving
the performance of storage systems with dynamic data.

4.5 Space vs. Lookup Speed Tradeoff Table 4 shows
the full-system lookup performance difference between ECT
and EPH, using 8 M random queries on 16 M items. Each
lookup includes data item retrieval from flash, thus incurring
I/O. The experiment used 16 threads to take advantage of the
I/O parallelism of flash drives [14]. While both algorithms
exhibit lookup speed exceeding 64 K queries/s, ECT is 7.4%
slower than EPH. This difference mostly comes from the
higher cost of ECT’s lookup process, as shown in the total
CPU time, which also includes the CPU overhead of I/O
processing in the kernel. However, the difference in the
actual lookup speed is much smaller than the difference
in the total CPU time, since the system’s CPU is largely
underutilized (i.e., external lookup is an I/O-bound task).
Therefore, for a small extra end-to-end lookup cost, ECT
brings great savings in the index size (36% smaller index size
than EPH). The amount of I/O performed was the same in
both schemes, as they incur a single random I/O per lookup.

When a bigger and faster array of flash drives is used,
slow hash function evaluation may cause the underutilization
of the storage array. ECT provides two knobs—the virtual
bucket size (g) and the maximum trie size at which to apply
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Figure 10: The tradeoff between size and in-memory lookup
performance on a single core when varying average bucket
size (g) with hmax = 64.
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Figure 11: The tradeoff between size and in-memory lookup
performance on a single core when varying maximum trie
size for Huffman coding (hmax) with g = 256.
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Figure 12: Construction performance with varying buffer
size for partition/sort (small-item).

Throughput @ Buffer size

ECT Sort 4 cores 591 K items/s @ 1024 MiB
ECT Sort 1 core 455 K items/s @ 512 MiB
EPH Sort 4 cores 385 K items/s @ 1024 MiB
EPH Sort 1 core 322 K items/s @ 384 MiB
EPH Part 4 cores 371 K items/s @ 2048 MiB
EPH Part 1 core 369 K items/s @ 2048 MiB

Table 5: Best construction performance of each scheme
(small-item).



Huffman coding (hmax)—to allow the system to obtain a
balance between the in-memory data structure size and per-
lookup computation. To highlight the effect of adjusting
knobs, we measure in-memory (no I/O) lookup performance
using a single core only.

Figure 10 shows that by setting the average virtual
bucket size (g) to 256 keys, ECT requires as little as 2.5 bits
per item and CPU consumption for an in-memory lookup of
7 µs. This lookup speed allows the system to support up to 67
K queries per second per core without considering I/O costs.
With such low memory use by ECT, if a system has 4 GiB
of DRAM to store the ECT index, it can index 13.7 billion
items. By having a smaller number of keys in each virtual
bucket, the system can trade the memory efficiency for even
higher lookup speed.

Figure 11 shows diminishing returns of using a high
value for the maximum trie size to apply Huffman coding
(hmax). With a moderate hmax value (8 to 64), the system
can achieve small index size as well as low lookup time.

4.6 Small Items With small items of 64-byte key-value
pairs, the construction process is more dependent on com-
putation than with large items. As shown in Figure 12 and
Table 5, ECT using 4 cores exceeds any EPH scheme’s per-
formance by far; ECT’s simple construction process han-
dles 591 K key-value items per second (28 minutes in total),
achieving 54% higher construction speed than the best EPH
scheme.

ECT demonstrated its memory efficiency again with
small items. ECT required 35% less memory space than
EPH; ECT’s index size was 314 MB (2.51 bits/key), whereas
EPH required 481 MB (3.85 bits/key) when excluding a
fixed-size lookup table of 3 MiB, or 484 MB with the lookup
table (3.87 bits/key in total).

5 Conclusion
Entropy-Coded Tries (ECT) provide a practical external
hashing scheme by using a new trie-based indexing tech-
nique on hash-sorted items. Our trie compression yields a
very compact hash function occupying 2.5 bits per key, with
fast lookup time (around 7 µs), making ECT suitable for
datasets stored on high-speed storage devices such as flash
drives. Using sort as the main data manipulation method
substantially saves engineering effort, and this enables ECT
to use I/O and multi-core CPUs efficiently for index con-
struction and incremental index updates.
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Appendices

A Maximum Size of Virtual Buckets
The size of the largest virtual buckets is Θ(n/m), where n is
the total number of keys indexed by ECT, and m is the num-
ber of virtual buckets (m = 2k when using the k MSBs to
determine the virtual bucket of a key). We can formulate the
problem using a conventional balls-into-bins model by treat-
ing each key as a ball (total n balls) and each virtual bucket
as a bin (total m bins). It is known that when n ≥ m log2 m,
the maximum number of balls in each bin is Θ(n/m) [5, 16].
In our setting, let m be n/w (each bin contains w balls on
average), where w is the width of a machine word (e.g.,
64)—this will require using log2 (n/w) MSBs for determin-
ing to which virtual bucket each key belongs. Since n/w =
2log2 n−log2 w, m log2 m = (n/w) log2 (n/w) = 2log2 n−log2 w ·
(log2 n− log2 w) = 2log2 n−log2 w+log2 (log2 n−log2 w). Observe
n ≤ 2w (due to addressing items by a machine word),
2log2 n−log2 w+log2 (log2 n−log2 w) ≤ 2log2 n−log2 w+log2 (w−log2 w) <
2log2 n = n. Thus, n≥ (n/w) log2 (n/w), and we get the max-
imum load of each virtual bucket of Θ(n/(n/w)) = Θ(w). In
other words, as long as the average bucket size (g = n/m) is
no smaller than the number of bits in a machine word, the
size of the largest bucket will remain proportional to the av-
erage size of all buckets.
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