Dan Blandford – CS453 Final Project

Users Manual.

Idea.

Imagine a globe of water, suspended in null-gravity. Undisturbed by anything but the twin laws of surface tension and conservation of volume, it has settled into the optimal shape, as predicted by physicists and mathematicians for thousands of years: a perfect sphere. Its surface, bathed in light from a single faraway sun, is the image of tranquility.

Got that? Good.

Now, imagine the five hundred rounds of 20mm automatic ammunition that are about to smack into it from five directions at once.

Got that one? Well, if you don’t, this package can help.

Theory.
The basic operation of this package simulates the motion of the surface of a sphere. Using the mouse or keyboard, users can push or pull on the surface in several different ways, then observe the result.

Commands.
Commands for altering the sphere are as follows:

Left mouse button pokes at the nearest point of the sphere to the mouse click.

Middle mouse button pushes on the region of the sphere near the mouse click.

Right mouse button pushes the half of the sphere nearest the mouse click in the chosen direction.

Pressing the ‘-‘ key toggles the direction of motion imparted by the options above. Initially, the buttons will all pull outward on the surface; after pressing ‘-‘, the buttons push inward on the surface. If the surface is pushed inward hard enough, it will turn inside-out! The inside of the surface is colored green instead of blue.

Pushing ‘1’, ‘2’, or ‘0’ will push or pull on predefined points of the surface. ‘1’ is a point which is initially to the right of center, ‘2’ is above and to the right of center, and ‘0’ is the exact center of the front of the sphere.

Commands for observing the result are as follows:

The ‘Z’, ‘X’, ‘C’, ‘V’, ‘B’, ‘N’, and ‘M’ keys – the bottom row of the keyboard – modify the rate of time passage of the simulation. See below for details on how time passage is determined.

‘Z’ – 5x speed

‘X’ – 2.5x speed

‘C’ – 1x speed

‘V’ – .1x speed

‘B’ – time is frozen

‘N’ – -.5x speed

‘M’ – -1x speed

Again, see below for a description of exactly what “negative time” means.

‘d’ toggles the background color between white and black.

‘w’ toggles the sphere between normal and wireframe mode.

‘t’ and ‘y’ paint a bitmap (“texture1.rgb”) onto the outside and inside of the sphere respectively.

The Left, Right, Up, Down, Home, and Pgup keys on the number keypad rotate the camera around the sphere. Remember to turn Num Lock off before using these.

Techniques.

It is fairly simple to construct a sphere from a tetrahedron: For each face of the tetrahedron, one simply divides the triangle into four subtriangles by bisecting the edges, renormalizes the points so that their distance from the origin is 1, and repeats until the desired facet rate is reached.

This simulation uses a similar technique; the only difference is that a dodecahedron (a 20-sided regular polyhedron with triangular faces) is used instead of the tetrahedron for greater accuracy. A total of 1280 triangles are used to construct the sphere. There are 642 points in total at the vertices of those triangles.

For each of those 642 points, the simulator keeps track of a pair of values. The first value is the point’s radial distance (that is, distance from the origin); the second value is the point’s radial velocity, that is, its speed away from the origin.

At each iteration of the simulation, for each point, the simulator calculates the average radial distance of that point’s neighbors. If the point’s neighbors are farther from the origin than it is, then the point is pulled outward; if the point’s neighbors are closer to the origin than it is, then the point is pulled inward.

By how much, you may ask, is a point moved each iteration? The farther a point is moved per iteration, the more time seems to pass between iterations; thus, the constant multiplier which determines how far a point moves (called frameSpeed in the code) is a good indicator of the speed of the simulation. If frameSpeed is high, then points move very quickly. If frameSpeed is low, then they move very slowly. If it is set to zero, then time does not pass in the simulation. If it is negative… Well… We’ll let you figure that out for yourself. This value is the one which is changed by the ‘Z’, ‘X’, ‘C’, ‘V’, ‘B’, ‘N’, and ‘M’ keys, described above.

Installation.

All the code for the project is in the file sphere.cpp. The project requires the standard OpenGL package to compile and run. The file “texture1.rgb” must be present for texturing to work.

Modification.

The code is laid out in sections. The methods nextTriangle(), nextPoint(), makeNeighbors(), triangle(), normal(), addPoints(), divideTriangle(), and tetrahedron() initialize the sphere. The method myinit() initializes the lighting. The method showPoint() displays information on a particular point for debugging purposes. Display() is the main loop of the code. Keys(), arrowKeys(), mouse, and myReshape() are callback functions. Main() starts the program running.

The texture map is loaded from “texture1.rgb”, which is a file in bitmap format with resolution 512x256x3 bytes.

For a cute effect, try changing the constant MERGE_NODES to 0. This will prevent the recursion from identifying triangles which share the same vertex, producing cracks in the sphere.

References.

I used the course book (Interactive Computer Graphics, Edward Angel, ISBN 0-201-38597-X) for information on the sphere-from-tetrahedron thing.

Thanks to Ian Simon for solving the texture-mapping-a-sphere thing.

This manual was brought to you by the letter (, the color octarine, and the number 42.

Future work.

It would be spiffy if someone implemented the capability to do other shapes than spheres. (A torus, for example, would be neat.) It would be really spiffy if someone implemented the possibility to have more than one sphere, and for spheres to break apart and merge together.

Compilation Instructions, Systems Manual, Theory of Operations Manual, Yadda Yadda

Look, it’s really easy. Get a Windows-ish machine, get sphere.cpp, get OpenGL, get texture1.rgb, compile and run.

