The following explains how PDF encryption, using Adobe's "Standard
Security Handler", works. This is what you get if you select document
security options in PDF 1.3 (Acrobat 4.x) or earlier. All of this
information is in the publicly available PDF spec:

 http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html

The goal of protecting a PDF file is typically something like this:
you want a viewer application to be able to display the file but not
be able to print it. (PDF has additional options to disallow
copy-and-pasting text and editing the file; the same argument applies
to them.) The problem here is that exactly the same information is
used for both functions -- once you have a (decrypted) page
description, it can be turned into either pixels on the screen or
toner dots on a printed page.

Adobe's PDF protection scheme is a classic example of security
throughd obscurity. They encrypt the content of a PDF file and hope
that no one figures out how to decrypt it. When Adobe's viewer
encounters an encrypted PDF file, it checks a set of flags, and allows
certain operations (typically viewing) while disabling others
(typically printing).

Now PDF is supposedly an open standard, and in fact, Adobe has been
pretty good about documenting it. They initially refused to release
detailed information on the encryption; presumably they were aware of
the security/obscurity issues. But they eventually relented. Various
third-party PDF viewers have been able to display encrypted PDF files
for a few years now. (And then there was the issue of exporting
crypto code from the US, but that's a different story, and not Adobe's
fault.)

Before explaining how PDF file encryption works, let me give some
background on PDF files. A PDF file consists of a series of objects,
each identified by two numbers (object number and generation number).
There is also a cross reference table which maps object numbers to
their positions in the file. There are several object types. The
important ones here are:

 dictionary: a table that maps names to objects (like a Perl hash)

 stream: an arbitrary chunk of data; streams are used for font
 files, page descriptions (much like a simplified
 PostScript prorgram), image data, etc.

Every document has a "trailer dictionary" which holds references to a
few important things (like the tree of page objects which contains the
document content) and optionally to an encryption dictionary. If the
encryption dictionary is present (i.e., if the document is encrypted),
it contains the information needed to decrypt the document. An
example:

 % Trailer dictionary
 trailer
 <<
 /Size 95 % number of objects in the file
 /Root 93 0 R % the page tree is object ID (93,0)
 /Encrypt 94 0 R % the encryption dict is object ID (94,0)
 /ID [<1cf5...>] % an arbitrary file identifier
 >>

 % Encryption dictionary
 94 0 obj
 <<
 /Filter /Standard % use the standard security handler
 /V 1 % algorithm 1
 /R 2 % revision 2
 /U (xxx...xxx) % hashed user password (32 bytes)
 /O (xxx...xxx) % hashed owner password (32 bytes)
 /P 65472 % flags specifying the allowed operations
 >>
 endobj

There are two passwords: "user" and "owner". Typically, the user
password is not set (i.e., set to the empty string), thus allowing
anyone to view the file. If a PDF file is loaded into Adobe Acrobat,
and the user supplies the owner password, all operations are allowed
(including re-encrypting the PDF file with different passwords, etc.).
Remember that neither password is actually used in the encryption --
the viewer application is simply expected to check that the user
supplied the password before allowing him/her to print (etc.).

In the above example, the permission flags are 65472 (decimal) or
1111111111000000 (binary). Bits 0 and 1 are reserved (always 0), bit
2 is the print permission (0 here, meaning that printing is not
allowed), and bits 3, 4, and 5, are the "modify", "copy text", and
"add/edit annotations" permissions (all disallowed in this example).
The higher bits are reserved.

The encryption key is generated as follows:

 1. Pad the user password out to 32 bytes, using a hardcoded
 32-byte string:
 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
 2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A
 If the user password is null, just use the entire padding
 string. (I.e., concatenate the user password and the padding
 string and take the first 32 bytes.)

 2. Append the hashed owner password (the /O entry above).

 3. Append the permissions (the /P entry), treated as a four-byte
 integer, LSB first.

 4. Append the file identifier (the /ID entry from the trailer
 dictionary). This is an arbitrary string of bytes; Adobe
 recommends that it be generated by MD5 hashing various pieces
 of information about the document.

 5. MD5 hash this string; the first 5 bytes of output are the
 encryption key. (This is a 40-bit key, presumably to meet US
 export regulations.)

Note that the inputs to this algorithm are: the user password
(typically empty) and various information specified in the PDF file.

The hashed user password (/U entry) is simply the 32-byte padding
string above, encrypted with RC4, using the 5-byte file key.
Compliant PDF viewers will check the password given by the user (by
attempting to decrypt the /U entry using the file key, and comparing
it against the padding string) and allow or refuse certain operations
based on the permission settings.

The hashed owner password is also generated using MD5 and RC4.
Details are given in the PDF 1.3 manual, but it's completely
irrelevant if you have the user password (or the user password is
null).

All stream (and string) objects in the PDF file are encrypted. This
is sufficient to render the file useless (that is, if it weren't so
easy to decrypt). Stream/string decryption works like this:

 1. Take the 5-byte file key (from above).

 2. Append the 3 low-order bytes (LSB first) of the object number
 for the stream/string object being decrypted.

 3. Append the 2 low-order bytes (LSB first) of the generation
 number.

 4. MD5 hash that 10-byte string.

 5. Use the first 10 bytes of the output as an RC4 key to decrypt
 the stream or string. (This apparently still meets the US
 export regulations because it's a 40-bit key with an additional
 40-bit "salt".)

To decrypt a PDF file (i.e., generate a new PDF file, identical except
that all encryption is removed), just filter the file, applying the
above algorithm to decrypt every stream and string object. Then
remove the /Encrypt entry in the trailer dictionary.

If you have the user password or the user password is null (or you
have the owner password), you can decrypt the PDF file. The only time
when there is some protection is when both the user and owner
passwords are set; in this case you'd be stuck doing a brute force
attack on 40-bit RC4.

PDF 1.4 (Acrobat 5.x) includes a revised security handler. I have
only briefly skimmed the PDF 1.4 spec, but it appears to add three
things:

 * algorithm 2, which is identical to algorithm 1 (above) except
 that it allows longer keys

 * algorithm 3, which is unpublished (which the PDF 1.4 spec claims
 is "an export requirement of the U.S. Department of Commerce".)

 * revision 3 (which applies to algorithms 1-3), which adds some
 steps (runing MD5 and RC4 multiple times), presumably to slow
 down brute force attacks

There are also third-party encryption plugins, which are, of course,
not publicly documented. The ElcomSoft presentation points out that
some of these are even easier to break than Adobe's encryption.

