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that it holds for j. Assuming that (4.10) is true for j — 1, equation (4.6) approach ) for any i, and

gives .
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Therefore, the expression in (4.12) approaches

This equation may be rewritten as
o y e ! (4.13)

4a (P-(t)e”) = M__l as n — 400, and this is the Poisson probability (1.15).
dt ¥’ @G-’
d integration of both sides of this equation gives . L. .
and integration o 4 g 4.3 The Poisson and the Gamma, Distributions
e _ ()
Pi(t)e™ = 5 +C, There is an intimate connection, implied by equation (4.9), between the

Poisson distribution and the exponential distribution. The (random) time
until the first event occurs in a Poisson process with parameter A is given
by the exponential distribution with parameter A. To see this, let F(t) be
the probability that the first event occurs before time t. Then the density
function for the time until the first occurrence is the derivative 2F(t).
From (4.9), F(£) =1 — Py(t) = 1 — e~ . Therefore, £ F(t) = Ae™**. This
is the exponential distribution (1.59), with notation changed from x to .
It can also be shown that the distribution of the time between successive
events is given by the exponential distribution. Thus the (random) time
until the kth event occurs is the sum of k¥ independent exponentially dis-
tributed times. The material surrounding (2.25) shows that this sum has
the gamma distribution (1.68). Let g be some fixed value of ¢. Then if the
time until the kth event occurs exceeds ty, the number of events occurring
before time tg is less than &, and conversely. This means that the probabil-
ity that k — 1 or fewer events occur before time ¢y must be identical to the
probability that the time until the kth event occurs exceeds tp. In other
words it must be true that
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for some constant C. From (4.7) it follows that C' = 0. Thus

§=0,1,2,.... (4.11)

Py = 0%

’

This completes the induction, showing that at time ¢ the random variable
N has a Poisson distribution with parameter At.

Conditions 1 and 2 are often taken as giving a mathematical definition of
the concept of “randomness,” and since many calculations in bioinformat-
ics, some of which are described later in this book, make the randomness
assumption, the Poisson distribution arises often.

4.2 The Poisson and the Binomial Distributions

An informal statement concerning the way in which the Poisson distribu- |
tion arises as a limiting case of the binomial was made in Section 1.3.6. _
A more formally correct version of this statement is as follows. If in the
binomial distribution (1.8) we let n — +oo, p — 0, with the product np -
held constant at ), then for any y, the binomial probability in (1.8) ap- §
proaches the Poisson probability in (1.15). This may be proved by writing §
the binomial probability (1.8) as 3

zF1e 22 dg.

. (4.14)
, This equation can also be established by repeated integration by parts of
the right-hand side.
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Fix y and X and write p = A/n. Thenasn—»oo,eadltelminthee_xbm'e '
product has a finite limit as n-— +oo: Terms of the form (n — )rn |

4.4 Introduction to Finite Markov Chains

- In this section we give a brief outline of the theory of discrete-time finite
i Markov chains. The focus is on material needed to discuss the construction
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of PAM matrices as described in Section 6.5.3. Further developments of
Markov chain theory suitable for other applications, in particular for the
evolutionary applications discussed in Chapter 13, are given in Chapter 10.

We introduce discrete-time finite Markov chains in abstract terms as
follows. Consider some finite discrete set S of possible “states,” labeled
{E1, B, ..., Es}. At each of the unit time points ¢ =1,2,3,..., a Markov
chain process occupies one of these states. In each time step ¢ tot +1, the
process either stays in the same state or moves to some other state in S.
Further, it does this in a probabilistic, or stochastic, way rather than in
a deterministic way. That is, if at time ¢ the process is in state Ej;, then
at time t + 1 it either stays in this state or moves to some other state Ej
according to some well-defined probabilistic rule described in more detail
below. The process is called Markovian, and follows the requirements of a
Markov chain if it has the following distinguishing Markov characteristics.

(i) The memoryless property. If at some time ¢ the process is in state
E;j, the probability that one time unit later it is in state Fj, depends
only on Ej, and not on the past history of the states it was in before
time t. That is, the current state is all that matters in determining
the probabilities for the states that the process will occupy in the
future.

(ii) The time homogeneity property. Given that at time ¢ the process is
in state E;, the probability that one time unit later it is in state Ej
is independent of ¢.

More general Markov processes relax one or both properties.

The concept of “time” used above is appropriate if, for example, we
consider the evolution through time of the nucleotide at a given site in
some population. Aspects of this process are discussed later in this book.
However, the concept of time is sometimes replaced by that of “space.” As
an example, we may consider a DNA sequence read from left to right. Here
there would be a Markov dependence between nucleotides if the nucleotide
type at some site depended in some way on the type at the site immediately
to its left. Aspects of the Markov chains describing this process are also
discussed later in this book. Because Markov chains are widely applicable
to many different situations it is useful to describe the properties of these
chains in abstract terms.

In many cases the Markov chain process describes the behavior of a
random variable changing through time. For example, in reading a DNA
sequence from left to right this random variable might be the excess of
purines over pyrimidines so far observed at any point. Because of this it is
often convenient to adopt a different terminology and to say that the value
of the random variable is j rather than saying that the state occupied by
the process is E;. We use both forms of expression below, and also, when
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no confusion should arise, we abuse terminology by using expressions like
“the random variable is in state E;.”

4.5 Transition Probabilities and the Transition
Probability Matrix

Suppose that at time ¢ a Markovian random variable is in state E;. We
denote the probability that at time ¢ + 1 it is in state Ep by pj, called
the transition probability from E; to Ej. In writing this probability in this
form we are already using the two Markov assumptions described above:
First, no mention is made in the notation pji of the states that the random
variable was in before time ¢ (the memoryless property), and second, ¢ does
not occur in the notation pj; (the time homogeneity property).

It is convenient to group the transition probabilities p;z, into the so-called
transition probability matriz, or more simply the transition matrix, of the
Markov chain. We denote this matrix by P, and write it as

(toE;) (toEz) (toE3) --- (toEj)
‘ (from Ey) P11 P12 P13 - Pis
b (fromEp) | pa P22 P23 - P2s (4.15)
(from E) Ps1 Ds2 Ps3 e Pss

The rows and columns of P are in correspondence with the states Fj,
Es, ..., Es, so these states being understood, P is usually written in the
simpler form

P11 P12 P13 - Pis
P21 P22 P23 - P2s

P= Rk i L i (4.16)
Ps1 Ps2 Ps3 ' DPss

Any row in the matrix corresponds to the state from which the transition

 is'made, and any column in the matrix corresponds to the state to which

the transition is made. Thus the probabilities in any particular row in the
transition matrix must sum to 1. However, the probabilities in any given
column do not have to sum to anything in particular.

It is also assumed that there is some énitial probability distribution for

_the various states in the Markov chain. That is, it is assumed that there
. 1s some probability 7; that at the initial time point the Markovian ran-

dolm variable is in state E;. A particular case of such an initial distribution
arises when it is known that the random variable starts in state E;: In this

': case m; = 1, while m; = 0 for j # 4. In principle the initial probability
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distribution and the transition matrix P jointly determine the probability
for any event of interest in the entire process.

Ezample. Random walks. Random walk theory underpins BLAST theory.
The classic description of a random walk involves a gambler, with initial
capital 4 dollars, i > 0, and his adversary, with initial capital (s—i) dollars,
s—14 > 0. At unit time points a coin with probability p for heads is tossed,
and if the coin lands heads up, the adversary gives the gambler 1 dollar,
while if the coin lands tails up, the gambler gives his adversary 1 dollar. The
game continues until either the gambler or his adversary has no money left.
The random variable of interest is the current fortune of the gambler. This
random variable undergoes what is called a simple random walk, taking at
any time one of the values 0,1,2,...,s.

If at any time this random variable takes the value j (1 <j <s— 1), it
moves one time unit later to the value j + 1 with probability p or to the
value j — 1 with probability ¢ = 1 — p. This continues until the random
variable reaches either 0 or s. When one of these values is reached no further
changes in the gambler’s fortune occur: His fortune is stopped at 0 or s.

The above implies that the evolution of the random variable is described
by a Markov chain. The transition matrix P of this chain is

1000 --- 0000
g 0pO0 -~ 0000
0 g 0p - 0000
Sl R A S A R (4.17)
0000 g 0p 0
00 00O 0 g 0p
0 000 - 00 0 1

The appearance of the 1’s in the top left and bottom right entries reflects
the fact that the gambler’s fortune remains unchanged when it reaches ei-
ther 0 or s: The probability of a transition from 0 to 0 or from s to s is 1.

The probability that the Markov chain process moves from state E; to
state E; after two steps can be found by matrix multiplication. It is this fact
that makes much of Markov chain theory an application of linear algebra.
The argument is as follows.

Let pg) be the probability that if the Markovian random variable is in
state E; at time t, then it is in state E; at time t42. We call this a two-step
transition probability. Since the random variable must be in some state k
at the intermediate time ¢ + 1, equation (1.83) gives

P2 = pikprs-
k.
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The right-hand side in this equation is the (¢, j) element in the matrix P2.
Thus if we define the matrix P(®) as the matrix whose (i, 5) element is p{,

then the (4,7) element in P(?) is equal to the (i,5) element in P2. From
this we get the fundamental identity ‘

P® = p2,
Extension of this argument to an arbitrary number 7 of steps gives
P = pn, (4.18)

That is, the “n-step” transition probabilities are given by the entries in the
nth power of P.

4.6 Markov Chains with Absorbing States

The random walk example described by (4.17) is a case of a Markov chain
with absorbing states. These can be recognized by the appearance of one
or more 1’s on the main diagonal of the transition matrix. If there are
no 1’s on the main diagonal, then there are no absorbing states. For the
Markov chains with absorbing states that we consider, sooner or later some
absorbing state will be entered, never thereafter to be left. The two most
questions we are interested in for these Markov chains are:

(i) If there are two or more absorbing states, what is the probability that
a specified absorbing state is the one eventually entered?

(ii) What is the mean time until one or another absorbing state is eventu-
ally entered?

‘We will address these questions in detail in Chapter 10. In the remainder of
this chapter we discuss only certain aspects of the theory of Markov chains
with no absorbing states, focusing on the theory needed for the construction
of substitution matrices, to be discussed in more detail in Chapter 6.

4.7 Markov Chains with No Absorbing States

The questions of interest about a Markov chain with no absorbing state
are quite different from those asked when there are absorbing states.
In order to simplify the discussion, we assume in the remainder of this
t;:;lapter that all Markov chains discussed are finite, aperiodic, and irre-
ucible.
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Finiteness means that there is a finite number of possible states. The
aperiodicity assumption is that there is no state such that a return to that
state is possible only at tg, 2to, 3to, ... transitions later, where o is an
integer exceeding 1. If the transition matrix of a Markov chain with states
Ey, Es, E3, E, is, for example,

0 0 06 04

0 0 03 07
05 05 0 0}’
02 08 0 O

then the Markov chain is periodic. If the Markovian random variable starts
(at time 0) in E; then at time 1 it must be either in E3 or Ey, at time 2
it must be in either E; or E», and in general it can visit only Ej at times
2,4,6,.... It is therefore periodic. The aperiodicity assumption holds for
essentially all applications of Markov chains in bicinformatics, and we often
take aperiodicity for granted without any explicit statement being made.
The irreducibility assumption implies that any state can eventually be
reached from any other state, if not in one step then after several steps. Ex-
cept; for the case of Markov chains with absorbing states, the irreducibility
assumption also holds for essentially all applications in bioinformatics.

P= (4.19)

4.7.1 Stationary Distributions

Suppose that a Markov chain has transition matrix P and that at time ¢
the probability that the process is in state E; is ¢;, j = 1,2,...,s. This
implies that the probability that at time ¢ + 1 the process is in state j is
S 1 PkPrj- Suppose that for every j these two probabilities are equal, so
that R

@i= erpris §=1,2,...,s. (4.20)

k=1
In this case we say that the probability distribution (@1, 2, ..., ps) is ste-
tionary; that is, it has not changed between times ¢ and t+1, and therefore
will never change. It will be shown in Chapter 10 that for finite aperiodic
irreducible Markov chains there is a unique such stationary distribution.
If the row vector ¢’ is defined by

@ = (p1,02,.--,¥s), (4.21)
then in matrix and vector notation, the set of equations in (4.20) becomes
¢ =¢'P. (4.22)

The prime here is used to indicate the transposition of the row vector into
a column vector. The vector (1,92, - . - , ps) must also satisfy the equation
3", ¢x = 1. In vector notation, this is the equation

'1=1, (4.23)
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where 1.= (1,1,...,1).
Equations (4.22) and (4.23) can be used to find the stationary distribu-
tion. An example is given in the next section. ’
In Chapter 10 we will show that if the Markov chain is finite, aperiodic,
and irreducible, then as n increases, P{™) approaches the matrix

P11 P2 o Ps
P1 P2 Ps
Y1 P2 o Ps| (4.24)
Y1 P2 0 Ps

where (o1, @2, . ..,9s) is the stationary distribution of the Markov chain.

The form of this matrix shows that no matter what the starting state
was, or what was the initial probability distribution of the starting state,
the probability that » time units later the process is in state j is increasingly
closely approximated, as n — oo, by the value ;.

There is another implication, relating to long-term averages, of the cal-
culations above. That is, if a Markov chain is observed for a very long
time, then the proportion of times that it is observed to be in state E; is
approximately ¢;, for all j.

4.7.2 FEzample
Consider the Markov chain with transition probability matrix given by

06 01 02 01
01 07 01 01
02 02 05 01
01 03 01 05

P= (4.25)

For this example the vector equation (4.22) consists of four separate linear
equations in four unknowns. However, they form a redundant set of equa-
tions and any one of them can be discarded. The remaining three equations,
together with (4.23), yield four linear equations in the four unknowns which
can be solved for a unique solution. Discarding the last equation in (4.22),
we get

0.601 + 0.1¢2 + 0.2¢03 + 0.1p4 = o1,

0.1¢1 + 0.7¢2 + 0.2¢03 + 0.3pp4 = 2,

0.2¢7 + 0.1¢p3 + 0.5¢03 + 0.1p4 = 3,
p1+e2t+@3+ps=1

To four decimal place accuracy, these four simultaneous equations have
the solution

¢’ = (0.2414,0.3851,0.2069, 0.1667). (4.26)
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This is the stationary distribution corresponding to the matrix P given in
(4.25). In informal terms, from the point of view of long-term averages,
over a long time period the random variable should spend about 24.14% of
the time in state F;, about 38.51% of the time in state F, and so on.

The rate at which the rows in P(") approach this stationary distribution
can be assessed from the following values:

[0.42 020 024 0.14
0.16 055 0.15 0.14
025 029 0.32 0.14f°’
016 0.39 0.15 0.30

P@ = (4.27)

[0.2008 0.3182 0.2286 0.1624
0.2151 0.4326 0.1899 0.1624
0.2538 0.3569 0.2269 01624 |’
0.2151  0.4070 0.1899 0.1880

[0.24596 0.37787 0.20961 0.16656]
0.23873 0.38946 0.20525 0.16656
0.24309 0.38223 0.20812 0.16656
|0.23873 0.38880 0.20525 0.16721]

[0.24142 0.38494 0.20692 0.16667]
0.24135 0.38510 0.20688 0.16667
0.24140  0.38503 0.20691 0.16667|
|0-24135 0.38510 0.20688 0.16667 ]

After 16 time units, the stationary distribution has, for most purposes,
been reached. The discussion in Chapter 10 shows how the rate at which
this convergence occurs can be calculated in a more informative manner.

PO (4.28)

P® (4.29)

PU8) (4.30)

4.8 The Graphical Representation of a Markov
Chain

It is often convenient to represent a Markov chain by a directed graph. A
directed graph is a set of “nodes” and a set of “edges” connecting these
nodes. The edges are “directed,” that is, they are marked with arrows giving
each edge an orientation from one node to another.

We represent a Markov chain by identifying the states with nodes and
the transition probabilities with edges. Consider, for example, the Markov
chain with states F,, F,, and E3 and with probability transition matrix

2 17
5 3 2],
6 0 4
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This Markov chain is represented by the following graph:

Notice that we do not draw the edge if its corresponding transition proba-
bility is known to be zero, as is the case in this example with the transition
from E3 to Es.

A graph helps us capture information at a glance that might not be so
apparent from the transition matrix itself. Sometimes it is also convenient
to include a start state; this is a dummy state that is visited only once,
at the beginning. Therefore, all transition probabilities into the start state
are zero. The transition probabilities out of the start state are given by the
initial distribution of the Markov chain. If the Markov chain starts at time
t = 0, we can think of the start state as being visited in time ¢ = —1. We
can further have an end state, which stops the Markov chain when visited.

‘We refer to the graph structure, without any probabilities, as the topology
of the graph. Sometimes the topology of a model is known, but the various
probabilities are unknown.

We will use these definitions when we discuss hidden Markov models in
Chapter 11.

4.9 Modeling

There are many applications of the homogeneous Poisson process in bioin-
formatics. However, the two key assumptions made in the derivation of
the Poisson distribution formula (4.10), namely homogeneity and indepen-
dence, do not always hold in practice. Similarly, there are many applica-

_ tions of Markov chains in the literature, in particular in the evolutionary

processes discussed in Chapter 13. Many of these applications also make
assumptions, specifically the two Markov assumptions stated in Section 4.4.
The modeling assumptions made in the evolutionary context are discussed
further in Section 14.9.



