
Lecture Notes on
Deductive Inference

15-816: Substructural Logics
Frank Pfenning

Lecture 1
August 30, 2016

According to Wikipedia1, the ultimate authority on everything:

Logic [. . .] is the formal systematic study of the principles of
valid inference and correct reasoning.

We therefore begin the course with the study of deductive inference. This
starting point requires surprisingly little machinery and is sufficient to un-
derstand the central idea behind substructural logics, including linear logic.
We aim to develop all other concepts and properties of linear logic system-
atically from this seed.

Our approach is quite different from that of Girard [Gir87], whose dis-
covery of linear logic originated from semantic considerations in the theory
of programming languages. We arrive at almost the same spot. The conver-
gence of multiple explanations of the same phenomena is further evidence
for the fundamental importance of linear logic. At some point in the course
we will explicitly talk about the relationship between Girard’s linear logic
and our reconstruction of it.

1 Example: Reasoning about Graphs

As a first example we consider graphs. Mathematically, (undirected) graphs
are often defined as consisting of a set of vertices V and a set of edges E,
where E is a set of unordered pairs of vertices.

1in January 2012

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.2

In the language of logic, we represent the nodes (vertices) as constants
(a, b, . . .) and a unary predicate node(x) that holds for all vertices. The edges
are represented with a binary predicate edge(x, y) relating connected nodes.

a

b c

d

The sample graph above could be represented by the propositions

node(a), node(b), node(c), node(d),
edge(a, b), edge(b, c), edge(a, c), edge(a, d)

One mismatch one may notice immediately is that the edges in the picture
seem to be undirected, while the representation of the edges is not symmet-
ric (for example, edge(b, a) is not there). We can repair this inadequacy by
providing a rule of inference postulating that the edge relation is symmetric.

edge(x, y)

edge(y, x)
sym

We can apply this rule of inference to the fact edge(a, b) to deduce edge(b, a).
In this application we instantiated the schematic variables x and y with a
and b. We will typeset schematic variables in italics to distinguish them
from constants. The propositions above the horizontal line are called the
premises of the rule, the propositions below the line are called conclusions.
This example rule has only one premise and one conclusion. sym is the
name or label of the rule. We often omit rule names if there is no specific
need to refer to the rules.

From this single rule and the facts describing the initial graph, we can
now deduce the following additional facts:

edge(b, a), edge(c, b), edge(c, a), edge(d, a)

Having devised a logical representation for graphs, we now define a
relation over graphs. We write path(x, y) if there is a path through the graph

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.3

from x to y. A first path has length zero and goes from a node to itself:

node(x)

path(x, x)
refl

The following rule says is that we can extend an existing path by following
an edge.

path(x, y) edge(y, z)

path(x, z)
step

From the representation of our example graph, when can then supply the
following proof that there is a path from c to d:

node(c)

path(c, c)
refl

edge(a, c)

edge(c, a)
sym

path(c, a)
step

edge(a, d)

path(c, d)
step

We can examine the proof and see that it carries some information. It is not
just there to convince us that there is a path from c to d, but it tells us the
path. The path goes from c to a and then from a to d. This is an example
of constructive content in a proof, and we will see many other examples. For
the system we have so far it will be true in general that we can read off a
path from a proof, and if we have a path in mind we can always construct
a proof. But with the rules we chose, some paths do not correspond to a
unique proof. Think about why before turning the page. . .

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.4

Proofs are not unique because we can go from edge(c, a) back to edge(a, c)
and back edge(c, a), and so on, producing infinitely many proofs of edge(c, a).
Here are two techniques to eliminate this ambiguity which are of general
interest.

One solution uses a new predicate pre edge and defines all the edges we
have used so far as pre-edges. Then we have two rules

pre edge(x, y)

edge(x, y)

pre edge(x, y)

edge(y, x)

To explain the second solution, we begin by making proofs explicit
as objects. We write e : edge(x, y) to name the edge from x to y, and
p : path(x, y) for the path from x to y. Where the proofs are not interest-
ing, we just use an underscore . We annotate our rules accordingly, which
now read:

e : edge(x, y)

e−1 : edge(y, x)
sym

: node(x)

r : path(x, x)
refl

p : path(x, y) e : edge(y, z)

p · e : path(x, z)
step

Our initial knowledge base would be annotated

: node(a), : node(b), : node(c), : node(d),
eab : edge(a, b), ebc : edge(b, c), eac : edge(a, c), ead : edge(a, d)

and then the earlier proof would carry the path information:

: node(c)

r : path(c, c)
refl

eac : edge(a, c)

e−1
ac : edge(c, a)

sym

r · e−1
ac : path(c, a)

step
ead : edge(a, d)

r · e−1
ac · ead : path(c, d)

step

To force uniqueness of proofs of the edge predicate we can assert the equa-
tion

(e−1)−1 = e

so that we do not distinguish between the original edge and one that has
been reversed twice. Note that for any given path there will still be many
formal deductions using the inference rules, but they would lead to the
same proof object.

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.5

Both solutions, restructuring the predicates or identifying proofs, are
common solutions to create better correspondences between proofs and the
properties of information we would like them to convey.

As a last example here, let’s consider what happens when we apply in-
ference indiscriminately, trying to learn as much as possible about the paths
in a graph. Unfortunately, even if the edge relation has unique proofs, any
cycle in the graph will lead to infinitely many paths and therefore infinitely
many proofs. So inference will never stop with complete immediate knowl-
edge of all paths.

One solution2 is to retreat and say we do not care about the path, we just
want to know if there exists a path between any two nodes. In that case in-
ference will reach a point of saturation, that is, any further inference would
have a conclusion already in our database of facts. The original inference
system achieves that, or we can stipulate that any two paths between the
same two vertices x and y should be identified:

p = q : path(x, y)

Again, inference would reach saturation because after a time new paths
would be equal to the one we already have and not recorded as a separate
fact.

Another solution would be to allow only non-repetitive paths, by which
we mean that edges are not being reused. Then we would have to modify
our step rule

p : path(x, y) e : edge(y, z) : notin(e, p)

p · e : path(x, z)
step

and define a predicate notin(e, p) which is true if e is not in the path p. As
was noted in class, however, this crosses a threshold: propositions (like
notin) now refer to proofs. This is the distinction between logic, in which
proofs entirely separate from propositions, and type theory in which propo-
sitions can refer to proofs. This particular example shows that type theory
can be more expressive in certain helpful ways.

A third solution would be to somehow consume the edges during infer-
ence so that we cannot reuse them later. Because there is no restriction on
how often primitive or derived facts are used in a proof, we will need the
expressive power of substructural logics to follow this idea.

2not discussed in lecture

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.6

2 Example: Coin Exchange

So far, deductive inference has always accumulated knowledge since propo-
sitions whose truth we are already aware of remain true. Linear logic arises
from a simple observation:

Truth is ephemeral.

For example, while giving this lecture “Frank is holding a whiteboard marker”
was true, and right now it is (most likely) not. So truth changes over time,
and this phenomenon is studied with temporal logic. In linear logic we are
instead concerned with the change of truth with a change of state. We model
this in a very simple way: when an inference rule is applied we consume
the propositions used as premises and produce the propositions in the con-
clusions, thereby effecting an overall change in state.

As an example, we consider nickels (n) worth 5¢, dimes (d) worth 10¢,
and quarters (q) worth 25¢. We have the following rules for exchange be-
tween them

d d n

q
Q

q

d d n
Q−1

n n

d
D

d

n n
D−1

The second and fourth rules are the first rules we have seen with more than
one conclusion. Inference now changes state. For example, if we have three
dimes and a nickel, the state would be written as

d, d, d, n

Applying the first rule, we can turn two dimes and a nickel into a quarter
to get the state

d, q

Note that the total value of the coins (35¢) remains unchanged, which is the
point of a coin exchange. One way to write down the inference is to cross
out the propositions that are consumed and add the ones that are produced.
In the above example we would then write something like

d, d, d, n ; /d, /d, d, /n, q

In order to understand the meaning of proof, consider how to change three
dimes into a quarter and a nickel: first, we change one dime into two nick-
els, and then the other two dimes and one of the nickels into a quarter. As
two state transitions:

d, d, d ; d, d, /d, n, n ; /d, /d, /d, /n, q, n

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.7

Using inference rule notation, this deduction is shown on the left, and the
corresponding derived rule of inference on the right.

d d

d

n n

q

d d d

q n

To summarize: we can change the very nature of inference if we con-
sume the propositions used in the premise to produce the propositions in the
conclusions. This is the foundation of linear logic and we therefore call it
linear inference. The requisite pithy saying to remind ourselves of this:3

Linear inference can change the world.

3 Example: Blocks World

Next we consider blocks world, which is a venerable example in the history
of artificial intelligence. We have blocks (a, b, . . .) stacked on a table (t). We
also have a robot hand which may pick blocks that are not obstructed and
put them down on the table or some other block. We assume that the hand
can hold just one block.

t
c a
b

We represent the state in linear logic using the following predicates

on(x, y) Block x is on top of y
empty Hand is empty
holds(x) Hand holds block x

3with a tip of the hat to Phil Wadler

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.8

For example, the state above would be represented by

empty, on(c, t), on(b, c), on(a, t)

The two preconditions for picking up a block x are that the hand is empty,
and that nothing is on top x. In (ordinary) logic, we might try to express
this last condition as ¬∃y. on(y, x). However, negation is somewhat prob-
lematic in linear logic. For example, it is true in the above state the¬on(b, t).
However, after two moves (picking up b and then putting b on the table) it
could become true, and we might have created a contradiction! Moreover,
proving ¬∃y.on(y, x) in linear logic would consume whatever resources we
refer to, which is problematic since our intention is just to check a prop-
erty of the state without changing it. This kind of problem is common in
applications of linear logic, so we have developed some techniques of ad-
dressing it.

A common technique to avoid such paradoxes is to introduce additional
predicates that describe properties of the state. Such predicates are main-
tained by the rules in order to keep the description of the state consistent.
Before reading on, you might consider how you can define a new predi-
cate, add appropriate initial facts, and then write rules for picking up and
putting down blocks.

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.9

Here is one possibility. We use a new predicate clear(x) to express that
there is no other block on top of x. In addition to the propositions above
describing the initial state, we would also have

clear(b), clear(a)

but not clear(c).
Then we only need two rules, one for picking up a block and one for

putting one down:

empty clear(x) on(x, y)

holds(x) clear(y)
pickup

holds(x) clear(y)

empty clear(x) on(x, y)
putdown

The two rules are inverses of each other, which makes sense since picking
up or putting down a block are reversible actions.

The encoding so far would work under the condition that there is a
fixed number of spots on the table where blocks can be deposited, and each
is explicitly represented by a clear(t) proposition. We cannot accidentally
pick up the table because it is not on anything else, so the last premise of
the pickup rule cannot be satisfied when x is t.

If we instead want to follow the usual assumption assume that the table
is big enough for arbitrarily many blocks we can revise our encoding in
two ways. One would be to introduce a special predicate ontable(x) and
reserve on(x, y) for blocks x and y. Then we need two additional rules to
pick up and put down blocks on the table. Another is to have a persistent
proposition

clear(t)

which can not be consumed by inference. The intrinsic attribute of the predi-
cate of being persistent is indicated by underlining it.

We view whether propositions are ephemeral (linear, will be consumed
by inference) or persistent (not linear, can not be consumed by inference)
as intrinsic attributes of the proposition. This allows us to easily mix linear
and nonlinear inference, which is a powerful tool in constructing encod-
ings. We can continue to use any encoding in “ordinary”4 logic but we
have some new means of expression.

Substructural logics generalize ordinary logics

One interesting question that arises here is whether we can use persis-
tent facts to instantiate ephemeral premises of rules. This is the intention

4by which we mean “not substructural”

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.10

here: clear(t) can be used as a premise of the putdown rule in order to put
a block on the table. This is justified since a fact we can use as often as we
want should certainly be usable this once. We just have to be careful not to
consume clear(t) so that it remains available for future inferences.

As before, we should examine the meaning of proofs in this example.
Given some initial state, a proof describes a sequence of moves that leads
to a final state. Therefore, the process of planning, when given particular
goal and final states, becomes a process of proof search.

Another important aspect of problem representations in linear logic are
state invariants that are necessary so that inference has the desired meaning.
For example, there should always be exactly one of empty and holds(x) in w
state, otherwise it would not conform to our problem domain and infer-
ence is potentially meaningless. Similarly, there shouldn’t be cycles such
as on(a, b), on(b, a), which does not correspond to any physically possible
situation. When showing that our representations in linear logic capture
what we intend, we should make such state invariants explicit and verify
that they are preserved under the possible inferences. In our example, any
rule application replaces empty by holds(x) for some x, or holds(x) by empty.
So if the state invariant holds initially, it must hold after any inference.

4 Example: King Richard III

As a first example from literature, consider the following quote:

My kingdom for a horse! — King Richard in Richard III by William
Shakespeare

How do we represent this in linear logic? Let’s fix a vocabulary:

richard King Richard III
owns(x, y) x owns y
horse(x) x is a horse
kingdom(x) x is a kingdom

The offer corresponds to a change of ownership: Richard “owns” a king-
dom before (which we know to be England, but which is not part of his
utterance), and another person p owns a horse, and after the swap Richard
owns the horse while p owns the kingdom.

owns(richard, k) kingdom(k) owns(p, h) horse(h)

owns(richard, h) owns(p, k)

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.11

As is commonly the case, we model an intrinsic attribute of an object (such
as h being a horse or k being a kingdom) with a persistent predicate, while
ownership changes and is therefore ephemeral.

It is implied in the exclamation that the rule can only be used once,
because there is only one k that qualifies as “my kingdom”. Otherwise, he
would have said “One of my kingdoms for a horse!”. Another way to capture
this aspect of the offer would be to consider the inference rule itself to be
ephemeral and hence can only be used once. We do not have a good informal
notation for such rules, but they will play a role again in the next lecture.
If the rule above were persistent, it would more properly correspond to the
offer “My kingdoms for horses!”.

5 Example: Grammatical Inference

We have seen how we can add expressive power to logic simply by des-
ignating some propositions as being consumable by logical inference. We
now explore going even further: we also impose an order on the propo-
sitions describing our state of knowledge. This is the fundamental idea
behind the Lambek calculus [Lam58]5. Lambek’s goal was to describe the
syntax of natural (and formal) languages and apply logical tools to prob-
lems such as parsing. We only scratch the surface of the work, just enough
to appreciate how Lambek employs logical inference to describe grammat-
ical inference. We will also see our first logical connectives, called “over”
and “under”, although you would be unlikely to recognize them as such at
first glance.

We begin by introducing so-called syntactic types that describe the role
of words and phrases. The primitive types we consider here are only n for
names and s for sentences. We ascribe n for proper names such as Alice or
Bob, but phrases that can stand for names in sentences will also have type
n. s is the type of complete sentences such as Alice works or Bob likes Alice.

There are two constructors two combine types: Given types x and y, we
can form x / y (read: x over y) and x \ y (read: x under y). If a phrase w
has type x / y it means that we obtain an x if we find a y to its right. For
example, poor Bob can act as a name because we can (syntactically) use it
where we use Bob. This means we can assign poor the type n / n: If we find
a name to its right the result forms a name. Conversely, x \ y describes a
phrase that acts as a y if there is an x to its left. For example, an intransitive

5I highly recommend this paper, which has stood the test of time almost 50 years after
its publication.

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.12

verb like works will have type n \ s, because if we find a name to its left we
obtain a sentences, as in Alice works.

This informal definition can be seen as a form of logical inference. We
have the two rules

x / y y

x
over

y y \ x
x under

For these to make sense from the grammatical point of view, it is critical
that the premises of the rules must be adjacent and in the right order.

Under this point of view, proofs correspond to parse trees and the words
of the phrase we are trying to parse are labeled by their type. Using p and
q to stand for phrases (that is, sequences of words), we would have

p : x / y q : y

(p q) : x
over

q : y p : y \ x

(q p) : x
under

For example, we might start with the phrase poor Alice works as

(poor : n / n) (Alice : n) (works : n \ s)

In this situation, there are two possible inferences, either connecting poor
with Alice or connecting Alice with works. Let’s try the first one. We then
obtain

poor : n / n Alice : n

(poor Alice) : n
over

works : n \ s

After one more step we obtain a complete parse

poor : n / n Alice : n

(poor Alice) : n
over

works : n \ s

((poor Alice)works) : s
under

Trying the other order fails, since poor does not properly modify Alice works.
Let’s see how this failure arises during deduction. After one step we have

poor : n / n

Alice : n works : n \ s

(Alice works) : s
under

At this point in the deductive process, no further inference is possible.
We now consider a few more words to find appropriate types for them.

The word here transform a sentence to another sentence when attached to

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.13

the end. For example, writing the typing judgment vertically and indicat-
ing the expected parse tree by parentheses, we have

(Alice works) here
: : :
n n \ s ?

We see that the type of here should be s \ s.

(Alice works) here
: : :
n n \ s s \ s

or, making the inference more explicit

Alice
:
n

works
:

n \ s
s

here
:

s \ s
s

How about never, which modifies an intransitive verb?

Bob (never works)
: : :
n ? n \ s

We suggest you work this out before going on to the next page. . .

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.14

We see that never should have type (n \ s) / (n \ s).

Bob (never works)
: : :
n (n \ s) / (n \ s) n \ s

or, as a complete inference (= parse) tree:

Bob
:
n

never
:

(n \ s) / (n \ s)

works
:

(n \ s)

n \ s
s

What about a transitive verb such as likes? Setting up a standard sen-
tence

Alice likes Bob
: : :
n ? n

it seems like there are two possibilities, depending on whether we prefer
the parse (Alice likes) Bob or Alice (likes Bob). The first yields the type n \ (s /
n), while the second yields (n \ s) /n. Using the tools of logic we will see in
the next lecture that these two types are equivalent in the sense that when
we can parse a phrase with the first we can always parse it with the second
and vice versa. So it should not matter which type we assign, although
if we think of parsing as proceeding from left to right one might have an
intuitive preference for the first one.

Of course, natural language has many ambiguities and the same work
can be used in different ways. For example, the work and can conjoin sen-
tences (for example, Alice works and Bob rests with type and : s \ (s / s)) but
also names (for example, Alice and Bob work with type and : n \ (n∗ / n)
where n∗ denotes plural ouns such as women).

Here is a little summary table, showing some of the possible types.

Word Type Part of Speech
works n \ s intransitive verb
poor n / n adjective
here s \ s adverb
never (n \ s) / (n \ s) adverb
likes n \ (s / n) transitive verb
and s \ (s / s) conjunction

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.15

6 Summary

We have examined the notion of logical inference from three different angles.
The first was to accumulate knowledge by deducing new facts from facts
we already knew, as in describing graphs using propositions vertex(x) and
edge(x, y) and paths through graphs using path(x, y). Proofs here contain
important information. For example, the proof that there is a path from x
to y contains the actual edges traversed.

We then generalized the situation by stipulating that inference consumes
the propositions it uses unless they are specified as persistent. This allows us
to represent change of state in a logical manner, which we illustrated using
a coin exchange and blocks world, a classic artificial intelligence domain.
A proof here corresponds to a (partially ordered) sequence of actions.

Finally, we followed Lambek [Lam58] by requiring our facts not only to
be consumed by inference, but remain ordered so we could represent gram-
matical inference. We saw our first two logical connectives, x / y and x \ y
in order to represent the syntactic types of various parts of speech. In this
example, a proof corresponds to a parse tree.

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.16

7 Bonus Materials

We complete the lecture notes here with some bonus materials from previ-
ous instance of the course, not covered this year.

7.1 [Example: Natural Numbers]

As a second example, we consider natural numbers 0, 1, 2, . . .. A conve-
nient way to construct them is via iterated application of a successor func-
tion s to 0, written as

0, s(0), s(s(0)), . . .

We refer to s as a constructor. Now we can define the even and odd numbers
through the following three rules.

even(0)

even(x)

odd(s(x))

odd(x)

even(s(x))

As an example of a derived rule of inference, we can summarize the proof
on the left with the rule on the right:

even(x)

odd(s(x))

even(s(s(x)))

even(x)

even(s(s(x)))

The structure of proofs in these examples is not particularly interesting,
since proofs that number a number of n is even or odd just follow the struc-
ture of the number n.

7.2 [Example: Graph Drawing]

We proceed to a slightly more sophisticated example involving linear in-
ference. Before we used ordinary deductive inference to define the notion
of path. This time we want to model drawing a graph without lifting the
pen. This is the same as traversing the whole graph, going along each edge
exactly once. This second formulation suggest the following idea: as we go
along an edge we consume this edge so that we cannot follow it again. We
also have to keep track of where we are, so we introduce another predicate
at(x) which is true if we are at node x. The only rule of linear inference then
is

at(x) edge(x, y)

at(y)
step

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.17

We start with an initial state just as before, with an edge(x, y) for each edge
from x to y, the rule of symmetry (since have an undirected graph), and
a starting position at(x0). We can see that every time we take a step (by
applying the step rule shown above), we consume a fact at(x) and produce
another fact at(y), so there will always be exactly one fact of the form at(−)
in the state. Also, at every step we consume one edge(−) fact, so we can
take at most as many steps as there are edges in the graph initially. Of
course, if we are at a point x there may be many outgoing edges, and if we
pick the wrong one we may not be able to complete the drawing, but at
least the number of steps we can try is limited at each point. We succeed,
that is, we have found a way to draw the graph witout lifting the pen if we
reach a state without an edge(−) fact and some final position at(xn).

The following example graph is from a German children’s rhyme6 and
can be drawn in one stroke if we start at b or c, but not if we start at a, d, or
e.

a

b c

d

e

We leave it to the reader to construct a solution and then translate it to a
proof. Also, if we remove node e and its edges to a and d, no solution is
possible.

Let’s make the meaning of proofs explicit again. Because we have only
one inference rule concerned with a move, a proof in general will have the
following shape:

at(x0) edge(x0, x1)

. . .
step

edge(xn−2, xn−1)

at(xn−1)
step

edge(xn−1, xn)

at(xn)
step

6“Das ist das Haus vom Ni-ko-laus.”

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.18

This proof represents the path x0, x1, . . . , xn−1, xn. Of course, some of these
nodes may be the same, as can be seen by examining the example, but
no edge can be used twice. If we need to traverse an edge in the opposite
direction from its initial specification, we need to use symmetry, which will
consume the edge and produce its inverse. We can then use the inverse
to make a step. Being able to continually flip the direction of edges is a
potential source of nontermination in the inference process. This does not
invalidate the observation that a path along non-repeating edges can be
written as a proof, and from a proof we can read off a path of non-repeating
edges. This path represents a solution if the initial and final states are as
described above.

7.3 [Example: Graph Traversal]

If we just want to traverse the graph rather than draw it, we should not
destroy the edges as we move. A standard way to accomplish this is to
explicitly recreate edges as we move:

at(x) edge(x, y)

at(y) edge(x, y)
step

Another way is to distinguish ephemeral propositions from persistent proposi-
tions. Ephemeral propositions are consumed during inference, while per-
sistent propositions are never consumed. This allows us to have a uniform
framework encompassing both the ordinary logical inference where we just
add the conclusions to our store of knowledge, and linear logical inference.

We indicate the disposition of propositions that are known to be true by
writing A eph and A pers . Here, A stands for a proposition and A eph and
A pers are called judgments. Distinguishing judgments from propositions is
one of the cornerstones of Per Martin-Löf’s approach to the foundation of
logic and programming languages [ML83]. From now on we will follow the
idea that the subjects of inference rules are judgments about propositions,
not the propositions themselves. Mostly, they express that propositions are
true, but in a variety of ways: ephemerally true, persistently true, true at
time t, etc. There are a number of different terms that have been used for
the particular distinction we are making here:

A ephemeral A persistent
A linear A unrestricted
A true A valid
A contingently true A necessarily true

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.19

Our high-level message is:

Truth is ephemeral; validity is forever.

In the example, we can use this by declaring edges to be persistent, in
which case the premise and conclusion of the symmetry rule should also
be persistent. We abbreviate ephemeral by eph , and persistent by pers .

at(x) eph edge(x, y) pers

at(y) eph
step

As an even more compact notation, we underline persistent propositions; if
they are not underlined, they should be considered ephemeral. For exam-
ple, there would appear to be little reason for the properties of being even
or odd to be ephemeral, since they should be considered intrinsic properties
of the natural numbers. We therefore write

even(0)

even(x)

odd(s(x))

odd(x)

even(s(x))

The first rule here is an inference rule with no premise. Persistent conclu-
sions of such rules are sometimes called axioms in the sense that they are
persistently true.

7.4 [Example: Opportunity]

A common proverb states:

Opportunity doesn’t knock twice. — Anonymous

Again, let’s fix the vocabulary:

opportunity opportunity
knocks(x) x knocks

Then the preceding saying is just

knocks(opportunity) eph

where we have written out the judgment ephemeral for emphasis.
Clearly, when this fact is used it cannot be used again. If it is never

used, we do not consider opportunity to having ever knocked, so the judg-
ment above captures the idea that opportunity knocks at most once (and
therefore not twice).

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.20

Exercises

Exercise 1 As an alternative way to defining paths through graph, we can
say that paths represent the reflexive and transitive closure of the (symmet-
ric) edge relation. Write out the inference rules as in Section 1, first without
proof terms. Now add proof terms and an appropriate equality relation on
paths. Explain your choice of equational theory.

Exercise 2 Write out proof for the example graph from subsection 7.2 that
demonstrates that the figure can be drawn in one stroke.

Exercise 3 Consider the representation of undirected graphs from Section 1,
with predicates node(x) and edge(x, y).

A Hamiltonian cycle is a path through a graph that visits each vertex ex-
actly once and also returns to the starting vertex. Define any additional
predicates you need and give inference rules such that inference corre-
sponds to traversing the graph, and there is a simple condition that can be
checked at the end to see if the traversal constituted a Hamiltonian cycle.

Exercise 4 Consider the representation of undirected graph from Section 1,
with predicates node(x) and edge(x, y). We add a new predicate color(x) to
express the color of node x. A valid coloring is one where no two adjacent
nodes (that is, two nodes connected by an edge) have the same color.

(i) Give inference rules that can deduce invalid(x, y) if and only if there
are adjacent nodes x and y with the same color.

(ii) Give inference rules where proofs from an initial state to a final state
satisfying an easily checkable condition correspond to valid color-
ings. Carefully describe your initial state and the property of the final
state.

Exercise 5 Consider the game Peg Solitaire. We have a layout of holes (shown
as hollow circles), all but one of which are filled with pegs (shown as filled
circles). We move by taking one peg, jumping over an adjacent one into an
empty hole behind it, removing the peg in the process. The situation after
one of the four possible initial moves is shown in the second diagram. The

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.21

third diagram shows the desired target position.

initial position after one move target position

Define a vocabulary and give inference rules in a representation of peg soli-
taire so that linear inference corresponds to making legal jumps. Explain
how you represent the initial position, and how to test if you have reached
the target position and thereby won the solitaire game.

Exercise 6 We consider the blocks world example from Section 3. As for
graphs where we had the node predicate, it is convenient to add a new
ephemeral predicate block(x) which is true for every block in the configu-
ration.

Write a set of rules such that they can consume all ephemeral facts in the
state (leaving only the persistent clear(t)) if and only if all of the following
conditions are satisfied:

(i) the configuration of blocks is a collection of simple stacks,

(ii) the top of each stack is known to be clear, and

(iii) either the hand is empty or holds a block x, but not both.

If you believe it cannot be done, solve as many of the conditions as you can,
explain why not all of them can be checked, and explore alternatives. Note
linear inference allows rules with no premises or no conclusions.

Exercise 7 Render the following statement by an American president as an
inference rule in linear logic:

If you can’t stand the heat, get out of the kitchen. — Harry S. Truman

Use the following vocabulary:

toohot(x) x cannot stand the heat
in(x, y) x is in y
kitchen the kitchen

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.22

Exercise 8 Render the following statement in linear logic (without the use
of any logical connectives):

Truth is ephemeral; validity is forever. — Frank Pfenning, page 19

Use the vocabulary
truth truth
validity validity

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.23

References

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Lam58] Joachim Lambek. The mathematics of sentence structure. The
American Mathematical Monthly, 65(3):154–170, 1958.

[ML83] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Notes for three lectures given
in Siena, Italy. Published in Nordic Journal of Philosophical Logic,
1(1):11-60, 1996, April 1983.

LECTURE NOTES AUGUST 30, 2016


	Example: Reasoning about Graphs
	Example: Coin Exchange
	Example: Blocks World
	Example: King Richard III
	Example: Grammatical Inference
	Summary
	Bonus Materials
	[Example: Natural Numbers]
	[Example: Graph Drawing]
	[Example: Graph Traversal]
	[Example: Opportunity]

	Exercises
	References

