Lecture Notes on
Reasoning about Computation

15-816: Substructural Logics
Frank Pfenning

Lecture 6
September 15, 2016

In this lecture we will begin with a summary of the correspondence be-
tween proofs and programs from last lectures and then establish some key
properties of the programming language that we derived from subsingle-
ton logic. As usual, we will go back and forth between computational and
logical interpretations. The properties we show are the usual preservation
and progress, where the first shows that types are preserved during com-
putation, and the second shows that computation can make progress unless
it attempts to communicate with the “outside world”. Both of these prop-
erties emerge very naturally from the cut reduction properties we checked
for subsingleton logic.

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.2

1 Concurrent Subsingleton Programs

Types A n= ®{l: Aitier internal choice
| &{li: Aitier external choice
| 1 termination

Processes P,QQ = <+ forward id
| (P|Q) compose cut
| Rix; P send label right DRy,
| caseL(l; = Qi)ier receive label left eL
| caseR(l; = P;)ier receive label right &R
| Lik; @ send label left &Ly,
| closeR close and notify right 1R
| waitl ; Q wait on close left 1L

We also allow mutually recursive type definitions o = A which must be
contractive, that is, A must be of the form @&{...}, &{...}, or 1. We treat a
type name as equal to its definition and will therefore silently replace it.
The usual manner of making this more explicit is to use types of the form
pa. A, but we forego this exercise here.

Similarly, we allow mutually recursive process definitions of variables
X as processes P in the form w - X = P : A. Collectively, these constitute
the program P. We fix a global program P so that the typing judgment,
formally, is w Fp P : A where we assume that w Fp @ : A for every
definition w - X = @ : A in P. Since P does not change in any typing

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.3

derivation, we omit this subscript in the rules.
g whkEP:A AFQ:C
— |
AF oA 2 wk(P|Q):C

wkEP: A, (kel) AiFQ;:C (forallie)
wh (Rl P): d{li + Aitier i ©{li + Aitier - casel(l; = Qi)ier : C oh
whk P+ A; (forallie) A FQ:C (kel) L
w - caseR(l; = F)icr : &{li : Ai}ier 8&{li + Aitier F (Llk; Q) : C
‘FQ:C
FoseR 1 T Thwai ;@0 M

(wWkEkX=P:A)eP
whHX:A

X

For the synchronous operational semantics presented via ordered infer-
ence, we use ephemeral propositions proc(F) which expresses the current
state of an executing process P. We also import the process definitions

X = P as persistent propositions def (X, P).
proc(<>) proc(P | Q)

fw cmp
proc(P) proc(Q)

proc(R.l; ; P) proc(caseL(l; = Q;)icr)
proc(P) proc(Qy)

proc(caseR(l; = P;)icr) proc(L.l; ; Q)
proc(Pg) proc(Q)

&C

proc(closeR) proc(waitL ; Q)
proc(Q)

proc(X) def(X,P)
proc(P)

1C

def

A process configuration C consists of an ordered collection of proc(P)
propositions. The typechecking judgment for configurations, w - C : ' is

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.4

defined by the following rules that work through C from right to left.

whHC:w WwWhHP:A
wk():w whk (Cproc(P)): A

2 Type Preservation

We have already indicated the deeper reason type preservation holds in
the last lecture: cut reduction (which is how computation mostly proceeds)
preserves the endsequent of the proof and thereby the type of the process.
Here, we go through the proof more rigorously.

Even though typing was defined from left to right, if we have a well-
typed configuration any subconfiguration is also well-typed.

Lemma 1 (Configuration Typing)

1. (Split) If wr, - Cr, Cr : wgr then wy, - Cr, : wyr and wpyr = Cr : wr for some
WM.

2. (Concatenation) If wy, F Cr, : wys and wyy = Cr = wg, then wy, = Cr, Cr :
WR.

3. (Singleton) w - proc(P) : Aiffw P : A

Proof: Split follows by induction on the structure of Cg, concatenation by
induction on the typing of Cr, and singleton follows by inversion in one
direction and by constructing the derivation in the other direction. O

Theorem 2 (Type Preservation) If w = C : A and C — C’ by one step of
ordered inference, then w = C' : A.

Proof: By split (Lemma 1), wehaveC = (Cr, Cys Cr) wherewr, - Cpy : Apris
the premise of one of the computation rules. By concatenation (Lemma 1),
we have preservation if we can show that the conclusion C); of the compu-
tation rule again has type wy, F C}, : Ay

We show only one case of this proof, since all others proceed analo-
gously.

Case: Cys = (proc(R.lj, ; P) proc(casel(l; = Q;)ier))-

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.5

wr, F proc(R.l; ; P) : B
and B F proc(caseL(l; = Qi)icr) : Ay by inversion on typing of Cas
B=&{l;: Bi}icrand B; - Q; : Ay foralli e I

by inversion on typing of casel

kelandwr - P: By by inversion on typing of R.lj
B FQr: Au using i = k
wr, = (proc(P) proc(Qk)) : Am by concatenation

]

3 Progress

Progress means that a configuration will either try to communicate with
the “outside world” at its endpoints, or it will be able to make a transition.
It does not get stuck in some unexpected way. Just as preservation came
down to the fact that cut reduction preserves the endsequent, progress
comes down to the fact that every right rule for a connective matched with
any left rule will be able to reduce. This was essentially our test whether the
interpretation of the logical connectives is meaningful. Again, this intuitive
argument is couched in an inductive proof.

Theorem 3 (Progress) Ifw = C : A then
1. either C can make a transition (by ordered inference),
or C = (-) is empty,

or C attempts to communicate to the left (casel, L.l;, or waitL),

LN

or C attempts to communicate to the right (caseR, R.lx, or closeR).

Proof: Perhaps surprisingly, the proof is by a simply structural induction
on the typing of C. Note that the four cases are not mutually exclusive. For
example, the rightmost process in a configuration may want to communi-
cate to the right while another part of the configuration transitions. This is
the nature of concurrent computation.

Case:

AF(): A

The C = (-) and part 2 applies.

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.6

Case:
whC:w W'k proc(P): A
wt (C' proc(P)) : A

where C = (C' proc(P)). First, if P is a forward (+»), composition
(P | Py), or a defined name (X), it can make a transition and therefore
also C. Moreover, if P communicates to the right, then so does C
and part 4 applies. So we can exclude these cases from consideration
below and we may assume that P attempts to communicate to the left
(casel, L.lx, or waitL).

From the induction hypothesis on the first premise, we know we can
distinguish the following subcases.

Subcase: C’ can make a transition. Then so can C.

Subcase: C' = (-). Then C = proc(P). Since P communicates to the
left, so does C and part 3 applies.

Subcase: C’ attempts to communicate to the left. Then so does C =
(C' proc(P)).

Subcase: C’ attempts to communicate to the right, that is, its right-
most process P’ has the form caseR, R.lj; or closeR. We already
know that P communicates to the left, which is one of casel,
L.li, or waitL. Now we apply inversion on the typing of P’ and
P taking advantage of the fact that the mediating type w’ = B
on the right of P’ and left of P must be the same. It emerges
from this analysis that one of the remaining two-premise rules
(®C, &C, or 1C) must be applicable. This is because once we fix
one side and therefore the interface type B, the rule on the other
side must be one of the cases we considered when checking cut
reduction.

4 Example: Bit Strings Revisited
In this section we revisit the implementation of bit strings and increment

from Lecture 2. Recall the ordered logic program for incrementing a bit
string, now using $ as the terminator. Recall that numbers are written with

LECTURE NOTES SEPTEMBER 15, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/02-propositions.pdf

Reasoning about Computation L6.7

propositions b0 for 0 and bl for 1 and are shown with the least significant
bit to the right.

b0 inc . bl inc . $inc
incO - incl
bl inc b0 $ bl

inc$

This is not quite a finite state transducer, since we may not read the whole
input, but it is still straightforward to represent this as a proof in subsingle-
ton logic. We recommend you try before reading on.

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.8

bits = &{b0 : bits, bl : bits, $: 1}
bits I inc : bits
inc = casel (b0 = R.bl; <

| b1 = R.bO ; inc

|$ = Rbl;RS$; <)

We now experiment with ways we can use logical tools to reason about
this program. First, how can we define a type of std which corresponds
to a bit string in standard form, that is, without leading 0 bits? Again, it is
an excellent way to test your understanding to construct such a definition
before moving on.

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.9

The key idea is that we have two mutually recursive types, std for any
standard bit string and pos for a positive one, that is, not consisting only of
b0 and $.

std = ®{ b0 : pos,
bl : std,
$:1}

pos = &{ b0 : pos,
bl : std}

Now the increment process should have type
std t-inc : pos

which expresses that if we receive any number in standard form from the
left we will send a positive number in standard form to the right.

Before we proceed with checking the definition, one observation: if w -
P : std then also w = P : bits no matter what w and P are. This is easy to
see, since std represents a sequence of 0’s and 1’s followed by $ while std
is just a restricted form of such a sequence. We say std is a subtype of bits,
written std < bits. It turns out that subtyping is decidable [GHO05] with an
interesting algorithm we intend to return to in a later lecture. Here we just
note that

pos < std and std < bits

We further note that in the presence of subtyping we can relax the identity

rule to
A< A

Ao A id=

Again, I strongly recommend writing out the typing derivation of the pro-
gram yourself to check your understanding.

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.10

std = @{b0 : pos,bl : std,$: 1}
pos = ®{b0 : pos, bl : std}

std - inc : pos
inc = caselL (b0 = R.b1; +
| b1 = R.bO ; inc
|$ = RbL;RS$; <)

pos < std < 1|—<—>:1id
pos|—<—>:std|7 std = inc : pos " 1-RS; < :std .
OR) S2]
pos = R.bl ; <+ : pos std = R.bO ; inc : pos 1FRb1;RS; < :pos
©L

std - caseL(b0 = R.b1l ; <» | b1 = R.b0 ; inc| $ = R.b1; R.$; <) : pos

When we arrive at process names X such as inc, we accept a globally as-
serted type. This is fine, as long as we make sure that we check all defini-
tions and mirrors the same approach for recursively defined functions in
functional languages.

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.11

5 Implementing Turing Machines

We have already established that Turing machines can be easily imple-
mented using ordered inference, and that finite state transducers can be
implemented using ordered inference as well as ordered proofs. Can we
also implement Turing machines, following the same ideas? The answer
is yes; our development roughly follows [DP16]. Here is a summary of
the representation of Turing machines using ordered inference. The initial
configuration is represented by the ordered context

$gr>ar...a,$
and the final configuration as
$01 ... b 3

and we go from the first to the last by a process of ordered inference using
the following rules:

q>a a<q
LRMR LLMR
For 6(q,a) = (¢',d', R): a ¢ > a ¢ >
q>a a<q
LRML LLML
For §(q,a) = (¢',d’, L): aq d aq d
>3 $ <
— ER — EL
To extend the tape: >o$ o<
< qr qr >

— FL — FR
To halt in final state: . :

We will represent the tape head together with the direction symbol as a
process, so that for every state g;, in the machine we have two definitions,
<Qk and Qr~. What should their types be? A process <@}, will have to
receive a tape symbol or endmarker from the left, so its type should be

tape = ®iex{a; : tape, $: 1}
tape - <Q; : 7

On the other hand, a right-looking process Q;~ will have to receive a tape
symbol or endmarker from the right, so its type should be

epat = Rqiex{a; : epat,$: 1}
TH Qi :epat

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.12

It seems advisable for both kinds of processes to have the same type so we
can transition easily between them, which gives us

tape - <Q; : epat
tape b Q;” : epat

Now consider one case, looking left and moving left:

a dq

LLML

aq o

The code to effect this change should recognize an a from the left, then
output an o’ to the right, and then transition to <@’

tape b <Q : epat
<@ =caseL(a=R.d ;<Q'|...)

However, there is a serious problem with this code. Can you spot it?

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.13

The problem is that it does not type-check! The type that governs @’s
communication on the right is epat = &{...} which prescribes receiving a
symbol from the right rather than sending one! At first, this looks like it is
very difficult to repair, but by employing cut we can overcome the problem.

The idea is to spawn a new process on the right whose sole job is to
send the symbol a’ to the left! Recalling the definition of epat, we have

epat = &jex{a; : epat,$: 1}
epat - L.a’ ; <> : epat

We then rewrite the code snippet above as
tape = <Q : epat
<@ =caseL(a=R.d ;<Q'|..)) ill-typed!
<@ =caseL(a= (<Q"| (L.d' ;) |...) well-typed!

The new cut is well-typed:

epat = < : epat |

&Ly
tape - <Q' : epat epat - (L.a’ ; <) : epat

tape - (<Q' | (L.d’ ; <»)) : epat

cut

With this idea we can easily fill in the four symmetric cases:

q>a a <4 q
LRMR LLMR
a q’l> a q’D
q>a a dq
LRML LLML
<]q/ a/ qq/ a/

with the following snippets

LRMR Q~ = caseR(...

LLMR <@ = casel (...)
LRML Z =caseR(...|a= (=Q" | (L.d’; +))
LLML <@ = casel (...)

The same idea can be used to implement extension of the tape on the left
and right. We have slightly rewritten the rules to account for the state ¢,

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.14

because the directional markers < and > are not represented as processes.

g $ $ <gq
ER
g> 9% $.4gq

EL

The rule snippets for this are part of Exercise 4

Termination of the machine can now no longer be forwarding (the way
it was for the transducer), since the types on the left and right, tape and epat,
respectively, are different. Instead, we could finish with an idling process,
or we could traverse the tape to the left end or right end. Going to the right
end makes sense if we want to pass on the result of the computation as a
string. Going to the left end makes sense if we want to compose Turing
machines and start the next machine once the current one has finished (see
Exercises 4 and 5)

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.15

Exercises

Exercise 1 Show the following cases in the proof of preservation (Theo-
rem 2)

1. Termination (rule 1C)
2. Composition (rule cmp)

3. Forwarding (rule fwd)

Exercise 2 Rewrite the code for inc in Section 4 so that forwarding («) is
only used at type 1 by adding a second process copy that represents the
identity function and calling it in the right place. Then

1. Show the typing derivation for std - inc : pos. Which type(s) do you
need for copy?

2. Show the typing derivation(s) for copy.

In the above, forwarding is used only at type 1, so we should not need
subtyping.

Exercise 3 Define type even and odd for bit strings (not necessarily in stan-
dard form) that represent even and odd binary numbers, respectively. Where
they exist, provide the typing derivations for or explain why typing might
fail. You may use subtyping if it turns out to be convenient.

even t inc : odd
odd I inc : even

Exercise 4 Complete the encoding of Turing machines in Section 5.

1. Give the code snippets for the ER and EL rules that extend the tape
on the right and left end, respectively.

2. Provide the correct types and code for a final state @), that traverses
the tape to reach the right endmarker and then terminates so that the
final configuration Z behaves like the string

$al “e e an

and has type 1 F Z : tape. For this I believe it may be necessary to
change the type epat in a way that does not affect the remainder of the
program but allows us to reach Z.

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.16

Exercise 5 In order to compose Turing machines so that the second one
runs on the result of the first one, we need the final state of the first machine
to traverse the tape to its left end and then transition to the initial state of
the next machine.

Develop this as an alternative to Exercise 4.2.

LECTURE NOTES SEPTEMBER 15, 2016

Reasoning about Computation L6.17

References

[DP16] Henry DeYoung and Frank Pfenning. Substructural proofs as au-
tomata. In 14th Asian Symposium on Programming Languages and
Systems, Hanoi, Vietham, November 2016. Springer LNCS. To ap-
pear.

[GHO5] Simon]J. Gay and Malcolm Hole. Subtyping for session types in
the w-calculus. Acta Informatica, 42(2-3):191-225, 2005.

LECTURE NOTES SEPTEMBER 15, 2016

	Concurrent Subsingleton Programs
	Type Preservation
	Progress
	Example: Bit Strings Revisited
	Implementing Turing Machines
	Exercises
	References

