Lecture Notes on
From Subsingleton to Ordered Logic

15-816: Substructural Logics
Frank Pfenning

Lecture 7
September 20, 2016

In this lecture we first discuss! an asynchronous model of communication,

where messages are always sent and buffered, even if the recipient is not
yet ready to receive. Asynchronous communication increases parallelism
in a concurrent program, because it let’s the sender continue earlier. It is
also more realistic with respect to actual implementation models. We will
see the logical origins of asynchronous communication [DCPT12], and later
that synchronous session-typed communication is actually a special case of
asynchronous communication [PG15], which is decidedly not the case in
the untyped setting of the m-calculus [Pal03].

Then we generalize our operational interpretation of proofs as processes
from the subsingleton fragments to all of ordered logic (to the extent we
have introduced it so far).

1 Asynchronous Communication

So far, communication has been synchronous: the matched processes that are
sending and receiving a message continue with their remaining programs
together. Asynchronous communication in our case will mean that the send-
ing process will not have to wait for the receiving process, but can continue
with the remainder of its computation right away. In contrast, attempt-
ing to receive a message will block until a message arrives. Asynchronous
communication requires a message buffer, which turns out to be naturally

1Ac’cually, we first discussed some homework solutions, which I will omit here to the
delight of future generations of students.

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.2

representable in our operational framework. Perhaps more suprisingly, it
also has a clear logical interpretation [DCPT12].

As an example, let’s take a look at internal choice. Its operational se-
mantics is specified by the following ordered rule of inference.

proc(R.ly ; P) proc(caseL(l; = Qi)icr)
proc(P) proc(Qx)

®C

We now decompose this into two rules, one (&C5) to send a message and
one (©C,) to receive a message. In order to express this, we use a new
proposition msg(m).

proc(R.l ; P) msg(R.l;) proc(caseL(l; = Qi)ier)
®Cs ®C;
proc(P) msg(R.lx) proc(Qy)

Note that if a process sends multiple messages, the fact that we have an
ordered context will neatly preserve their relative order. In this manner,
the messages taken together form a buffer between the two processes. For

example:
proc(R.l; ; R.lj ; P) proc(Q)

proc(R.l; ; P) msg(R.ly) proc(Q)
proc(P) msg(R.l;) msg(R.ly) proc(Q)

s

®C;

2 Typing Messages

What should the types of messages be? We have collected enough invari-
ants on the computation state in the last lecture in order to derive what
needs to happen here. Let’s look at the sending rule first, where we have
written the interface types on the right below.

proc(R.lj ; P) whk (Rl ; P): ®{l; : A }ier
@
proc(P) msg(R.lx) whk P:Ag 77

It is clear from the interface type that we must have
A+ msg(le) : @{ll : Ai}ie[

because it matches the type of P to its left and the type of the interface to
the right.

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.3

Now comes the central insight of asynchronous communication:
msg(R.l;) ~ proc(R.lx ; <)

From the typing perspective, this is easily verified:

— i
Ak|—<—>:Akl

A b (Rl ;<) ®{l; : Aitier

DRy,

We can also see that message receipt

msg(R.l;) proc(caselL(l; = Q;)ier)
proc(Qr)

®Cy

works like synchronous communication if we replace the message by a pro-

cess:
proc(R.ly ; <») proc(casel(l; = Qi)icr)

proc(«+) proc(Qy)
proc(Qk)

On the other hand, we really need to treat a message differently from a
process, because the process proc(R.lj; ; ++) would immediately spawn an-
other message qua process, which would spawn another message, and so
on. So in the operational semantics we use proc(P) and msg(m), where our
underlying intuition for the meaning of a message is

fw

msg(m) =~ proc(m ; <)

Rewriting the remaining rules via messages is now straightforward, giving
us a complete asynchronous operational semantics. The rules for forward-
ing, composition, and definitions do not change since they do not involve

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.4

communication.
proc(<) proc(P | Q)
— fwd cmp
proc(P) proc(Q)
proc(R.l; ; P) msg(R.l;) proc(caseL(l; = Qi)ier)
®Cs ®Cy
proc(P) msg(R.lx) proc(Qp)
proc(L.l; ; Q) proc(caseR(l; = P;)icr) msg(L.l;)
&C &C
msg(L.ly) proc(Q) proc(F)
proc(closeR) msg(closeR) proc(waitL ; Q)
— 1C; 1C,
msg(closeR) proc(Q)
proc(X) def(X,P)
def
proc(P)

We see that closeR is somewhat of a special case since it requires the an-
tecedents to be empty, so we cannot forward and msg(closeR) ~ proc(closeR).

3 Asynchronous Communication as Commuting Cut
Reduction
The intuition
msg(m) ~ proc(m ; <)

is the key providing a proof-theoretic understanding of asynchronous send-
ing of messages. Consider once again

proc(R.l ; P) o proc(R.lj ; P)
®Cs
proc(P) msg(R.lj) proc(P) proc(R.lj ; <)

where the second form uses our definition. But the second form produces
two processes, which is the exact behavior of a cut:

proc(R.lj ; P) proc(P | (R.lx ; <))
proc(P) proc(R.lg ; <) proc(P) proc(R.lg ; <)

cmp

But what is the relationship between

(Rlz;P) and (P|(Riy;)) ?

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.5

Writing out the proofs:
Ak F: Ak I
wI—P;Ak R wl—P:Ak Akl—R.lk;H:@{li:Ai}iGI
S5}
whk Rl P:®{l: Aitier g whk P | (Rl ;<) ®{li: Aitier

we see that eliminating the cut in the second proof above will lead to the
tirst one: we push the cut up but the ®R;, rule with a commuting cut re-
duction and then eliminate the resulting cut with the identity.

This means from left to right we introduce a cut that can be eliminated
by a commuting conversion. Introducing a cut will lead to more processes,
but at the same time it will also lead to more parallelism because processes
can execute independently.

This also tells us that if we stick with synchronous communication we
can easily rewrite our programs to behave asynchronously (at least in this
case) simply by rewriting (R.l;, ; P) as (P | (R.ly ; <*)). In other words,
in the synchronous calculus we already had the expressive power of asyn-
chronous communication simply by introducing a pair of cut (= spawn)
and identity (= forwarding). For the special case of closeR this analysis is
not needed, since closeR has no continuation and we cannot logically dis-
tinguish between proc(closeR) and msg(closeR).

From a programming point of view, however, it is much more con-
venient to stick with the standard construction R.l;, ; P and interpret all
such sends as asynchronous. Interestingly, we show later (or you can read
in [PG15]) that we can also go the other way: if we assume all communi-
cation is asynchronous we can also recover synchronous communication
based on logical principles.

4 From Subsingleton to Ordered Logic

A big next step in this course is investigate how our ideas so far generalize
from subsingleton to ordered logic. The difference is only that we allow
multiple antecedents. This is a big change since we immediately obtain
four new connectives: over (A / B), under (A \ B), fuse (4 e B), and twist
(Ao B).

Before we get to their operational meaning, let’s reconsider the basic
judgment. The first attempt is to generalize from

AFP:B

LECTURE NOTES SEPTEMBER 20, 2016

DRy,

cut

From Subsingleton to Ordered Logic L7.6

to
A...A,FP:B

The problem now is: How can P address A; if it wants to send or receive
a message from it? For example, several of these types might be internal
choice, and P could receive a label from any of them. In subsingleton logic,
there was only (at most) a single process to the left, so this was unambigu-
ous.

We could address this by saying, for example, that P received from the
ith process, essentially numbering the antecedents. This quickly becomes
unwieldy, both in practice and in theory. Or we might say that P can only
communicate with, say, 4,, or A;, the extremal processes in the antecedents.
However, this appears too restrictive (see Exercise 1). Instead, we uniquely
label each antecedent as well as the succedent? with a channel name.

(x1:A41) ... (xn:Ay) F P (y:B)
We read this as

Process P provides a service of type B along channel y and uses chan-
nels x; of type A;.

Since we are still in ordered logic, the order of the antecedents matter, and
we will see later in which way. We abbreviate it as - P :: (y:B), over-
loading (2 to stand either for just an ordered sequence of antecedent or one
where each antecedent is labeled.

We now generalize each of the rules from before.

Cut. Instead of simply writing P | @, the two processes P and () share a
private channel.

QF P, (:A) Qp (:A) QrF Qy : (2:0)
QL QQrF (v Py Qy) 2 (2:0)

cut

As a point of notation, we subscript processes variables such as P or @
with bound variables if they are allowed to occur in them. In the process
expression z < P, ; (), the variable z is bound and occurs on both side,
because it is a channel connecting the two processes. We almost maintain
the invariant that all channel names in the antecedent and succedent are
distinct, possibly renaming bound variable silently to maintain that.

*Not strictly necessary, since the conclusion remains a singleton, but convenient to cor-
relate providers with their clients through a private shared channel.

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.7

Operationally, the process executing (z < P, ; ;) continues as @,
while spawning a new process P,. This interpretation is meaningful since
both (z <+ P, ; Q) and Q, offer service C' along z. This asymmetry in
the operational interpretation comes from the asymmetry of ordered logic
(and intuitionistic logic in general) with multiple antecedents but at most
one succedent.

In order to define the operational semantics, we write write proc(z, P)
if the process P provides along channel =, which is to say it is typed as
QF P (x:A) for some Q and A. This is useful to track communications.
Then for cut we have the generalized rule of composition

proc(z,x < Py ; Q)

w

cmp
proc(w, Py) proc(z, Qu)

We write cmp®” to remind ourselves that the channel w must be globally
“fresh”: it is not allowed to occur anywhere else in the process configura-
tion.

Identity. The identity rule could just be

id

YA & (2 A)
based on the idea that and y are known at this point in a proof so they
don’t need to be mentioned. Experience dictates that easily irecognizing

whenever channels are used makes programs much more readable, so we
write

yAFz vy (x:A) d
and read is as x is implemented by y or x forwards to y.

There are various levels of detail in the operational semantics for de-
scribing identity in the presence of channel names. We cannot simply ter-
minate the process, but we need to actively connect with y. One way to
do this is to globally identify them, which we can do in ordered inference
by using equality (which we have not introduced yet).

proc(x, z < y)

T=y fwd

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.8

Internal Choice. This should be straightforward: instead of sending a la-
bel “to the right”, we send it along the channel the process provides.

QF P (x:A) (ke
QF (xlg; P) o (x: &{li:Ai bier)

Conversely, for the left rule we just receive along a channel of the right type,
rather than receiving from the right.

Qp (2:4;) QrE Q; = (:C) (Viel)
GSL
Qr, (x:@{li:Ai}iej) Qr b casex (ZZ = Qi)ie] i (ZC)

Communication of the label goes through a channel. We only show the
synchronous version:

proc(x, z.ly, ; P) proc(z,case z (I; = Qi)icr)

proc(z, P) proc(z, Q)

The fly in the ointment here is that these two processes may actually not
be next to each other, because a client can not be next to all of its providers
now that there is more than one.

One possible solution is to send messages (asynchronously) and allow
them to be move past other messages and processes (see Exercise 2). This,
however, does not seem a faithful representation of channel behavior, and
a single communication could take many steps of exchange. A simpler
solution is to retreat to linear inference where the order of the propositions
no longer matters. We have used this, for example, to describe the spanning
tree construction, Hamiltonian cycles, blocks world, etc. Now we reuse it
for the operational semantics. Our earlier rules for cut and identity should
also be reinterpreted in linear and not ordered inference.

External Choice. This is symmetric to internal choice and therefore bor-
ing (see Lecture 8 for the rules).

Unit. The previous pattern generalizes nicely: instead of closeR and waitL
we close and wait on a channel.
QL QrFQ: (2:0)

1R _ 1L
- close x :: (x:1) Qr (x:1) Qr - (wait z ; Q) = (2:C)

proc(x, close x) proc(z,wait z ; Q)

proc(z, Q)

1C

LECTURE NOTES SEPTEMBER 20, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/08-lawandorder.pdf

From Subsingleton to Ordered Logic L7.9

Over. As the final connective in this lecture we consider A / B. First, we
review the purely logical rules.

QOBEA QFB QL AQrkC

—2"“ JR
QFA/B/ QL (A/B)Q QpFC

It turns out that the fact the /L rule has two premises complicates the op-
erational reading, so we use the simplified version /L*. With this rule, cut
elimination no longer holds (see Exercise L4.6), but cut reduction and iden-
tity expansion still do. Since in the setting of proofs as processes we are less
concerned about full cut elimination, this is acceptable here. Eventually, we
can arrange that all rules except cut have at most one premise, which means
that only cut spawns new processes. Recall also that with /L* and cut, /L
is derivable. We return to this issue in Lecture 9.

Qp AQrEC
QBFA IR L R /L
QFA/B QL (A/B)BQrtC

Which of these sends and which receives? In general, there is information
in the rule which cannot always be applied (and therefore is not invertible),
which in this case is /L*. Therefore the process assigned to this rule sends,
while the /R receives. We can mechanically fill in channel names and notice
that the channel z in /R transitions from type A / B to type A4, so the same
transition has to take place in /L*.

Q (y:B) - Py :: (x:A) IR Qp (2:A) Qr F Q = (2:0)
QF?: (:A/B) Qr (2:A/ B) (w:B) Qr F?:: (2:0)

/L

Staring at this rule for a while, we can see which information must be trans-
mitted. We reveal the answer on the next page, but you should try to find
the answer first.

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.10

It is the channel w! Essentially, it is first owned (that is, used) by the
process executing the left rule and afterwards it is owned by the process
executing the right rule.

Q(y:B) - Py :: (z:A) IR Qp (2:A) Qr F Q == (2:0)

QF (y<recva; Py):: (x:A/ B) Qp (z:A/ B) (w:B) QrF (send z w ; Q) ::

The following computation rule implements the cut reduction of /R and
JL*.
proc(x,y < recv z ; Py) proc(z,send z w ; Q)

proc(z, [w/y]P,) proc(z,Q)

We see that we substitute the received channel w for the bound channel
name y in P,. We will usually write [w/y]P, as P,,. Since w cannot appear
in @ but will appear in P,, this amounts to an ownership transfer for the
channel w from one process to another.

In the next lecture we will complete the logical connectives of ordered
logic and their operational reading and then summarize them.

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.11

Exercises

Exercise 1 Explore whether or not we obtain a logic (and whether this logic
has a reasonable operational interpretation) if we restrict the ordered judg-
ment 2 A - P : B so that P can only communicate with the process pro-
viding A on the left and B on the right.

Exercise 2 We gave up on the ordered operational semantics because a pro-
cess needs to communicate with another process that is not an immediate
neighbor. Specify an asynchronous operational semantics that proceeds via
ordered inference and let’s messages flow through the configuration. As-
sess positives and negatives of this semantics.

LECTURE NOTES SEPTEMBER 20, 2016

From Subsingleton to Ordered Logic L7.12

References

[DCPT12] Henry DeYoung, Luis Caires, Frank Pfenning, and Bernardo
Toninho. Cut reduction in linear logic as asynchronous session-
typed communication. In P. Cégielski and A. Durand, editors,
Proceedings of the 21st Conference on Computer Science Logic, CSL
2012, pages 228-242, Fontainebleau, France, September 2012.
Leibniz International Proceedings in Informatics.

[Pal03] Catuscia Palamidessi. Comparing the expressive power of the
synchronous and the asynchronous w-calculus. Mathematical
Structures in Computer Science, 13(5):685-719, 2003.

[PG15] Frank Pfenning and Dennis Griffith. Polarized substructural
session types. In A. Pitts, editor, Proceedings of the 18th Inter-
national Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS 2015), pages 3-22, London, England,
April 2015. Springer LNCS 9034. Invited talk.

LECTURE NOTES SEPTEMBER 20, 2016

	Asynchronous Communication
	Typing Messages
	Asynchronous Communication as Commuting Cut Reduction
	From Subsingleton to Ordered Logic
	Exercises
	References

