
Lecture Notes on
Queues and Stacks

15-816: Substructural Logics
Frank Pfenning

Lecture 9
Tuesday, September 27, 2016

In the last lecture we introduced lists with arbitrary elements and wrote
ordered programs for nil (the empty list), cons (adding an element to the
head of a list) and append to append two lists. The representation was in
the form of an internal choice

listA = ⊕{cons : A • listA, nil : 1}

We might think of this as the usual functional data structure of lists, but
we should keep in mind that it is really just an interface specification for
processes. It does not imply any particular representation.

Today, we will look at a data structure in which we can insert and delete
channels of arbitrary type. The interface is different because it is in the form
of an external choice, more in the style of object-oriented programming or
signatures in module systems for functional languages.

1 Storing Channels

Here is our simple interface to a storage service for channels:

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

Using our operational interpretation, we can read this as follows:

A store for channels of type A offers a client a choice between insertion
(label ins) and deletion (label del).
When inserting, the clients sends a channel of type A which is added

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.2

to the store.
When deleting, the store responds with the label none if there are no
elements in the store and terminates, or with the label some, followed
by an element.
When an element is actually inserted or deleted the provider of the
storage service then waits for the next input (again, either an insertion
or deletion).

In this reading we have focused on the operations, and intentionally ig-
nored the restrictions order might place on the use of the storage service.
Hopefully, this will emerge as we write the code and analyze what the re-
strictions might mean.

First, we have to be able to create an empty store. We will write the
code in stages, because I believe it is much harder to understand the final
program than it is to follow its construction.

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

First, the header of the process definition.

· ` empty :: (s : storeA)
s← empty = . . .

Because a storeA is an external choice, we begin with a case construct, branch-
ing on the received label.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ . . . % · ` s : A \ storeA

| del⇒. . . % · ` s : ⊕{none : 1, some : A • storeA}
)

The case of deletion is actually easier: since this process represents an
empty store, we send the label none and terminate.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ . . . % · ` s : A \ storeA

| del⇒ s.none ; close s)

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.3

In the case of an insertion, the type dictates that we receive a channel
of type A which we call x. It is added at the left end of the antecedents.
Since they are actually none, both A \ storeA and storeA / A would behave
the same way here.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ % · ` s : A \ storeA

x← recv s ; % x:A ` s : storeA
. . .

| del⇒ s.none ; close s)

At this point it seems like we are stuck. We need to start a process imple-
menting a store with one element, but so far we just writing the code for an
empty store. We need to define a process elem

(x:A) (t:storeA) ` elem :: (s : storeA)

which holds an element x:A and also another store t:storeA with further
elements. In the singleton case, t will then be the empty store. Therefore,
we first make a recursive call to create another empty store, calling it n for
none.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ x← recv s ; % x:A ` s : storeA

n← empty ; % (x:A) (n:storeA) ` s : storeA
. . .

| del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)
s← elem← x t = . . .

Postponing the definition of elem for now, we can invoke elem to create a
singleton store with just x, calling the resulting channel e. This call will
consume x and n, leaving e as the only antecedent.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ x← recv s ; % x:A ` s : storeA

n← empty ; % (x:A) (n:storeA) ` s : storeA
e← elem← x n ; % e:storeA ` s : storeA
. . .

| del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)
s← elem← x t = . . .

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.4

At this point we can implement s by e (the singleton store), which is just an
application of the identity rule.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ x← recv s ; % (x:A) ` s : storeA

n← empty ; % (x:A) (n:storeA) ` s : storeA
e← elem← x n % e:storeA ` s : storeA
s← e

| del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)
s← elem← x t = . . .

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.5

It remains to write the code for the process holding an element of the
store. We suggest you reconstruct or at least read it line by line the way we
developed the definition of empty, but we will not break it out explicitly into
multiple steps. However, we will still give the types after each interaction.
For easy reference, we repeat the type definition for storeA.

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

(x:A) (t:storeA) ` elem :: (s : storeA)
1 s← elem← x t =
2 case s (ins⇒ y ← recv s ; % (y:A) (x:A) (t:storeA) ` s : storeA
3 t.ins ; % (y:A) (x:A) (t:A \ storeA) ` s : storeA
4 send t x ; % (y:A) (t:storeA) ` s : storeA
5 r ← elem← y t ; % r:storeA ` s : storeA
6 s← r
7 | del⇒s.some ; % (x:A) (t:storeA) ` s : A • storeA
8 send s x ; % t:storeA ` s : storeA
9 s← t)

A few notes on this code. Look at the type at the end of the previous line to
understand the next line.

• In line 2, we add y:A at the left end of the context since s : A \ storeA.

• In line 4, we can only pass x to t but not y, due restrictions of \L∗.

• In line 5, y and t are in the correct order to call elem recursively.

• In line 8, we can pass x along s since it is at the left end of the context.

How does this code behave? Assume we have a store s holding elements
x1 and x2 it would look like

proc(s, s← elem← x1 t1) proc(t1, t1 ← elem← x2 t2) proc(t2, t2 ← empty)

where we have indicated the code executing in each process without un-
folding the definition. If we insert an element along s (by sending ins and
then a new y) then the process s← elem← x1 t1 will insert x1 along t1 and
then, in two steps, become s← elem← y t1. Now the next process will pass
x2 along t2 and hold on to x1, and finally the process holding no element
will spawn a new one (t3) and itself hold on to x2.

proc(s, s← elem← y t1) proc(t1, t1 ← elem← x1 t2)
proc(t2, t2 ← elem← x2 t3) proc(t3, t3 ← empty)

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.6

If we next delete an element, we will get y back and the store will effectively
revert to its original state, with some (internal) renaming.

proc(s, s← elem← x1 t2) proc(t2, t2 ← elem← x2 t3) proc(t3, t3 ← empty)

In essence, the store behaves like a stack: the most recent element we have
inserted will be the first one deleted. If you carefully look through the in-
termediate types in the elem process, it seems that this behavior is forced.
We conjecture that any implementation of the store interface we have given
will behave like a stack or might at some point not respond to further mes-
sages. We do not yet have the means to carry out such a proof. Some
related prior work might provide hints on how this might be proved using
parametricity [Rey83, CPPT13].1

1If I or someone else in the class can prove or refute this conjecture, we may return to it
in a future lecture.

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.7

2 Tail Calls

Let’s look again at the two pieces of code we have written.

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

· ` empty :: (s : storeA)

1 s← empty =
2 case s (ins⇒ x← recv s ; % (x:A) ` s : storeA
3 n← empty ; % (x:A) (n:storeA) ` s : storeA
4 e← elem← x n % e:storeA ` s : storeA
5 s← e
6 | del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)

7 s← elem← x t =
8 case s (ins⇒ y ← recv s ; % (y:A) (x:A) (t:storeA) ` s : storeA
9 t.ins ; % (y:A) (x:A) (t:A \ storeA) ` s : storeA
10 send t x ; % (y:A) (t:storeA) ` s : storeA
11 r ← elem← y t ; % r:storeA ` s : storeA
12 s← r
13 | del⇒s.some ; % (x:A) (t:storeA) ` s : A • storeA
14 send s x ; % t:storeA ` s : storeA
15 s← t)

empty starts two new processes, in lines 3 and 4 and then terminates in line
5 by forwarding. elem spawns only one new process, in line 11, and then
terminates in line 12 by forwarding. Intuitively, spawning a new process
and then immediately forwarding to this process is wasteful, especially if
process creation is an expensive operation.

It would be nice if the process executing empty could effectively just
continue by executing elem, and similarly, if elem could continue as the same
process once x has been sent along t. This can be achieved if we treat tail
calls specially. So instead of writing

4 e← elem← x n
5 s← e

we write

4 s← elem← x n

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.8

and similarly in the definition of elem.
In general, we compress a cut in the form of a process invocation fol-

lowed by an identity simply as a process invocation:

y ← X ← y1 . . . yn
x← y

becomes

x← X ← y1 . . . yn

This is analogous to the so-called tail-call optimization in functional lan-
guages where instead of f calling a function g and immediately returning
its value, f just continues as g. This is often represented as saving stack
space since it can be implemented as a jump instead of a call. Here, too, re-
cursively defined processes executing a sequence of interactions can simply
continue without spawning a new process and then forwarding the result
immediately, thereby saving process invocations.

From now on, we will often silently use the compressed form. Of course,
its purely logical meaning can be recovered by expanding it into a cut fol-
lowed by an identity.

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.9

3 Analyzing Parallel Complexity

We can analyze various complexity measures of our implementations. For
example, we can count the number of processes that execute. Any call (ex-
cept for a tail call) will spawn a new process, and any forward and close will
terminate a process. Looking at the code below we can see that inserting
an element into a store will spawn exactly one new process, namely when
we eventually insert the last element into the empty store. Deleting an el-
ement will terminate exactly one process: either the empty one, or the one
holding the element we are returning. Therefore in a store with n elements
there will be exactly n+ 1 processes.

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

· ` empty :: (s : storeA)

1 s← empty =
2 case s (ins⇒ x← recv s ; % (x:A) ` s : storeA
3 n← empty ; % (x:A) (n:storeA) ` s : storeA
4 s← elem← x n
5 | del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)

6 s← elem← x t =
7 case s (ins⇒ y ← recv s ; % (y:A) (x:A) (t:storeA) ` s : storeA
8 t.ins ; % (y:A) (x:A) (t:A \ storeA) ` s : storeA
9 send t x ; % (y:A) (t:storeA) ` s : storeA
10 s← elem← y t
11 | del⇒s.some ; % (x:A) (t:storeA) ` s : A • storeA
12 send s x ; % t:storeA ` s : storeA
13 s← t)

Another interesting measure is the reaction time which is analogous to
the span complexity measure for parallel programs. If we try to carry out
two consecutive operations, how many steps must elapse between them,
assuming maximal parallelism? Here it is convenient to count every inter-
action as a step and no other costs.

Looking at the code for elem we see that there are only two interactions
along channel t until the elem process can interact again along s after it
has received ins and y. For empty there is only one spawn but no other

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.10

interactions. Moreover, there is no delay for a deletion, since the process
will respond immedidately along s.

In aggregate, when we store n elements consecutively, the constant re-
action time means that there will be n elements building up the internal
data structure simultaneously. No matter how many insertions and dele-
tions we carry out, the reaction time (measured in total system interactions
assuming maximal parallelism) is always constant.

On the other hand, if we count the total number of interactions of the
system taking place (ignoring any question of parallelism) we see that for n
insertions it will be O(n2), since each new element initiates a chain reaction
that reaches to the end of the chain of elements. This is usually called the
work performed by the algorithm.

4 Queues

As notes, our implementation so far ended up behaving like a stack, and
we conjectured that the type of the interface itself forced this behavior. Can
we modify the type to allow (and perhaps force) the behavior of the store
as a queue, where the first element we store is the first one we receive back?
I encourage you to try to work this out before reading on . . .

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.11

The key idea is to change the type

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

to

queueA = N{ ins : queueA / A,
del : ⊕{none : 1, some : A • queueA}}

We will not go through this in detail, but reading the following code and
the type after each interaction should give you a sense for what this change
entails.

· ` empty :: (s : queueA)

1 s← empty =
2 case s (ins⇒ x← recv s ; % x:A ` s : queueA
3 n← empty ; % (x:A) (n:queueA) ` s : queueA
4 s← elem← x n
5 | del⇒ s.none ; close s)

(x:A) (t:queueA) ` elem :: (s : queueA)

6 s← elem← x t =
7 case s (ins⇒ y ← recv s ; % (x:A) (t:queueA) (y:A) ` s : queueA
8 t.ins ; % (x:A) (t:queueA / A) (y:A) ` s : queueA
9 send t y ; % (x:A) (t:queueA) ` s : queueA
10 s← elem← x t
11 | del⇒s.some ; % (x:A) (t:queueA) ` s : A • queueA
12 send s x ; % t:queueA ` s : queueA
13 s← t)

The critical changes are in line 7 (where y is added to the right end of the
antecedents instead of the left) and line 9 (where consequently y instead of
x must be sent along t).

The complexity of all the operations remains the same, since the only
difference is whether the current x or the new y is sent along t, but the
implementation now behaves like a queue rather than a stack.

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.12

Exercises

Exercise 1 In this exercise we explore an alternative implementation of stacks.
First, consider type of stacks (renamed from storeA in this lecture)

stackA = N{ ins : A \ stackA,
del : ⊕{none : 1, some : A • stackA}}

1. Provide definitions for

· ` stack new :: (s : stackA)
l:listA ` stack :: (s : stackA)

which represents the elements of the stack in a list. If you need aux-
iliary process definitions for lists, please state them clearly, including
their type.

2. Repeat the analysis of Section 3:

(a) How many processes execute for a stack with n elements?

(b) What is the reaction time for an insertion or deletion given a
stack with n elements?

(c) What is the total work for each insertion or deletion given a stack
with n elements?

Exercise 2 In this exercise we explore an alternative implementation of queues.
First, recall the type of queues from Section 4.

queueA = N{ ins : queueA / A,
del : ⊕{none : 1, some : A • queueA}}

1. Provide definitions for

· ` queue new :: (s : queueA)
l:listA ` queue :: (s : queueA)

which represents the elements of the queue in a list. If you need aux-
iliary process definitions for lists, please state them clearly, including
their type.

2. Repeat the analysis of Section 3:

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.13

(a) How many processes execute for a queue with n elements?

(b) What is the reaction time for an insertion or deletion given a
queue with n elements?

(c) What is the total work for each insertion or deletiion given a
queue with n elements?

Exercise 3 In this exercise we will “turn around” Exercise 1. Write a pro-
cess definition

s:stackA ` to list :: (l:listA)

which converts a stack into a list. As far as you can tell, is the order of the
elements that are sent along l fixed?

Exercise 4 Consider the standard functional programming technique of im-
plementing a queue with two lists. Just briefly, we have an input list in to
which we add elements when they are enqueued and an output list out from
which we take elements when they are dequeued. When the output list be-
comes empty, we reverse the input list, adding each element in turn onto
the output list. Initially, both lists are empty.

Explore if you can write such an implementation against the queue in-
terface from Section 4. The implementation should have one of the two
types

(in:listA) (out:listA) ` queue2 :: (s : queueA)
(out:listA) (in:listA) ` queue2 :: (s : queueA)

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016



Queues and Stacks L9.14

References

[CPPT13] Luı́s Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Ton-
inho. Behavioral polymorphism and parametricity in session-
based communication. In M.Felleisen and P.Gardner, editors,
Proceedings of the European Symposium on Programming (ESOP’13),
pages 330–349, Rome, Italy, March 2013. Springer LNCS 7792.

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymor-
phism. In R.E.A. Mason, editor, Information Processing 83, pages
513–523. Elsevier, September 1983.

LECTURE NOTES TUESDAY, SEPTEMBER 27, 2016


	Storing Channels
	Tail Calls
	Analyzing Parallel Complexity
	Queues
	Exercises
	References

