
Lecture Notes on
Ordered Programming

15-816: Substructural Logics
Frank Pfenning

Lecture 10
Thursday, September 29

We begin the lecture by continuing to program in ordered logic using the
example of list segments, whose imperative versions have recently become
popular in verification.

Then we return to the operational reading of the original, general rules
for \L, /L, •R and ◦R in response to a question from an earlier lecture.

Finally we will sketch the proof of progress for ordered logic considered
as a programming language.

1 List Segments

A list segment is the beginning of a list without its tail. It becomes a list
once a tail is supplied. Functionally, it can be seen as function from a list to
a list; here it will be a process that when given a list on its right will behave
like a list.

segA = listA / listA

We discussed this in response to a question on how we might get direct
access to the end of a queue, since our implementation of the queueA in-
terface actually had to pass any newly inserted element down a chain of
processes. As we will see it doesn’t exactly serve the same purpose, but
first let’s program.

We begin with the empty segment. If we append a tail t the empty
segment becomes the list t. Our definition of segA is transparent, so that
we will silently replace it by its definition as was our habit earlier in this
course.

LECTURE NOTES THURSDAY, SEPTEMBER 29



Ordered Programming L10.2

· ` empty :: (s : segA)
s← empty = % · ` s : listA / listA

t← recv s ; % t:listA ` s:listA
s← t

Concatenating two lists is straightforward, and the code more or less
writes itself if we heed the types.

(s1:segA) (s2:segA) ` concat :: (s : segA)
s← concat← s1 s2 =
t← recv s ; % (s1:listA / listA) (s2:listA / listA) (t:listA) ` s : listA
send s2 t ; % (s1:listA / listA) (s2:listA) ` s : listA
send s1 s2 ; % s1:listA ` s : listA
s← s1

Next, we can prepend an element to a segment to obtain another seg-
ment, which means we add it to the front of the given segment.

(x:A) (s′:segA) ` prepend :: (s : segA)
s← prepend← x s′ =
t← recv s ; % (x:A) (s′:listA / listA) (t:listA) ` s : listA
send s′ t ; % (x:A) (s′:listA) ` s : listA
s′′ ← cons← x s′ % s′′:listA ` s : listA
s← s′′

For reasons of symmetry with the next case, we have not combined the last
two lines into the simpler tail call s← cons← x s′.

Appending an element to the end of a segment is similar. It will still
come before (the absent) tail. This is right behavior, since a segment with x
appended still accepts a tail to come after x. Note that we have to be careful
to state the arguments to postpend in the right order.

(s′:segA) (x:A) ` postpend :: (s : segA)
s← postpend← s′ x =
t← recv s ; % (s′:listA / listA) (x:A) (t:listA) ` s : listA
t′ ← cons← x t % (s′:listA / listA) (t′:listA) ` s : listA
send s′ t′ ; % s′:listA ` s : listA
s← s′

What can we do with a segment? We can create an empty segment and
then add elements to the left and right ends. In that way, it is almost like
a double-ended queue. However, we cannot remove elements. Instead, at

LECTURE NOTES THURSDAY, SEPTEMBER 29



Ordered Programming L10.3

some point we need to convert the element to a list by appending an empty
list, after which we can no longer (easily) access the tail (see Exercise 1).

s:segA ` seg to list :: (l : listA)
l← seg to list← s =
n← nil ; % (s:listA / listA) (n:listA) ` l : listA
send s n ; % s:listA ` l : listA
l← s

2 An Operational Reading of •R

Recall that we restricted the general form •R to •R∗:

Ω1 ` A Ω2 ` B

Ω1 Ω2 ` A •B
•R

Ω2 ` B

A Ω2 ` A •B
•R∗

In the presence of cut and identity, we can interderive these rules so the
same sequents remain provable.

A ` A
idA

Ω2 ` B

A Ω2 ` A •B
•R

Ω1 ` A

Ω2 ` B

A Ω2 ` A •B
•R∗

Ω1 Ω2 ` A •B
cutA

But what is the right operational reading of the fully general rule, and how
does it relate to the more restricted one? Let’s take a look at the operational
interpretation of the proof on the right, which is available to us in ordered
programming since it only uses •R∗. From this, we may be able to glean
the right interpretation of •R.

Ω1 ` Qy :: (y : A)

Ω2 ` P :: (x : B)

(y:A) Ω2 ` (send x y ; P ) :: (x : A •B)
•R∗

Ω1 Ω2 ` (y ← Qy ; send x y ; P ) :: (x : A •B)
cutA

The program here will create a new channel w, spawn a new process Qw,
send w along x and continue as P . We invent a new notation for the general
•R to accomplish the same interactions.

Ω1 ` Q :: (y : A) Ω2 ` P :: (x : B)

Ω1 Ω2 ` (send x (y ← Qy) ; P ) :: (x : A •B)
•R

LECTURE NOTES THURSDAY, SEPTEMBER 29



Ordered Programming L10.4

In an asynchronous model of communication these two behave exactly the
same. Under a synchronous interpretation, there is a small difference. Here
is the generalized communication rule for • (which always creates a fresh
channel in the conclusion):

proc(x, send x (y ← Qy) ; P ) proc(z, y ← recv x ; Ry)

proc(x, P ) proc(w,Qw) proc(z,Rw)
•Cw

We can see that Qw does not start to execute until this synchronous commu-
nication actually takes place. However, when executing our derived form
(on the top line)

proc(x, y ← Qy ; send x y ; P )

proc(x, send x w ; P ) proc(w,Qw)
cmpw

a new channel w will always be created and Qw starts immediately, whether
a client is ready to communicate along x or not. If there is a client ready it
can then immediately step to the same configuration as the •Cw rule.

With appropriate small changes, the same construction can be used for
◦R, /L and \L (see Exercise 4).

Why did we choose the simplified forms of these constructs? One rea-
son is that all the logical rules just send or receive some information and
continue, but do nothing else. The rules for internal (⊕) and external (N)
choice send or receive a label, the rules for the unit (1) send or receive a
end-of-communication token, the rules for /, \, •, and ◦ send or receive
a channel. Composition (cut) is solely responsible for spawning new pro-
cesses and forwarding (id) terminates a process (as does 1R, for a different
reason).

With the general rules, the multiplicative connectives (/, \, •, ◦) also spawn
new processes, which complicates reasoning about their operational behav-
ior. The big advantage, however, is that the rules are directly derived from
the sequent calculus and therefore satisfy full cut elimination, which, as
we have seen, is not the case for the restricted rules. But since we view
them operationally, from the perspective of a programming language, we
are more interested in progress and preservation properties. And these still
hold, because cut reduction and identity expansion still hold.

3 Progress

We now would like to generalize the proof of progress from the subsingle-
ton to the ordered case. This means the scaffolding around the key insight,

LECTURE NOTES THURSDAY, SEPTEMBER 29



Ordered Programming L10.5

namely that cut reduction holds for each connective, has to be generalized.
We begin by typing configurations. While configurations are linear rather

than ordered, we still need type checking to proceed in some order. So we
may need to “permute” the configuration so that the following rules ap-
ply. The typing derivation for a configuration then fixes some order. At the
top level we use this for a configuration executing a single process offering
along a single channel.

|= proc(x, P ) :: (x : A)

We need to generalize almost immediately if P spawns a new process. Then
then have

|= C :: (x : A)

that is, we have multiple running processes but, overall, we can interact
with the configuration only along one channel. If P spans multiple pro-
cesses, say P1, . . . , Pn, then we need to check all of them. While each of
them offers along a single channel, collectively they offer along a whole
sequence of channels, so we end up with the judgment

|= C :: Ω

allowing both multiple processes in the configuration and multiple chan-
nels that they provide, namely all the ones in Ω. This judgment is defined
by the following two rules:

|= (·) :: (·)

|= C :: Ω Ω′ Ω′ ` P :: (x : A)

|= C proc(x, P ) :: Ω (x:A)

This means that our particular arrangement of the configuration will have
to list processes in dependency order, with a provider always preceding
(looking left to right) its client. This corresponds to a pre-order traversal of
the dependency tree where we traverse the subtrees from right to left.1

The key is now to come up with the correct induction hypothesis to
prove progress. We introduce the in-line notation C −→ D for the clumsier

C
D

We need one lemma, whose role will only become clear in the proof. It al-
lows us to extract a typing derivation for the offering process for a channel
x:A that’s provided by a configuration.

1In lecture, I had a slightly more general rule which also worked out, but was unneces-
sarily complicated (as suggested by several students).

LECTURE NOTES THURSDAY, SEPTEMBER 29



Ordered Programming L10.6

Lemma 1 (Configuration Inversion)
If |= C :: Ω1 (x:A) Ω2 then C = (C1 proc(x, P ) C2)
with |= C1 :: Ω1 Ω′ and Ω′ ` P :: (x : A) for some C1, P , C2, and Ω′.

Proof: By induction on the structure of the given typing derivation (see
Exercise 5). 2

Theorem 2 If |= C :: Ω then either

(i) C −→ D for some D, or

(ii) all processes in C are executing a right rule.

Proof: By induction on the structure of the typing derivation |= C :: Ω.

Case: The empty configuration. Then (i) holds.

Case: C = C′ proc(x, P ) and

|= C′ :: Ω′ Ω∗ Ω∗ ` P :: (x:A)

We first consider some subcases for P .

Subcase: P ends in a cut. Then (i) holds because P can transition.

Subcase: P ends in an identity. Then (i) holds because P can transition.

Subcase: P is a defined name. Then (i) holds because P can transition.

In the remaining cases we can now assume that P is not a cut, identity, or
name. In other words, it must end in a logical rule. We now appeal to the
induction hypothesis and get two further subcases.

Subcase: C′ −→ D′ for some D′. Then also C −→ D′ proc(x, P ) so (i) holds.

Subcase: All processes in C′ execute a right rule.

At this point we further descend in our tree of case distinctions: P executes
either a right rule or a left rule.

Subcase: P executes a right rule. Then all processes in C = C′ proc(x, P )
execute a right rule and (ii) holds.

Subcase: P executes a left rule.

LECTURE NOTES THURSDAY, SEPTEMBER 29



Ordered Programming L10.7

Sadly, we now have to make further distinctions as to which left rule P
executes. We consider only one case; the others are analogous.

Subcase: P executes \L∗. Then P = (send y w ; P ′),
Ω∗ = Ω∗L (w:B) (y : B \ C) Ω∗R,

Ω∗L (y:C) Ω∗R ` P ′ :: (x : A)

Ω∗L (w:B) (y : B \ C) Ω∗R ` send y w ; P ′ :: (x : A)
\L∗

and
|= C′ :: Ω′ Ω∗L (w:B) (y : B \ C) Ω∗R

By configuration inversion (Lemma 1) the derivation of the latter con-
tains a typing derivation for the provider of y : B \ C

Ω′′ ` Q :: (y : B \ C)

for some Ω′′ and Q. We also know in this subcase that Q executes
a right rule. By inversion, this must be \R, and we get Q = (z ←
recv y ; Q′z) and

(z:B) Ω′′ ` Q′z :: (y : C)

Ω′′ ` (z ← recv y ; Q′z) :: (y : B \ C)
\R

Unraveling this, the original configuration has the form

C = C′1 proc(y, z ← recv y ; Q′z) C′2 proc(x, send y w ; P ′)

where C′1 and C′2 come from the appeal to configuration inversion.
Hence we can finally infer

C′1 proc(y, z ← recv y ; Q′z) C′2 proc(x, send y w ; P ′)

C′1 proc(y,Q′w) C′2 proc(x, P ′)
\C

and clause (i) holds.

2

LECTURE NOTES THURSDAY, SEPTEMBER 29



Ordered Programming L10.8

Exercises

Exercise 1 Write an ordered program to convert a list back into a segment.

l:listA ` list to seg :: (s : segA)

Characterize work and span (= reaction time under maximal parallelism)
of this operation when provided with a list of length n?

Exercise 2 We cannot write a direct analogue for the functional map from
a functional language, because the function f that is mapped over a data
structure is used potentially many times, violating linearity and order. In
order to circumvent this problem, we define a mapper to be a process that
can transform inputs of type A to outputs of B arbitrarily often.

mapperAB = N{next : (B •mapperAB) / A, done : 1}

1. Define a process map with type

(m:mapperAB) (l:listA) ` map :: (k : listB)

that applies mapper m to each element of list l to produce list k.

2. Define a mapper map id such that

l:listA ` identity :: (k : listA)
k ← identity← l =
m← map id ;
k ← map← m l

does indeed behave like the identity. State both the type of map id and
its definition.

Exercise 3 We cannot write a direct process analogue of the function fold
for the same reason as for map in Exercise 2.

1. Devise a type folderAB that can reduce a list of type A to a result of
type B. We suggest you study mapperAB from Exercise 2 for hints on
how to proceed.

2. Define a process fold with type

(b:B) (m:folderAB) (l:listA) ` fold :: (r : B)

that folds m over the list l with initial value b to produce r. Feel free
to change the order of the antecedents if another order turns out to be
more convenient.

LECTURE NOTES THURSDAY, SEPTEMBER 29



Ordered Programming L10.9

3. Define a folder fold id and complete the following program such that

l:listA ` identity :: (k : listA)
k ← identity← l =
f ← fold id ;
. . .

does indeed behave like the identity. State both the type of fold id and
its definition.

Exercise 4 Give a direct proof term assignment for the general /L using the
new form of process

send x (y ← Qy) ; P

from Section 2.

Exercise 5 Prove configuration inversion (Lemma 1).

LECTURE NOTES THURSDAY, SEPTEMBER 29


	List Segments
	An Operational Reading of R
	Progress
	Exercises

