
Lecture Notes on
Of Course!

15-816: Substructural Logics
Frank Pfenning

Lecture 15
October 20, 2016

In this lecture we combine structural and substructural intuitionistic logics
into a single system, using the previously discussed device of shift modal-
ities to go between layers. This is the idea behind Benton’s LNL [Ben94],
who basis his constructions on the categorical concept of an adjunction.

As we have already seen, the idea is quite general. In this lecture we
will restrict ourselves to the structural and linear fragments, leaving other
considerations such as ordered, affine, or strict logics to a future lecture
in order to reduce it to its essentials. From our approach the exponential
modality !A (read: of course A!) of Girard’s linear logic [Gir87] will arise
naturally as a composition of two shifts.

We will also resume our analysis of the operational interpretation of
shifts, to see specifically what happens in the context of LNL.

1 Combining Linear and Structural Logic

Our starting point quite straightforwardly follows the approach laid out in
Lecture 12. We have two separate layers of propositions, connected by two
shifts. We use U (suggesting unrestricted) for the structural mode and L, as
before, for the linear mode. We have, by definition U > L since U admits
exchange, weakening, and contraction while L admits only exchange.

Structural AU ::= . . . | AU → BU | ↑ULAL

Linear AL ::= . . . | AL (BL | ↓ULAU

The independence principle states:

A structural succedent may not depend on a linear antecedent.

LECTURE NOTES OCTOBER 20, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/12-combining.pdf

Of Course! L15.2

We can make this explicit by allowing only the following two judgment
forms:

ΓU ` AU

ΓU ; ∆L ` AL

It is possible to separate the antecedents into two zones since both modes
admit exchange. From now on we will use Γ only for structural antecdents
and ∆ only for linear ones, so we can omit the subscript.

To begin with, we obtain the following rules of identity and cut. The
phenomenon of obtain three cut rules should be familiar from Lecture 12.
As we pointed out there, they can be unified into a single rule using adjoint
logic [Ree09].

Γ, AU ` AU

idU
Γ ; AL ` AL

idL

Γ ` AU Γ, AU ` CU

Γ ` CU

cutUU
Γ ` AU Γ, AU ; ∆ ` CL

Γ ; ∆ ` CL

cutUL

Γ ; ∆ ` AL Γ ; ∆′, AL ` CL

Γ ; ∆′,∆ ` CL

cutLL

As pointed out in the last lecture, the presence of weakening and contrac-
tion allows us to view structural antecedents as persistent, so they are prop-
agated to all premises of each inference rule.

The next question are the rules for the shift modalities. They follow ex-
actly the same pattern as before, with a small twist to incorporate the per-
sistence of structural assumptions in the ↑L rule. They are entirely based
on the independence principle, which is built into the formulation of the
judgments themselves.

Γ ; · ` AL

Γ ` ↑ULAL

↑R
Γ, ↑ULAL ; ∆, AL ` CL

Γ, ↑ULAL ; ∆ ` CL

↑L

Γ ` AU

Γ ; · ` ↓ULAU

↓R
Γ, AU ; ∆ ` CL

Γ ; ∆, ↓ULAU ` CL

↓L

The resulting system enjoys all the important properties such as admissibil-
ity of cut and identity and cut elimination. At the interface between the two
judgment there is one instance of a cross-cut when ↑R is matched against
↑L. We dispense with the details since there are no particular new ideas to
be conveyed.

LECTURE NOTES OCTOBER 20, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/12-combining.pdf

Of Course! L15.3

2 Operational Interpretation of Shifts, Revisited

Before we dive into the operational interpretation of the full structural com-
ponent of this combined logic, we look only at the shifts. The ↑R and ↓L
rules are invertible, that is, they can always be applied when the proposi-
tion ↑AL appears on the right or ↓AU appears on the left. This means these
two rules will receive while ↑L and ↓R will send. What they send and re-
ceive is an indication to shift to a new mode of communication. Before,
when we shifted, we re-used the same channel. This is no longer possible
now because in the ↑L rule the persistent channel remains. First, the proof
term assignment.

Γ ; · ` Py :: (yL : AL)

Γ ` yL ← (L)xU ; Py :: (xU : ↑ULAL)
↑R

Γ, (xU : ↑ULAL) ; ∆, (yL : AL) ` Qy :: (zL : CL)

Γ, (xU : ↑ULAL) ; ∆ ` yL ← (L)xU ; Qy :: (zL : CL)
↑L

In the synchronous communication rule we mark a process offering along
a persistent channel itself as persistent. This is because this process may
have multiple clients (inclding in Qy!), so we cannot evolve it, but we can
spawn a fresh linear copy offering along the new channel wL.

proc(xU, yL ← (L)xU ; Py) proc(zL, yL ← (L)xU ; Qy)

proc(wL, Pw) proc(zL, Qw)
↑Cw

It is even more obvious in the synchronous version that the persistent pro-
cess must receive, otherwise it could continuously spawn new messages!

proc(zL, yL ← (L)xU ; Qy)

msg(wL, yL ← (L)xU ; wL ← yL) proc(zL, Qw)
↑Cw_send

proc(xU, yL ← (L)xU ; Py) msg(wL, yL ← (L)xU ; wL ← yL)

proc(wL, Pw)
↑Cw_recv

The rules for ↓ULA reverse the roles.

Γ ` Py :: (yU : AU)

Γ ; · ` yU ← (U)xL ; Py :: (xL : ↓ULAU)
↓R

Γ, (yU : AU) ; ∆ ` Qy :: (zL : CL)

Γ ; ∆, (xL : ↓ULAU) ` yU ← (U)xL ; Qy :: (zL : CL)
↓L

LECTURE NOTES OCTOBER 20, 2016

Of Course! L15.4

In the operational semantics we create a persistent process.

proc(xL, yU ← (U)xL ; Py) proc(zL, yU ← (U)xL ; Qy)

proc(wU, Pw) proc(zL, Qw)
↓Cw

Here, the first process sends the persistent channel, as we can see from the
asynchronous version of the semantics.

proc(xL, yU ← (U)xL ; Py) proc(zL, yU ← (U)xL ; Qy)

proc(wU, Pw) msg(xL, yU ← (U)xL ; yU ← wU)
↓Cw_send

msg(xL, yU ← (U)xL ; yU ← wU) proc(zL, yU ← (U)xL ; Qy)

proc(zL, Qw)
↓Cw_recv

3 Example: Map

As we have seen in Exercise 10.2 of Lecture 10, it is possible to define con-
current versions of map and fold using recursive types. Another natural
approach is to allow the transformer that is mapped over a list to be persis-
tent. We abbreviate ↑ULA as ↑A and similarly for ↓ULA since in this lecture we
only consider structural and linear modes. We leave linear channels undec-
orated and write xU for unrestricted channels which can be used arbitrarily
often.

listA = ⊕{cons : A⊗ listA, nil : 1}
fU : ↑(A (B) ; k:listA ` map :: (l : listB)

l← map← k fU =
case k (nil⇒ wait k ; l.nil ; close l

| cons⇒ . . .)

We already took advantage here of weakening: fU is not used in the nil
branch of map. We will need it twice in the cons branch: once to apply to
the element, and then pass it on to be mapped over the rest of the list.

LECTURE NOTES OCTOBER 20, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/10-ordprog.pdf#exercise.2
http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/10-ordprog.pdf

Of Course! L15.5

listA = ⊕{cons : A⊗ listA, nil : 1}
fU : ↑(A (B) ; k:listA ` map :: (l : listB)

l← map← k fU =
case k (nil⇒ wait k ; l.nil ; close l

| cons⇒ x← recv k ;
y ← (L)fU ; % y:A (B
send y x ; % y:B
l.cons ; send l y ;
l← map← k fU)

Below is a slight different style of expressing this computation proposed in
lecture. It uses library processes for nil and cons. Here, the call to map is
not a tail call. This means, without any further optimizations, it will spawn
a new process and therefore it is likely less efficient. We don’t particularly
care at this point about low-level efficiency or even how many processes
are spawned, but it is still worth noting this difference.

listA = ⊕{cons : A⊗ listA, nil : 1}
· ` nil :: (l : listA)
x:A, k:listA ` cons :: (l : listA)

fU : ↑(A (B) ; k:listA ` map :: (l : listB)

l← map← k fU =
case k (nil⇒ wait k ; l← nil

| cons⇒ x← recv k ;
y ← (L)fU ; % y:A (B
send y x ; % y:B
l′ ← map← k fU ;
l← cons← l′ y)

As a sample mapping function we write one that turns an element into a
singleton list.

x:A ` singleton :: (l:listA)
l← singleton← x =

n← nil ;
l← cons← x n

· ` map_singleton :: (fu : ↑(A (listA))

fu ← map_singleton =
y ← (L)fu ;

LECTURE NOTES OCTOBER 20, 2016

Of Course! L15.6

x← recv y ;
y ← singleton← x

4 Of Course!

In Girard’s linear logic [Gir87] there is no explicit structural layer, but we
have a so-called exponential modality !A (pronounced “of course A” or some-
times “bang A” to allow an A to be used multiple times. Briefly, Girard
started from the idea that the intuitionistic function space A→ B could be
decomposed into a modality and a linear function space (!A) (B. This
idea of a fine-grained analysis of computation while retaining the means to
express all the prior functions also pervades this course.

We arrived at this idea following a different path. Rather than decom-
posing existing languages, we have started from a substructural point of
view and added various liberties. Starting from this direction we notice
that !A ' ↓UL↑ULAL. In the (intuitionistic) version of Girard’s logic, we have
the following inference rules pertaining to the exponential modality.

∆ ` C

∆, !A ` C
weaken

∆, !A, !A ` C

∆, !A ` C
contract

!∆ ` A

!∆ ` !A
!R

∆, A ` C

∆, !A ` C
!L

Here we use !∆ is stand for a collection of antecedents all of whose propo-
sitions have the form !A. While there are many interesting semantic ap-
proaches to understand this and its classical counterpart, the proof theory
and the cut elimination proofs are not nearly as elegant as for the substruc-
tural approach we have followed here. Some notes on prior work can be
found in [Pfe94, CCP03].

Using the expansion of !AL = ↓↑AL we can validate all of the rules above
by showing that they are admissible. For example:

↑A ` ↑A
idU

↑A ; · ` !A
↓R

↑A ` ↑A
idU

↑A ; · ` !A
↓R

↑A ; · ` !A⊗ !A
⊗R

· ; !A ` !A⊗ !A
↓L

· ; ∆, !A, !A ` C

· ; ∆, !A⊗ !A ` C
⊗L

∆, !A ` C
cut

LECTURE NOTES OCTOBER 20, 2016

Of Course! L15.7

Because of several standard embeddings of structural intuitionistic logic in
linear logic [TCP12], this means that in a certain sense we do not need the
full structural layer in what we have discussed. It is sufficient to just have

Structural AU ::= ↑ULAL

Linear AL ::= . . . | AL (BL | ↓ULAU

and the rest is a question of pragmatics: how easy or difficult is it to program
certain algorithms in the resulting language as compared to coding them
when the structural layer is more complete.

LECTURE NOTES OCTOBER 20, 2016

Of Course! L15.8

Exercises

Exercise 1 Implement the operation of fold from Exercise 10.3, but with
fold a persistent process analogous to map in Section 3.

Exercise 2 Show that all the rules for intuitionistic linear logic using !A are
derivable or admissible in the combined structural/linear logic using the
definition of !A as ↓UL↑ULAL. Give a derivation of the rule where possible.

Exercise 3 Prove that if ` AL and AL uses ↓UL↑UL as its only modality, then it
is provable in linear logic under the rules in Section 4.

LECTURE NOTES OCTOBER 20, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/10-ordprog.pdf#exercise.3

Of Course! L15.9

References

[Ben94] Nick Benton. A mixed linear and non-linear logic: Proofs, terms
and models. In Leszek Pacholski and Jerzy Tiuryn, editors, Se-
lected Papers from the 8th International Workshop on Computer Sci-
ence Logic (CLS’94), Kazimierz, Poland, September 1994. Springer
LNCS 933. An extended version appears as Technical Report
UCAM-CL-TR-352, University of Cambridge.

[CCP03] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning.
A judgmental analysis of linear logic. Technical Report CMU-CS-
03-131R, Carnegie Mellon University, Department of Computer
Science, December 2003.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Pfe94] Frank Pfenning. Structural cut elimination in linear logic. Tech-
nical Report CMU-CS-94-222, Department of Computer Science,
Carnegie Mellon University, December 1994.

[Ree09] Jason Reed. A judgmental deconstruction of modal logic. Unpub-
lished manuscript, 2009.

[TCP12] Bernardo Toninho, Luı́s Caires, and Frank Pfenning. Functions as
session-typed processes. In L. Birkedal, editor, 15th International
Conference on Foundations of Software Science and Computation Struc-
tures, FoSSaCS’12, pages 346–360, Tallinn, Estonia, March 2012.
Springer LNCS.

LECTURE NOTES OCTOBER 20, 2016

	Combining Linear and Structural Logic
	Operational Interpretation of Shifts, Revisited
	Example: Map
	Of Course!
	Exercises
	References

