
Lecture Notes on
Computation in Structural Logic

15-816: Substructural Logics
Frank Pfenning

Lecture 16
October 25, 2016

In this lecture we attempt to extend our computational interpretation of
ordered and linear logic to include structural logic (all of these being intu-
itionistic, of course). This completes what we started in Lecture 15, Section
2 where we provided an operational semantics only for the shift operators.

Our analysis will turn out to be different from the usual, celebrated
Curry-Howard isomorphism between intuitionstic logic and the simply-typed
λ-calculus [How69]. There are two reasons for this divergence. For one,
and perhaps most importantly, we are working here with a sequent calcu-
lus instead of natural deduction. This means that the engine of compu-
tation is cut reduction, instead of the usual substitution. Cut reduction is
a local transformation on a proof and proceeds in very small steps. You
may remember the slogan of cut reduction as communication. In natural de-
duction, substitution is the engine of computation which is a much more
global, “big step” operation. These two have been related in the past, most
notably perhaps is Herbelin’s analysis [Her94]. One new ingredient here is
the explicit presence of concurrency, and that integration of ordered, linear,
and structural computations.
Disclaimer: This lecture very much represents my very recent understand-
ing of the state of affairs, based mostly on intuition without any carefully
formulated, much less checked proofs.

LECTURE NOTES OCTOBER 25, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/15-ofcourse.pdf#section.2
http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/15-ofcourse.pdf#section.2

Computation in Structural Logic L16.2

1 Structural Intuitionistic Logic

We are aiming at the following combined system.

Structural AU ::= pU | AU → BU | AU NBU | AU ×BU | 1 | AU +BU | ↑ULAL

Linear AL ::= pL | AL (BL | AL NBL | AL ⊗BL | 1 | AL ⊕BL | ↓ULAU

We already treated the linear mode and the shift modalites, although a
slight update will be necessary. So today we focus on the structural layer
only. Because of that, we will omit the subscript U and just write A, B, etc.

We begin with A × B. It seems odd that our structural logic contains
bothA×B andANB. Indeed, it turns out that they are logically equivalent
in the sense that A×B ` ANB and ANB ` A×B. But they behave very
differently operationally, so it may be worthwhile to support both.

Γ ` A Γ ` B
Γ ` A×B

×R
Γ, A×B,A,B ` C

Γ, A×B ` C
×L

Γ ` A Γ ` B
Γ ` ANB

NR
Γ, ANB,A ` C

Γ, ANB ` C
NL1

Γ, ANB,B ` C
Γ, ANB ` C

NL2

Since antecedents persist, the two right rules for A×B and ANB coincide!
This should raise a red flag, but the presence of weakening and contrac-
tion allows us to verify harmony for each of the connectives despite the
differing left rules. This exemplifies a lesson I learned after many years
of working in this field: the presence of structural rules makes observa-
tions “fuzzier”, systems less crisp, and allows one to get away with some
things that are not as elegant as one would like. This is one reason that I
am teaching this course now and start with the weakest logic I could eas-
ily make sense of (subsingleton logic), working my way up to the present
point (combined structural and substructural logics).

The next point will be to derive a one-premise right rule for A × B. As
a reminder: we do this here (and also for A → B in Section 3) so that the
spawning of new processes is limited to the cut rule, which is a significant
simplification of the operational semantics. We can go back and forth be-
tween the one-premise and two-premise rules, using cut in one direction

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.3

and identity in the other.

Γ, A ` B
Γ, A ` A×B

×R∗

Γ ` A

Γ ` B
Γ, A ` B

weaken

Γ, A ` A×B
×R∗

Γ ` A×B
cutA

Γ, A ` A
idA

Γ, A ` B
Γ, A ` A×B

×R

2 Assigning Process Terms to Proofs of Positive Propo-
sitions

Next, we have to design a process assignment. Experience dictates that we
should try the sending rule first. By analogy with the linear logic, where
⊗R sends, here, ×R should send.

Γ, w:A ` P :: (x : B)

Γ, w:A ` send x w ; P :: (x : A×B)
×R∗

Persistence of antecedents implies that even though we send w along x, we
also retain w. The left rule is more complicated: in the premise, we have to
figure out how to label the new antecedent A and B. Previously, we would
have written x:B, but now we need to retain x:A×B since it may continue
to occur in Q, so we rename it to x′.

Γ, x:A×B, y:A, x′:B ` Q :: (z : C)

Γ, x:A×B ` (y, x′)← recv x ; Q :: (z : C)
×L

This means we actually receive two channels: y:A, corresponding to w that
is being sent, and a continuation channel x′:B. In the end, though, perhaps
it is not too surprising that x:A×B will send both a y:A and an x′:B. Both
of these, together with x and also z can occur in Q. We have chosen not to
display this dependence explicitly but rely on the judgment in the premise
to express this information.

Now, however, we should be concerned with a mismatch: ×R∗ appears
to send only one channel (namely w) while ×L expects two. But during
asynchronous communication we also have to create a new channel x′ to
represent the continuation of the process, so that

send x w ; P ' x′ ← [x′/x]P ; (send x w ; x← x′)

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.4

Using this as a guidance, we get the following rule which introduces a new
continuation channel c and substitutes this for x in P .

proc(x, send x w ; P)

proc(c, [c/x]P) msg(x, send x w ; x← c)
×C_sendc

The message reads: send w along x and continue as c. So we do indeed have
two channels for the recipient, even if one is not explicit in the syntax of the
sender.

msg(x, send x w ; x← c) proc(z, (y, x′)← recv x ; Q)

proc(z, [c/x][w/y]Q)
×C_recv

Ah, we have ignored one important aspect here: these rules are written as
if all communications are linear. But they are not! The original channel
x : A×B along which we offer may have multiple clients. This seems okay
when the message is sent (since now msg(x, . . .) provides along x), but it
becomes problematic when the message is received. In order to avoid that
other clients of x to be left dangling, we make this message persistent.

proc(x, send x w ; P)

proc(c, [c/x]P) msg(x, send x w ; x← c)
×C_sendc

msg(x, send x w ; x← c) proc(z, (y, x′)← recv x ; Q)

proc(z, [c/x][w/y]Q)
×C_recv

The processes themselves proceed with their continuations P and Q, after
some channel substitution, after the persistent message has been sent or
received, respectively.

We next consider disjunction as another positive proposition, A + B
(usually written as A ∨ B) or, as a more convenient type, +{li : Ai}i∈I .
First, logically:

Γ ` Ak

Γ ` +{li : Ai}i∈I
+Rk

Γ,+{li : Ai}i∈I , Ai ` C (for all i ∈ I)

Γ,+{li : Ai}i∈I ` C
+L

Again, judging merely from the perspective of provability, the antecedent
+{li : Ai}i∈I is redundant, but we adhere to the principle of persistence of
antecedents in structural logic. The process terms look quite similar to the

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.5

rules for linear ⊕, but we have to account for the continuation which we
call x′ in the rule.

Γ ` P :: (x : Ak)

Γ ` x.lk ; P :: (x : +{li : Ai}i∈I)
+Rk

Γ, x:+{li : Ai}i∈I , x′:Ai ` Qi :: (z : C) (for all i ∈ I)

Γ, x:+{li : Ai}i∈I ` case x (li(x
′)⇒ Qi)i∈I :: (z : C)

+L

The computation rule follows the previous pattern: since the offer is along a
persistent channel, we create a persistent message and a fresh continuation
channel c.

proc(x, x.lk ; P)

proc(c, [c/x]P) msg(x, x.lk ; x← c)
+C_sendc

Receiving the message will select the correct branch and also substitute the
continuation channel c for x′.

msg(x, x.lk ; x← c) proc(z, case x (li(x
′)⇒ Qi)i∈I)

proc(z, [c/x′]Qk)
+C_recv

We do not need to mention the message in the conclusion since it is persis-
tent. Persistence is again critical since there may be many clients of x and
we cannot leave them dangling without a provider. One of these clients
could be Qk itself since it may depend on x. As was noted in lecture, this
dependence on Qk in x is not strictly necessary, but it is sometimes conve-
nient.

As the last positive proposition we have 1. The only novelty here is that
we have no continuation.

Γ ` 1
1R

Γ,1 ` C
Γ,1 ` C

1L

The left rule looks like a typo, but it is not. The principal formula of the
inference persists, but no other antecedents are generated. Operationally, it
may make a little more sense.

Γ ` close x :: (x : 1)
1R

Γ, x:1 ` Q :: (z : C)

Γ, x:1 ` wait x ; Q :: (z : C)
1L

proc(x, close x)

msg(x, close x)
1C_send

msg(x, close x) proc(z,wait x ; Q)

proc(z,Q)
1C_recv

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.6

This means potentially many clients can check that a persistent provider
has terminated by closing its persistent channel. There does not seem to
be much point to allow this in Q, but we should be careful and find a
good proof-theoretic justification for omitting x:1 in the premise before we
change our rules.

Now we can think about the meaning of purely positive types, such as

listA = +{cons : A× listA, nil : 1}
We see a parallel with functional programming here: any datatype decla-
ration with eager constructors and no embedded functions are represented
here as a purely positive recursive type. The labels of the sum represent the
constructors.

Image we have a process P :: (x : listA). If it runs to completion, if will
asynchronously send a number of persistent messages. For example, if P
sends messages corresponding to the list [a, b], they would look like:

msg(x, x.cons ; x← x1)

msg(x1, send x1 a ; x1 ← x2)

msg(x2, x2.cons ; x2 ← x3)

msg(x3, send x3 b ; x3 ← x4)

msg(x4, x4.nil ; x4 ← x5)

msg(x5, close x5)

We can see that this is an explicit linked list representation of the list, where
channels act like pointers. These messages are persistent, which means
multiple clients can access this data structure, simultaneously in multiple
places. It is important however that is is immutable, where receiving a mes-
sage is synonymous with reading the associated data.

In some sense this is a somewhat wasteful representation. We could for
example, construct longer messages which would be outside of our cur-
rently envisioned grammer of what messages are. For example, to repre-
sent all of these in one big message, we could have

msg(x, x.cons ; send x a ; x.cons ; send x b ; x.nil ; close x)

However, contrary to what I said in lecture, such compact representations
are actually more difficult in structural logic since they preclude direct ac-
cess to the middle of these blocks, or they require new messages to be cre-
ated when one is received. In the linear case, this would be less problematic
than here.

Nevertheless, there is a logical technique called focusing that may justify
big blocks of messages. In fact, focusing will be the subject of the next few
lectures in this course.

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.7

3 Assigning Processes to Proofs for Negative Proposi-
tions

The negative propositions in the structural fragments are A+
U → B−U , ↑ULA+

L ,
and A−U N B−U . The pattern for ↑ULAL in the last lecture was different from
what we saw above for positive connectives. Essentially, a persistent pro-
cess of type ↑A just waited to receive a shift to a fresh linear channel c and
then spawned a fresh copy of itself which offered along c. When we had
only one proposition in the structural layer, this was sufficient. Here, we
have to ask how we obtain a persistent process in the first place. Not every
process can be persistent, since processes, whether they offer along a per-
sistent channel or not, must be able to make progress in their computation.
As far as I can see, this problem is best solved by having another type of se-
mantic object in addition to proc and msg which is a persistent service srvc.
We may view msg and srvc as duals, where msg sends while srvc receives.

But, first, the one-premise version of the usual rules.

Γ, A ` B
Γ ` A→ B

→R
Γ, A,A→ B,B ` C

Γ, A,A→ B ` C
→L∗

When assigning process terms, sending is somewhat tricky. We have to
send a w:A along a channel x:A→ B and also a continuation channel x′:B.

Γ, w:A, x:A→ B, x′:B ` Q :: (z : C)

Γ, w:A, x:A→ B ` x′ ← send x w ; Q :: (z : C)
→L∗

The syntax here might suggest that we pass w to x and receive an x′, but
sending is actually asynchronous and we send a continuation channel for
x′ as well. We can then later communicate along that new channel to com-
municate further with the recipient process. The right rule is simpler by
comparison.

Γ, y:A ` P :: (x : B)

Γ ` y ← recv x ; P :: (x : A→ B)
→R

Computationally, receiving along a persistent channel with potentially many
clients means that we create a persistent service.

proc(x, y ← recv x ; P)

srvc(x, y ← recv x ; P)
→C_srvc

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.8

Now send and recv use a linear message.

proc(z, x′ ← send x w ; Q)

msg(c, x′ ← send x w ; c← x′) proc(z, [c/x′]Q)
→C_sendc

srvc(x, y ← recv x ; P) msg(c, x′ ← send x w ; c← x′)

proc(c, [c/x][w/y]P)
→C_recv

We leave N{li : Ai}i∈I to Exercise 1.

4 Examples: Map and Finite Differences

We use two simple examples to illustrate programming. The first is to map
a process of type A → B over a list. The second computes a list of differ-
ences between elements of a given list.

listA = +{cons : A× listA, nil : 1}

f :A→ B, k:listA ` map :: (l : listB)

l← map← f k =
case k (nil(k1)⇒ wait k1 ; l.nil ; close l

| cons(k1)⇒ (x, k2)← recv k1
y ← send f x
l.cons ; send l y
l← map← f k)

For the second example we use the type of integer lists and an existen-
tial quantifiers ∃x:int. intlist, abbreviated as int∧ intlist. Note that it satisfies
the same rules as A × B, except it sends an integer instead of a channel of
type A.

Our example takes a list of integers and computes the list of differences
between successive integers, which will be one element shorter unless the
given list is already empty. We avoid further syntactic sugar, which should
not be too difficult to imagine.

intlist = +{cons : int ∧ intlist, nil : 1}

k:intlist ` diffs :: (l : intlist)

l← diffs← k =
case k (nil(k1)⇒ wait k1 ; l.nil ; close l

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.9

| cons(k1)⇒ (y, k2)← recv k1 ;
case k2 (nil(k3)⇒ wait k3 ; l.nil ; close l

| cons(k3)⇒ (z, k4)← recv k3 ;
l.cons ; send l (z − y) ;
l← diffs← k2))

A key aspect of this example, which makes it non-linear, is that the re-
cursive call to diffs is passed k2, which is the tail of k, rather than k4, which
is the tail of the tail (and which is is ignored). This structure arises because
we look ahead one element in the list to compute the difference.

5 Upshift, Revisited

In the more general setting of this lecture, we revise the computation rules
for the up modality slightly, taking advantage of the srvc predicate.

proc(zL, yL ← (L)xU ; Qy)

msg(wL, yL ← (L)xU ; wL ← yL) proc(zL, Qw)
↑Cw_send

proc(xU, yL ← (L)xU ; Py)

srvc(xU, yL ← (L)xU ; Py)
↑C_srvc

srvc(xU, yL ← (L)xU ; Py) msg(wL, yL ← (L)xU ; wL ← yL)

proc(wL, Pw)
↑Cw_recv

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.10

Exercises

Exercise 1 Give the process term assignment and computation rules for
N{li : Ai}i∈I in structural logic.

Exercise 2 Prove the logical equivalence betweenANB andA×B in struc-
tural logic. The write out the processes

p:ANB ` back :: (q : A×B)
q:A×B ` forth :: (p : ANB)

where A N B = N{inl : A, inr : B} and the proof term assignment and
computation rules come from Exercise 1.

Can you say succinctly what these two processes do?

LECTURE NOTES OCTOBER 25, 2016

Computation in Structural Logic L16.11

References

[Her94] Hugo Herbelin. A lambda-calculus structure isomorphic to
Gentzen-style sequent calculus structure. In L. Pacholski and
J. Tiuryn, editors, 8th International Workshop on Computer Science
Logic, pages 61–75, Kazimierz, Poland, September 1994. Springer
LNCS 933.

[How69] W. A. Howard. The formulae-as-types notion of construction.
Unpublished note. An annotated version appeared in: To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, 479–490, Academic Press (1980), 1969.

LECTURE NOTES OCTOBER 25, 2016

	Structural Intuitionistic Logic
	Assigning Process Terms to Proofs of Positive Propositions
	Assigning Processes to Proofs for Negative Propositions
	Examples: Map and Finite Differences
	Upshift, Revisited
	Exercises
	References

