Lecture Notes on
Substructural Operational Semantics

15-816: Substructural Logics
Frank Pfenning

Lecture 19
November 3, 2016

Throughout this course we have already used substructural logic to spec-
ify the operational semantics of our (small) programming languages. For
example, we have used ordered inference to represent computation based
on proof reduction in subsingleton logic and we have used linear inference
to represent computation in ordered logic. Focusing provides us with the
needed connection between ordered and linear inference and propositions in
ordered and linear logic, completing the picture. This use of the inference
in linear logic goes back to CLF [WCPW02, CPWW02] which was in turn
inspired by Forum [Chi95, Mil96]. A systematic, taxonomic approach was
advocated [Pfe04] and then explored [SP08, SP09, PS09, SP11] culminating
in Simmons’s dissertation [Sim12].

Before we give further applications, we need to consider how focusing
applies to structural logic, and the integration of structural and substruc-
tural logics.

1 Example: Increment

Let’s recall the representation of binary numbers as string of b0 and b1 and
a left endmarker $ (previously written as eps). For example, the number
10115 would be represented by the ordered context $ bl b0 b1l bl. Now we
specify incrementing such a number by adding a new ordered proposition
inc with the following three rules.

b0 inc bl inc $ inc
bl inc b0 $ bl

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.2

We can represent them by the following propositions, where b0", b1%, ¥,
and inc™ are all positive atoms. We assume that e more binding strength
than \ and /, so that A e B\ C stands for (Ae B) \ C.

b0 e inc\ 1 bl
bl einc\ 1 (inc e b0)
$einc\ T ($ebl)

However, there is a fly in the ointment: the inference rules are persistent,
while the propositions we may focus on are not. So the above propositions
should be shifted from ordered O to structural U. We might try

1o (b0 einc\ 13 bl)

but this does not work, since the an up shift coerces a positive proposition
to a negative one, but (b0 e inc \ 19 bl) is already negative. So we could
write it as

To 43 (b0 einc \ 15 b1)

which is logically correct but, as we will see in Section 4, it may not have
the expected focusing behavior. So we write

ol (b0 einc\ 19 bl)

to lift a negative ordered proposition to a negative unrestricted proposition.
Before we investigate the properties of g1}, an excursion to look at focusing
for structural logic more generally.

2 Focusing for Structural Logic

We start with the polarized form of structural logic. As before we keep two
forms of conjunction which are logically, but not computationally equiva-
lent.

A= = p |AT - B |A” & B |47

At u= pt|ATx BT |1]| AT+ Bt ||A™

The key insights are the following:

1. For left inversion rules, we do not need to keep a copy of the prin-
cipal proposition of the inference. That’s because its components are
equivalent to the proposition itself. This also means that even struc-
tural antecedents are no longer persistent.

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.3

2. For left chaining rules, the proposition in focus is also not persistent.
This also should be intuitive, since we cannot have the formula and
its subformula both be in focus.

We say antecedents I are stable™ if I' consists only of negative propositions
and positive atoms and succedent C'is stable™ if it is a positive proposition
or a negative atom. We still have three judgment forms

rrA
I'IF [4] with I stable™
[,[A] IF C with T stable™ and C stable™

As in Lecture 18 we present a confluent focusing system with don’t-care
nondeterministic inversion rules. Simmons [Sim14] presents a system more
suited for most implementations and also proofs of admissibility of cut and
identity in which inversion takes place deterministically. We first show the
structural rules.

_— it —
rpt Ik [pt] | T, [p]kp
(T'stable™) T IF[CT]
focus™
TI+FCt

(T stable™, C'stablet) T, A=, [A7]IFC
rA-+cC

focus™

Note that in the negative focusing rule we copy the proposition A~, which
will be the only instance of an explicit contraction-like behavior. In all other
two-premise rules, we will propagate the antecedents to both premises.
The remaining rules can be constructed straightforwardly from the general

LECTURE NOTES NOVEMBER 3, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/18-focusing.pdf

Substructural Operational Semantics L19.4

principles we have laid out.

T, A+ - B~ TIF[AT] T,[B7]FC
———————— R
Tl AT — B~ T,[A" — B]IFC
TIFA- T B L AT]IFC L, [B7]IFC
&R &4 &Lo
Tl-A- & B~ T, [A-&B]IFC T,[A-&B]IFC
Tl A+ . AT IFC
TI-1A+ T, [tA*] I+ C
T'IF[AT] TI[BY] T, A+, BYIFC
xR x L
Tk [AT x BT] T, A+ x Bt I C
Tl
1R FC
T Ik [1] I,1IFC
T IF[AY] T I [B] i I A*IFC T,BYIFC
+ +
T [AT+BY TWk[At+BT] I, A"+ Bt IFC
LIFA- R LA~ IFC
TIF[LA] T, A= IFC

3 Quantifiers

The quantifiers follow the familiar patterns; we saw their basic structure in
Lecture 14. We can deduce their polarity by seeing which rules are invert-
ible, or which rule is applied first in the identity expansion. Clearly, they
are VR and 3L.

A™ n= | Vo AT

AT n= | 3mT AT

We generalize the judgment to allow term variables 7 to be declared in a
signature ¥ which is propagated to all premises in all rules: type declara-

LECTURE NOTES NOVEMBER 3, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/14-structural.pdf

Substructural Operational Semantics L19.5

tions for term variables are persistent.

Y,a:m; TIF A(a)™ Yt X5 0,[A(0)T]IFC
VR%
YT IFVar A(x)~ 5,0, [Vour. A(x)"] IFC
Yht:r X;TIF[A#)T] Y,a:r; T, A(a)T IFC
R a
Y Tk [Hair. A(z)] YU, 3z A(x) T I C

4 Shifting Focus Between Logics

For the moment, we are interested in a logic that combines ordered with

unrestricted propositions, with a very thin layer of unrestricted proposi-
1

tions.
Ay == py | et Ag
Al w= py
Ay == po|... | 10AT
AS u= pd | [USAT [S AY

We get the following additional rules

—id} —id
L,pJ I [p)] N
(T stable™, Q stable™, C, stable™) (T stable™, Cy stable™)
focus,, focus,,
(T stable™)
T IF[AL]
—— focus{
I'I-FAF
F;oIFAgg - U0 [A5] Q- C 8
I'lFgtl 4o BN A IO
+ + .
L'k [Ao] U FvAu) Q1 QZ I+ C'o B\LTL
o
T 51 Ag] T (S AY) Q2 IF Co

!As T am writing this, I am not at all sure that the polarity-preserving, mode-shifting
modalities really work.

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.6

How do we now specify the ordered operational semantics of subsingleton
logic? We consider a couple of rules.

proc(P | @)
proc(P) proc(Q)

cmp

This rule may be used many times, so we get

oTHVP.VQ. proc(P | Q) \ T(proc(P) e proc(Q)))

Focusing on this unrestricted proposition will create the computation rule

0 proc(P) proc(Q) Qa2 IF C
O proc(P | Q) Q IFC

cmp

which corresponds exactly the original ordered inference rule cmp just above.
In the following, we omit the explicit ¢} and the outermost quantifiers, us-
ing the conventions that rules are persistent and that upper case variables
are implicitly universally quantified.

Next, the rule for disjunction.

proc(R.ly ; P) proc(casel (I; = Q;)icr)
proc(P) proc(Qy)

Propositionally:

oM VP:pexp. VI:idx. VQ:Iliel. pexp. VEE].
proc(R.l;, ; P) e proc(casel (I; = Q;)icr) \ T (proc(P) e proc(Qy))

We add the remaining rules, omitting the leading shifts and quantifiers
which can easily be inferred. We also label each rule with a name, which
we will eventually see as a dependent type declaration.

cmp : proc(P [Q) \ T(proc(P) e proc(Q))

(
fwd : proc(<»)\T1
®C : proc(R.y ; P) e proc(casel (I; = Qi)ier) \ T (proc(P) e proc(Qy))
(
(

\ 1
&C : proc(caseR (I; = P;);cr) ® proc(L.lg ; ; (proc(FP) e proc(Q))

Q)
1C : proc(closeR) e proc(waitL ; @) \ 1 proc(Q

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.7

5 Example: Ordered Processes

When we generalize away from the subsingleton fragment, we needed to
introduce channels because a process might communicate along any of the
channels it uses. Consequently, we used linear inference rather than ordered
inference to describe the operational semantics. The substructural opera-
tional semantics then uses the linear fragment rather than the ordered one.
The principles of chaining, inversion, and focusing are completely analo-
gous, so we will just use it without further formalities.

Processes are now captured with the predicate proc(z, P) which is pro-
cess P offering a service along channel . We begin with the rule of com-
position for spawning a new process, providing along a new channel z.

proc(z,y <= P(y) ; Q(y))
proc(z, P(z)) proc(z,Q(z))

cmp

Omitting quantifiers as in the previous example, we start with something
like

cmp : proc(X,y < P(y) ; Q(y)) — T(proc(z, P(z)) ® proc(X, Q(z))) 77

The problem here is the status of z. It it were a free variable in the rule and
therefore implicitly universally quantified, we could choose any channel
for z, including, say, X, which is obviously incorrect: z must be chosen
fresh. The answer here is to existentially quantify over z.

cmp : proc(X,y = P(y) ; Q(y)) — 1(Jz:ch. proc(z, P(z)) ® proc(X, Q(2)))
To see why this is correct, let us consider focusing on
at — (2.7 (2) ® ¢ (2))
which is a slightly abstracted version of the rule above. First, the chaining

phase.

(Ar=a®) . YAy, 20t (2)®@ct(2) IFG L
(A= (A1LAY)) T;A; I [at] d S Ao, [t (3207 (2) @ ¢t (2)] F G

YA Jat —o1(32.0T(2)®@c(2)] IFG

—o

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.8

In the only remaining subgoal, we need to complete the inversion phase.

Y, 275 Ag, b (2), ¢ (2) IFG

®L
¥, 27 A, bT(2) @t (2) IFG
Jr?
(Ay =at) . ¥ Ao, 2. b (2)@ct(2) IFG o
id
(A=(A1LAY)) T;AF[T] 0 ;A0 [(32 b1 (2) @ et ()] F G
—oL
YA [t — 1t (Fz.bT(2) @ct(2)]IFG
This gives us the following synthetic rule of inference:
¥, 27 Ao, b1 (2), ¢t (2) IF G
S Ag,at IF G
In our particular example, we get
¥, z:ch 5 A proc(z, P(2)), proc(X,Q(2)) IF G
mp?

Y5 A, proc(X,y + P(y) ; Q(y)) IF G

which is exactly what we were hoping for, since it is the correct sequent
calculus rendering of our original linear inference rule

proc(z,y + P(y) ; Q(y))
proc(z, P(z)) proc(z,Q(z))

z

cmp

From this example, we can now write some of the other rules. For the sake

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.9

of brevity, we specify the synchronous versions.

cmp : proc(X,y = P(y) ; Q(y))
—o 1 (Jz:ch. proc(z, P(z)) & proc(X, Q(z)))

@C : proc(X,X.ly; P)® proc(Z,case X (I; = Qi)ier)
— T (proc(X, P) ® proc(Z, Q)

&C : proc(X,case X (l; = P;)ier) @ proc(Z, X 1y, ; Q)
—o 1 (proc(X, Py) ® proc(Z,Q))

®C : proc(X,send X W ; P) ® proc(Z,y < recv X ; Q(y))
— T (proc(X, P) @ proc(Z, Q(W)))

—C' : proc(X,y < recv X ; P(y)) @ proc(Z,send X W ; Q)
—o 1 (proc(X, P(W)) ® proc(Z, Q))

1C : proc(X,close X) ® proc(Z,wait X ; Q)
—o 1 proc(Q)

fwd : proc(X, X «<Y)—o1X=Y

Only the last rule requires a new form of linear proposition, namely equal-
ity. We use it here only for parameters at type ¢ without any constant con-
structors to avoid a more extended development. Its right rule is just re-
flexivity; its left rules performs substitution.

Y,z Az, 2) F C(z,2)
=R) =L*
S,z -Fr=x S,z yi s Az, y),x =y Clz,y)

This form of equality is positive: the left rule is invertible. This means that
the focusing versions are

Y,z Az, 2) IF C(z,2)
Soxoy - b [= 2 S,z yn ;s Az, y),z =y - C(z,y)

Note that we could and perhaps should retain = and y in the signature in
the premise, but they can no longer occur in A(z, z) or G(z, z) so we have
removed them.

Playing through focusing on the forwarding rule

fwd : proc(X, X « YY) o1 X =Y

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.10

we get the following synthetic rule

Y, zich ; Az, 2) IF C(z,2)
Y, x:ch,y:ch ; Az, y), proc(z, z < y) IF C(x,y)

fwd?

which is the correct rendering of our (sketched) rule of linear inference: the
channels x and y are identified. Since variables can be consistently renamed
in a judgment, we could write equivalently 3, z:ch ; A(z,z) I C(z,z) or
Y, y:ch 5 Ay,y) IF C(y,y). Parameters here are not names in the sense of
nominal logic, since we cannot compare them for disequality. In fact, doing
so would be wrong: the identity rule would then be unsound since it unifies
two previously distinct parameters.

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.11

Exercises

Exercise 1 Write out the ordered SSOS rules for the asynchrononous se-
mantics for subsingleton logic, using a msg predicate.

Exercise 2 Write out the linear SSOS rules for the asynchronous semantics
for ordered logic, using a msg predicate.

Exercise 3 Integrate a structural layer into ordered logic using 1A, and
lgAy. Then use the modalities of Section 4 to extend the synchronous se-
mantics of Section 5 to the new shift constructs.

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.12

References

[Chi95]

[CPWWO02]

[Mil96]

[Pfe04]

[PS09]

[Sim12]

[Sim14]

[SP08]

[SP09]

Jawahar Lal Chirimar. Proof Theoretic Approach to Specification
Languages. PhD thesis, University of Pennsylvania, May 1995.

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin
Watkins. A concurrent logical framework II: Examples and
applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

Dale Miller. Forum: A multiple-conclusion specification logic.
Theoretical Computer Science, 165(1):201-232, 1996.

Frank Pfenning. Substructural operational semantics and lin-
ear destination-passing style. In W.-N. Chin, editor, Proceedings
of the 2nd Asian Symposium on Programming Languages and Sys-
tems (APLAS’04), page 196, Taipei, Taiwan, November 2004.
Springer-Verlag LNCS 3302. Abstract of invited talk.

Frank Pfenning and Robert J. Simmons. Substructural opera-
tional semantics as ordered logic programming. In Proceedings
of the 24th Annual Symposium on Logic in Computer Science (LICS
2009), pages 101-110, Los Angeles, California, August 2009.
IEEE Computer Society Press.

Robert J. Simmons. Substructural Logical Specifications. PhD
thesis, Carnegie Mellon University, November 2012. Available
as Technical Report CMU-CS-12-142.

Robert J. Simmons. Structural focalization. ACM Transactions
on Computational Logic, 15(3):21:1-21:33, 2014.

Robert J. Simmons and Frank Pfenning. Linear logical algo-
rithms. In Proceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming (ICALP’08), pages 336-345,
Reykjavik, Iceland, July 2008. Springer LNCS 5126.

Robert J. Simmons and Frank Pfenning. Linear logical approx-
imations. In G. Puebla and G. Vidal, editors, Proceedings of the
Workshop on Partial Evaluation and Program Manipulation, pages
9-20, Savannah, Georgia, January 2009. ACM SIGPLAN.

LECTURE NOTES NOVEMBER 3, 2016

Substructural Operational Semantics L19.13

[SP11] Robert J. Simmons and Frank Pfenning. Logical approximation
for program analysis. Higher-Order and Symbolic Computation,
24(1-2):41-80, 2011.

[WCPWO02] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, 2002. Revised
May 2003.

LECTURE NOTES NOVEMBER 3, 2016

	Example: Increment
	Focusing for Structural Logic
	Quantifiers
	Shifting Focus Between Logics
	Example: Ordered Processes
	Exercises
	References

