Lecture Notes on
Call-by-Value and Call-by-Name

15-816: Substructural Logics
Frank Pfenning

Lecture 22
November 16, 2017

In this lecture we consider two different polarization strategies for struc-
tural intuitionistic natural deduction. If we decide to translate propositions
positively we obtain, under the computational interpretation of proofs as
computations, a call-by-value language. If we translate propositions nega-
tively we obtain call-by-name. These embeddings are compositional, sup-
porting Levy’s claim [Lev01] that call-by-push-value (CBPV) is a unifying
approach to functional programming. With CPBV we can easily choose, at
a fine-grained level, which computations are eager and which are lazy.

1 Call-by-Value as Positive Polarization

Let’s assume we have a source language

Types A,B,C == ADB|AANB|T|V{l:AteL
Expressions FE n= x| \x.E| E1 Ey ADB
| <E1,E2>|7T1E‘7[’2E AANB
O T
| U(F)|case E (I(z) = Ei)ier AV B

We write (A)* for the positive polarization of A, which is defined induc-
tively as follows:

(AD>B)* = (AT =1(B)")
(AnB)* = (AT x(B)*

(M)* =1

(VL Ahen)t = H:(A) her

LECTURE NOTES NOVEMBER 16, 2017

Call-by-Value and Call-by-Name L22.2

This would seem to be a minimal positive polarization. Based on this, we
can now write translations of expressions. The theorem we are aiming for
is

IfT + E: Athen (T)* + (E)T : 1 (A)T

Note that the translation of an expression should be a computation, so we
have to coerce (A)" to be a negative type in this judgment. This principle
and the translation of types leaves very little leeway. Let’s work through
this carefully for functions. Assume

'FXx.E:ADB

Then
'z E)T: 1 (4> B)*t

which works out to
Tt Az BE)T 1L (AT = 1(B)Y)

We also know
Do (A)TH(E)T . 1(B)*"

From that, we can fill in
(Az. E)* = return thunk (\z. (E)™)

What about application (E; E2)*? We know

O EE)T 2 AT = 1(B)T)
(O F(E)" o (A7
(O F (B E)T + 1(B)T

From this we can see that the types almost force:
(B1 Eo)™ =letval f = (FE1)" inletval x = (Eo)" in (force f)x

Also well-typed would be the result of swapping the two lets, or perform-
ing one more result binding at the end:

(E1 E2)+ = letval f = (E1)+ in
letval z = (F2)" in
letval y = (force f) z in

return y

LECTURE NOTES NOVEMBER 16, 2017

Call-by-Value and Call-by-Name L22.3

In summary, for functions:

z)* = returnz

()

(Az.E)"™ = return thunk (\z.(E)™)

(Ey E3)™ = letval f = (E1)" inletval z = (F2)" in (force f)x

Translations of pairs is simpler, since we can arrange to use positive (eager)
pairs in the target.

((E1, Eo))t = letval z; = (E1)" in letval 2o = (F2)™ in return (z1, x2)
(m E)* = letval z = (E)* in match = as (y,2) = return y
(mo E)T = letval x = (E)" in match x as (y, z) = return 2z

Similarly for T and V{l: A;}icr.

(Nt = return ()
(I(E)* = letval x = (E)™ in return I(x)
(case E (I(x) = E))jer)™ = letval z = (E)" in match x as (I(z) = (E))")ier

At this point we have completed our embedding. We could, for example,
give a call-by-value operational semantics on unpolarized expressions and
then show that this particular translation is operationally adequate. We are
more inclined to think of this translation as the definition of call-by-value
and move on.

2 Call-by-Name as Negative Polarization

We now consider the negative polarization of an unpolarized type. For the
conjunction, we clearly should choose the negative conjunction, correspond-
ing to lazy pairs consistent with call-by-name.

(ADB)~ = 1(A)” = (B)”
(AANB)~ = &{m :(A)",m:(B)"}
(T)~ = &{}

(V{l: Athier) = TH{:4(A) her

Now the judgment I' - E : A will be translated to (I')" + (E)~ : (A)~,
where for the hypotheses with have

(fL'lZAl, cee :En:ATL)_‘_ = 1312\1,(141)_, s ,LEnZ\L (ATL>_

LECTURE NOTES NOVEMBER 16, 2017

Call-by-Value and Call-by-Name L22.4

The extra down shift for the context is forced since call-by-push-value al-
lows only positively typed variables, while for the translation of an expres-
sion to a computation, no additional shift is necessary.

As we design the translation for expressions, let the types be or guide

as usual.
Az . E)~ : L(A)” = (B)~
(2 5 L(A)
(E)” (B)~
Clearly, we have
(Az.E)” = Xx.(E)”
()~ = forcex
In the same style of reasoning;:
(Ex Ep)™ : (B)”
(Ev)~ : L(A)” = (B)”
(E2)” ¢ (A)7
Again, it seems our hand is forced:
(El EQ)_ = (El)_ (thunk (EQ)_)
In summary, for functions:
()~ = forcex
(M. E)” = Mz.(E)”
(E1 Eg)_ = (El)_ (thunk (EQ)_)

This clearly represent call-by-name. We pass a computation, packaged as
a thunk, and force that thunk where the variable is used. In all call-by-need
language such as Haskell, the value of this forced expression is memoized
so that future evaluations of forcez do not evaluate the thunk again but
retrieve its value.

For conjunction, we abbreviate the process. Recall that (A A B)™ =
adm : (A)~ 72t (B))

(E1, E2))” = {m = (E1)",m2 = (E2)"}
(m E) = (E)".m
(71'2 E) = (E)_.7T2

Truth T is the nullary case of conjunction and consequently becomes &{ }.
We the translate
) = {}

LECTURE NOTES NOVEMBER 16, 2017

Call-by-Value and Call-by-Name L22.5

It seems implication and conjunction translates more directly for call-by-
name than for call-by-value. However, disjunction has two shifts and is
therefore more complicated.

UE)~ : t+{l: L(A) hep forlel
B~ ©(A)T

SO
(I(E))~ = returnl(thunk (E)™)

The elimination form is our most complex case

(case E (l((L‘) = El)leL)f : (C)f

(E)” Tl L (A) " her
(Er)~ » (O)”

(z)” b (AT

but if want to respect all these types, the following suggests itself
(case E (I(z) = Ej)icr)” = letvaly = (E) match y as (I(z) = (Ei)7)ieL

Summarizing whole call-by-name translation (which is to say, the negative
translation)

(x)~ = forcex

(A\z. E)~ = lx.(E)”

(E1 Eg)i = <E1>7 (thunk (EQ)i)

((E1, E2))~ = {m=(E1)",m= (E2)"}

(m E) = (E)".m

(7T2 E) = (E)i.ﬂ'g

()~ = {}

(I(E))~ = return{(thunk (E)7)

(case E (I(x) = Ey)ier,)” = letvaly = (E) match y as (I(z) = (E1) 7)ieL

3 Destinations
The operational semantics of call-by-push-value is very direct using or-

dered inference. In the next lecture we will introduce the Concurrent Logi-
cal Framework (CLF) which, unfortunately, is linear and does not support

LECTURE NOTES NOVEMBER 16, 2017

Call-by-Value and Call-by-Name L22.6

ordered specifications. One idea, not very elegant, is to create explicit se-
quences of assumptions. But there is a different way, namely to use destina-
tions to tie the propositions together. In general, the ordered context

A A,
is represented by
Ai(do,dy) Az(dy,da) ... Ap(dn—1,dy)

where all of dy,d1,ds,...,d,—1,d, are distinct parameters, and dy and d,
represent the left and right endpoints [SP11]. You can think of them just
as if they were channels in our previous linear specifications, but used in a
disciplined way since the context is actually ordered.

In our particular example, the configuration would look like

eval(M,dy+1,dy) cont(K,,,dp,dn—1) ... cont(Ky,dq,dp)
retn(T, dp+1,dy,) cont(Ky, dy,dp—1) ... cont(K1,d;,doy)

We can rearrange and optimize slightly, noting, for example, that we never
need d, 11 and we use

eval(M,d)

retn(T, d)

cont(d, K,d")
As a sample, we given the rules for functions, first in their ordered form

and then in destination passing style. Note that the rules for applications
must introduce a fresh destination.

Ordered Destination-Passing
eval(M V) eval(M V,d))
—C —C¢
eval(M) cont(_V) eval(M,d") cont(d',_V,d)
eval(Az. M) eval(Azx. M, d)
— =% — =Y
retn(Az. M) retn(Az. M, d)
retn(Az. M) cont(_V) retn(Az. M,d') cont(d',_V,d)
—>Cg —>C3
eval([V/z| M) eval([V/z|M, d)

As a preview of CLF [WCPWO02, CPWW02, WCPW04, SNS08, SN11], we
show the relevant part of the file cbpv.clf which implements the above idea.

LECTURE NOTES NOVEMBER 16, 2017

http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/cbpv.clf

Call-by-Value and Call-by-Name L22.7

There are a few things we have not discussed, such as the indexing of values
and computations by their positive or negative types. We first highlight the
three rules on the right.

eval/app : eval (app M V) D

-0 {Exists d’. eval M d’ * cont 4’ (appl V) D}.
eval/lam : eval (lam (\!x. M !x)) D -o {retn (lam (\!x. M !x)) DI}.
eval/appl : retn (lam (\!'x. M !x)) D’ * cont D’ (appl V) D

-o {eval (M !'V) D}.

Because we index values and computations, the code below is not only an
operational specification but also a type checker for call-by-push-value. We
have limited ourselves to the binary forms of & and + since label sets are
not so easily represented.

% Call-by-push-value in CLF
% Pure function fragment with shifts

neg : type.

pos : type.

arrow : pos -> neg -> neg. 4 A ->B
up : pos -> neg. % up A
down : neg -> pos. % down A

% values and computations, indexed by their type
val : pos —> type.
comp : neg -> type.

% negative types

% A -> B

lam : (val A -> comp B) -> comp (arrow A B).
app : comp (arrow A B) -> val A -> comp B.

% up A
return : val A -> comp (up A).
letval : comp (up A) -> (val A -> comp C) -> comp C.

% down A

thunk : comp A -> val (down A).
force : val (down A) -> comp A.

LECTURE NOTES NOVEMBER 16, 2017

Call-by-Value and Call-by-Name L22.8

% runtime artefacts

dest : neg -> type.

frame : neg -> neg -> type.

appl : val A -> frame (arrow A B) B.

letvall: (val A -> comp C) -> frame (up A) C.

% ssos predicates

eval : comp A -> dest A -> type.

retn : comp A -> dest A -> type.

cont : dest A -> frame A B -> dest B -> type.

% A -> B
eval/lam : eval (lam (\!x. M !x)) D -o {retn (lam (\!'x. M !x)) D}.
eval/app : eval (app M V) D

-o {Exists d’. eval M d’ * cont 4’ (appl V) D}.
eval/appl : retn (lam (\!'x. M !x)) D’ * cont D’ (appl V) D

-o {eval (M !V) DZ}.

% up A
eval/return : eval (return V) D -o {retn (return V) D}.
eval/letval : eval (letval M (\!x. N !x)) D
-o {Exists d’. eval M 4’
* cont d’ (letvall (\!x. N !x)) D}.
eval/letvall : retn (return V) D’ * cont D’ (letvall (\!'x. N !x)) D
-o {eval (N !V) D}.

% down A
eval/force : eval (force (thunk M)) D
-0 {eval M D}.

#query * 1 x 1
Pi d0. eval (lam (\'!'x. return x)) dO -o {retn M dO}.

#query * 1 * 1

Pi d0. eval (app (lam (\!x. return x)) (thunk (lam (\'y. return y)))) 4O
-o {retn M dO}.

LECTURE NOTES NOVEMBER 16, 2017

Call-by-Value and Call-by-Name L22.9

Exercises

Exercise 1 Both call-by-value and call-by-name lead to code that is consid-
erably more complex than it needs to be, including, for example, patterns
such as letval 2’ = return z in M. These spurious introduction/elimination
forms are called administrative redices. Begin by showing an example of an
expression whose call-by-value translation contains an administrative re-
dex.
If possible, rewrite the call-by-value translation using two different forms,

one resulting directly in a value the other in a computation.

T+ (B) : (A)*
I E(E)" (A

calling upon the appropriate translation form. Try to write the refined
translation so that no administrative redices arise. If this does not work,
do you see another approach to avoiding administrative redices?

Exercise 2 Carry out Exercise 1 for call-by-name.

Exercise 3 Investigate a linear call-by-push-value combined with Levy’s by
an adjunction with two shifts. Explore the expressive power of the result.
Does linearity describe and interesting and useful properties of functional
computation?

Exercise 4 Using a substitution-free operational semantics as in Exercise
L21.1, specify a call-by-need operational semantics. Can you do this on call-
by-push-value in general, or should it be integrated somehow (or described
directly) on call-by-name?

LECTURE NOTES NOVEMBER 16, 2017

http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/21-cbpv.pdf#exercise.1
http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/21-cbpv.pdf#exercise.1

Call-by-Value and Call-by-Name L22.10

References

[CPWWO02]

[Lev01]

[SN11]

[SNS08]

[SP11]

[WCPWO02]

[WCPW04]

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin
Watkins. A concurrent logical framework II: Examples and
applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

Paul Blain Levy. Call-by-Push-Value. PhD thesis, University of
London, 2001.

Anders Schack-Nielsen. Implementing Substructural Logical
Frameworks. PhD thesis, IT University of Copenhagen, January
2011.

Anders Schack-Nielsen and Carsten Schiirmann. Celf - a logi-
cal framework for deductive and concurrent systems. In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors, Proceedings
of the 4th International Joint Conference on Automated Reasoning
(IICAR’08), pages 320-326, Sydney, Australia, August 2008.
Springer LNCS 5195.

Robert J. Simmons and Frank Pfenning. Logical approximation
for program analysis. Higher-Order and Symbolic Computation,
24(1-2):41-80, 2011.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, 2002. Revised
May 2003.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. Specifying properties of concurrent computations in
CLF. In C.Schiirmann, editor, Proceedings of the 4th International
Workshop on Logical Frameworks and Meta-Languages (LFM'04),
Cork, Ireland, July 2004. Electronic Notes in Theoretical Com-
puter Science (ENTCS), vol 199, pp. 133-145, 2008.

LECTURE NOTES NOVEMBER 16, 2017

	Call-by-Value as Positive Polarization
	Call-by-Name as Negative Polarization
	Destinations
	Exercises
	References

