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A logical framework is a metalanguage for the representation and analysis
of deductive systems such as logics, type systems, specifications of opera-
tional semantics, etc. The goal is to distill the essence of deductive systems
so that encodings are as direct and natural as possible. In many ways one
can consider them normative in that they embody the judgmental principles
upon which the design of logics and programming languages are (or ought
to be) based on.

An early logical framework was LF [HHP87, HHP93], implemented in
the Twelf system [PS99] which is based on a minimal structural dependent
type system λΠ. It elucidated and crystallized the notions of bound vari-
able, capture-avoiding substitution, hypothetical judgment, and generic
judgment. The high level nature of the encodings allowed automatic and
programmatic theorem proving [Sch00] as well as execution of some spec-
ifications as backward-chaining logic programs [MN86, Pfe91].

It was recognized early on that substructural logics and related pro-
gramming languages could not be represented as directly in LF and related
frameworks such as λProlog [MN86] as one might hope. Essentially, early
frameworks did not support linear hypothetical judgments directly, which
hampered encodings. This was addressed in a line of research on substruc-
tural linear [HM94, Mil94, Chi95, CP96, CP02] and ordered [PP99b, PP99a,
Pol01] logical frameworks, eventually culminating in the Concurrent Logi-
cal Framework (CLF) [WCPW02, CPWW02, WCPW04] and its implemen-
tation in Celf [SNS08].

CLF is expressive and robust enough to allow logic programming [LPPW05]
but metatheoretic reasoning in the style of Twelf remains elusive (see [Ree09]
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for one approach). In this lecture we focus on the positive fragment of CLF,
applying a bit of hindsight to polarize the original presentation. This frag-
ment is of particular interest since its forward-chaining operational seman-
tics allows us to represent the deductive systems we have analyzed in this
course in a high-level and executable manner.

1 The Positive Fragment of CLF

CLF arises from the polarized adjoint formulation of intuitionistic linear
logic by admitting dependent types. We will largely downplay this aspect
of the CLF, since it is rich enough to be the subject of its own course [Pfe92].
Instead we emphasize the substructural aspects of the framework. Before
launching into its description, we should emphasize that we are interested
almost exlusively in focused, cut-free proofs. It is terms representing these
proofs that end up being in bijective correspondence with the objects we
would like to represent.

By default, layers of the syntax are linear, so we will only annotate types
that are structural as AU.

A+
U ::= p+

U | . . .
A− ::= A+ ( B− | Πx:A+

U . B
− | A− NB− | ↑A+ (but not p−)

A+ ::= p+ | A+ ⊗B+ | 1 | ∃x:A+
U . B

+ (but not ↓A−)

A few remarks on these types. We do not include negative atoms (p−) or
↓A−, which constitutes our restriction to the negative fragment. We omit-
ted disjunction A+ ⊕ B+ because we have not carried out the theory to
understand what true concurrency would mean, something we discuss in
the next lecture. We have left open what kinds of propositions we would
have in the structural layer. Positive atoms p+

U are useful because they cor-
respond to the persistent propositions we have used in various representa-
tions.

Note that universal (Πx:A+
U .B

+) and existential (∃x:A+
U . B

+) are con-
structs of mixed mode, combining structural and linear types into a linear
type. This appears to be necessary: while one can give formalistic con-
structions of a linear dependent function space, there is to date no fully
satisfactory account of it. The reason lies in the question of what consti-
tutes a “linear use” of x in a hypothetical linear Π, as compared to simply
a “mention” of x in the type. In practice, we have developed a number of
techniques to circumvent the need for linear dependent functions, mostly
by splitting the name x (which is persistent) from a linear capability which
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explictly marks uses x. The complications, by the way, are not specific to
linear logic but appear in the literature of modal logic in various forms even
just for first-order modal logic.

The proof term assignment to this calculus turns out to be quite a bit
different for call-by-push-value or for SILL, both of which were similarly
polarized. Here, we are interested in representing only cut-free, focused
proofs because these are used for representation. For starters, in call-by-
push-value we had two forms of terms: computations (of negative type)
and values (of positive type). Here we will have five different forms of
terms, corresponding to right inversion and left focusing (negative types),
left inversion and right focusing (positive types) and one for neutral se-
quents, before a focusing phase is started. We introduce the terms in stages,
but first all five judgments. We use Γ for positive structural contexts, ∆ for
linear antecedents, and Ω+ for linear antecedents presented in an ordered
fashion so that inversion is deterministic.

Γ ; ∆ `M : A− right inversion
Γ ; ∆ ; Ω+ ` J left inversion
Γ ; ∆, [R : A−] ` E : C+ left focusing
Γ ; ∆ ` [V : C+] right focusing
Γ ; ∆ ` E : C+ stable sequent

Γ ` [VU : A+
U ] structural right focus

In left inversion, the judgment J on the right could be either M : A− or
E : C+.

Right Inversion. For right inversion, the assignment is straightforward,
consistent with our call-by-push-value functional language, even though
we are operating in a sequent calculus here. The judgment for right inver-
sion is Γ ; ∆ `M : A−.

Γ ; ∆ ; p : A+ `M : B−

Γ ; ∆ ` λp.M : A+ ( B−
(R

Γ, x:A+
U ; ∆ `M : B−

Γ ; ∆ ` λx.M : Πx:A.B−
ΠR

Γ ; ∆ `M : A− Γ ; ∆ ` N : B−

Γ ; ∆ ` 〈M,N〉 : A− NB−
NR

Γ ; ∆ ` E : A+

Γ ; ∆ ` {E} : ↑A+
↑R

In the final rule we transition to the stable judgment, where all declarations
in ∆ are either x : A− or x : p+. For Γ, we only consider x+

U : p+
U , which is

also stable.
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Left Inversion. Left inversion operates on an ordered context Ω with propo-
sitions p : A+ where p is a pattern (not an atomic type). When the context is
empty and all inversion steps have been applied, we return to the judgment
J .

Γ ; ∆, x:p+ ; Ω ` J

Γ ; ∆ ; (x : p+) Ω ` J
atm+

Γ ; ∆ ; (p : A+) (q : B+) Ω ` J

Γ ; ∆ ; ([p, q] : A+ ⊗B+) Ω ` J
⊗L

Γ ; ∆ ; Ω ` J

Γ ; ∆ ; ([ ] : 1) Ω ` J
1L

Γ, x:A+
U ; ∆ ; (q : B+) Ω ` J

Γ ; ∆ ; ([xU, q] : ∃xU : A+
U . B

+) Ω ` J
∃L

Γ ; ∆ ` J
Γ ; ∆ ; · ` J

empty

Left Focus. When thinking about left focus, we have to think about the
signature Σ which contains (in our case) constants c : A−L , arbitrarily reusable.
Strictly speaking, there should be a shift here, but we dispense with that
due to the special case of the global signature.

(c:A− ∈ Σ) Γ ; ∆, [c : A−] ` E : C+

Γ ; ∆ ` E : C+
foc−U

Γ ; ∆, [x : A−] ` E : C+

Γ ; ∆, x:A− ` E : C+
foc−L

Γ ; ∆ ` [V : A+] Γ ; ∆, [RV : B] ` E : C+

Γ ; ∆,∆′, [R : A+ ( B−] ` E : C+
(L

Γ ` [VU : A+
U ] Γ ; ∆, [RVU : [VU/x]B−]] ` E : C+

Γ ; ∆, [R : Πx:A+
U . B

+] ` E : C+
ΠL

Γ ; ∆, [π1R : A−] ` E : C+

Γ ; ∆, [R : A− NB−] ` E : C+
NL1

Γ ; ∆, [π2R : B−] ` E : C+

Γ ; ∆, [R : A− NB−] ` E : C+
NL2

Γ ; ∆ ; p : A+ ` E : C+

Γ ; ∆, [R : ↑A+] ` let {p} = R in E : C+
↑L

The last rule here represents a transition to the left inversion judgment.

Right Focus. Finally, we come to right focus which, in the positive frag-
ment, will always either succeed and finish the proof or fail. Since the pos-
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itive fragment lacks ↓A− we cannot lose focus.

Γ ; ∆ ` [E : C+]

Γ ; ∆ ` E : C+
foc+

Γ ; x:p+ ` [x : p+]
id+

Γ ; ∆ ` [V : A] Γ ; ∆ ` [W : B]

Γ ; ∆,∆′ ` [[V,W ] : A⊗B]
⊗R

Γ ; · ` [[ ] : 1]
1R

Γ ` [VU : A+
U ] Γ ; ∆ ` [W : [VU/x]B+]

Γ ; ∆ ` [[VU,W ] : ∃x:A+
U . B

+]
∃R

Structural Right Focus. Since in our language at the moment we only
consider atomic structural propositions, we only have one rule.

Γ, x:p+
U ; · ` [x : p+

U ]
id+

U

2 Summary of Proof Terms

We obtain the following language of terms, where we indicate in each line
the corresponding proposition and the concrete Celf syntax for the con-
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struct.

Abstract Syntax Concrete Syntax
Term Type Term Type

M ::= λp.M A+ ( B− \p. M A -o B

| λxU.M ΠxU:A−U . B
− \!x. M Pi x:A. B

| 〈M,N〉 A− NB− < M , N > A & B

| {E} ↑A+ { E } { A }

p ::= x p+ x

| [p, q] A+ ⊗B+ [p,q] A * B

| [ ] 1 1 1

| [xU, p] ∃xU:A+
U . B

+ [!x,p] Exists x:A. B

R ::= c c:A− ∈ Σ c

| x x:A− ∈ ∆ x

| RV A+ ( B− R V A -o B

| π1R | π2R ANB #1 R #2 R A & B

| RVU ΠxU:A+
U . B

− R !V Pi x:A. B

V ::= x p+ x

| [V,W ] A+ ⊗B+ [V,W] A * B

| [ ] 1 1 1

| [VU,W ] ∃xU:A+
U . B

+ [!V,W] Exists x{:}A. B

E ::= let {p} = R in E left focus let {p} = R in E { A }

| V right focus V

3 Example: Coin Exchange

We have already seen a significant transcription of inference rules into Celf
in Lecture 22 on call-by-value and call-by-name.

Let’s see CLF in action on a simpler example: the old coin exchange.1

q : type.

d : type.

n : type.

d2q : d * d * n -o { q }.

q2d : q -o { d * d * n }.

1Source at http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/exchange.clf
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n2d : n * n -o { d }.

d2n : d -o { n * n }.

We can now perform type-checking by using the form c : A = M.which
verifies that term M has type A. Moreover, c stands for M in the remainder
of the file. The first example is just one step, where we convert three nickels
to a dime and a nickel.

example1 : n * n * n -o {d * n} =

\[n1, [n2, n3]]. { % n1:n, n2:n, n3:n |- _ : d * n

let {d1} = n2d [n1, n3] in % d1:n, n2:n |- _ : d * n

[d1, n2] % d1:n, n2:n |- _ : d * n

}.

We used, rather arbitrarily, the first and the third nickel to convert to a
dime, leaving the last one in our possession. We showed, after each line,
the antecedent and the succedent, omitting the proof terms.

We can also see if our forwarding chaining engine would find this proof.
Actually it does not, because our forward chaining engine applies rules un-
til quiescence. But since we can exchange coins back and forth, this speci-
fication (when viewed as a program) will never terminate. Once we put a
bound on the number of steps to take, it depends on luck. In this case, with
a bound of 11, it happens to succeed.

Query (11, 1, *, 1) (n * (n * n)) -o {d * n}.

Solution: \[X1, [X2, X3]]. {

let {X4} = n2d [X1, X3] in

let {[X5, X6]} = d2n X4 in

let {X7} = n2d [X2, X5] in

let {[X8, X9]} = d2n X7 in

let {X10} = n2d [X8, X9] in

let {[X11, X12]} = d2n X10 in

let {X13} = n2d [X6, X11] in

let {[X14, X15]} = d2n X13 in

let {X16} = n2d [X12, X14] in

let {[X17, X18]} = d2n X16 in

let {X19} = n2d [X15, X17] in [X19, X18]}

Query ok.

We can clearly see in the proof that it displays, that it changed back-
and-forth between two nickels and a time and stops forward chaining to
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examine the goal after 11 iterations. It so happens that we do have one
dime and one nickel at that point. Here is one more example, this time
using the more reliable type-checking.

example2 : n * n * n * n * n -o { q } =

\[n1, [n2, [n3, [n4, n5]]]]. {

let {d1} = n2d [n1, n2] in

let {d2} = n2d [n3, n4] in

let {q0} = d2q [d1, [d2, n5]] in

q0

}.
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Exercises

Exercise 1 Implement your choice of a finite state transducer like binary in-
crement or compressing runs of b’s as a forward-chaining concurrent logic
program. You should use the technique of destinations to represent the
ordered context linearly so that, for example, the character a might be rep-
resented as msg L a R where L and R represent destinations that tie this
character to its left and right neighbors of the predicate representing the
state of a transducer.

Exercise 2 In the style of Exercise 1, implement a pushdown automaton
that recognizes a string of properly matched parentheses.
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