Lecture Notes on
Concurrent Cost Semantics

15-816: Substructural Logics
Frank Pfenning

Lecture 24
November 29, 2016

In the last lecture we finally formally introduced the Concurrent Logical
Framework (CLF) [WCPWO02, CPWW02] and its implementation in Celf [SN11].
In this lecture we will use CLF to develop a high level implementation of
SILL, the core of a session-typed programming language. As we will see,
with some thought, it turns out the CLF is an almost perfect vehicle for
specifying SILL. This approach exhibits a perfect isomorphism with the
CLF specification of the sequent calculus for linear logic [BBMS16] that has
previously been presented on purely logical grounds [Pfe94, Ree09].

We then proceed to instrument our semantics with costs, to compute the
work and span of concurrent computations which together can be seen as
measuring the “parallel complexity” of the computation. In our setting, we
count the total number of communication steps that have to be performed,
but other cost measures can be derived in a similar manner.

1 Representing Channels and Process Expressions

At the outset, we assume the following types (to be revised later):
ch : type.
exp : type.

where ch represents channels and exp represents process expressions. Chan-
nels should remain abstract, as in our previous encoding, which means
the type ch is inhabited only by parameters that are introduced during the
computation. Expressions represent concurrent programs.

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.2

At the level of our linear inference semantics, we write proc(c, P) for the
state of a process computing P and providing a service along c. This will
be represented here as proc P C for an expression P and channel C, so we
have

proc : exp -> ch -> type.

Note that we “curry” our propositions, so there are no explicit parenthe-
ses around the arguments of a predicate. The other point to note is the
proc P Cis a type, rather than a proposition. This is because we are work-
ing in a type theory, so our process configuration will look like

pl : proc P1 C1, p2 : proc P2 C2, ..., pn : proc Pn Cn

where each p represents a means to reference the process when describing
the computation. For now, it is perfectly sensible to just think of it as a
proposition.

Next, we consider a simple program

w:AkFsendcw;closec: (c: A®1)

where A is arbitrary and therefore a propositional variable. The first idea
of representation would be

Fsend cw ; close ¢'=send C W (close C)

which would give us the straightforward types

send : ch -> exp -> exp.
close : ch -> exp.

While these types are workable, they are not fully satisfactory as we will
see, and do not fully exploit the expressive power of the framework.
On the receiving side, we might have a matching process

cA®1Fy<recvc;waitc; Py (d: D)

The receive construct binds the variable y with scope wait ¢ ; P,. We rep-
resent is by a corresponding binder with corresponding scope in the log-
ical framework. Recall that in CLF, the binders are represented with a A-
abstraction and written as \x. M. Using this idea we obtain

Ty < recv c;wait c; P, =recv C (\y. wait C (P y))

An interesting part of this representation is that we indicate the possible
dependence of P, on y by writing P y, which means that P will have type
ch —-> exp. Overall, this gives us

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.3

recv : ch -> (ch -> exp) -> exp.
wait : ch -> exp -> exp.

Again, this is servicable, but uninspired. Why? Note that our process
language is linearly typed and in fact we have seen it as being in a Curry-
Howard correspondence with the linear sequent calculus! But our repre-
sentation above is not linearly typed. In both the sender and the receiver
example expressions

send C W (close C) % sender
recv C (\y. wait C (P y)) % receiver

the channel C is apparently not linear. This means that we can write bogus
expressions, namely programs that use their channels not linearly and they
will type-check in the framework, which is unfortunate.

We will sharpen our representation so that only process expression that
are properly linear will be well-typed in the framework. We use differ-
ent techniques for the provider and the client of a channel, although other
choices are certainly possible. On the provider side, we note that an exe-
cuting process

proc (send C W (close C)) C

has a lot of redundancy, because the channel C along which we communi-
cate is mentioned multiple times. What we do instead is for the provider
expressions to leave the provider channel (here C) implicit, so the above be-
comes

proc (send_ W (close_)) C

where the underscore suffix in the name of the send_ and close_ are there
to remind us that they implicitly refer to the channel that is provided. With
that, we can then use linear typing:

send_ : ch -o exp -0 exp.
close_ : exp.

To be formal, the representation function now takes a parameter ¢ (the
channel along which the process provides) so we can recognize the appro-
priate syntactic form.

"'sendcw P = send_ W "P

Mclose ¢ ¢ = close_

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.4

Unfortunately, on the client side this particular device fails. This is be-
cause a client can use many different processes, and the name of a channel
is critical to identify which channel we want to communicate with. So how
do we deal with the apparent non-linearity of C in an expression such as

recv C (\y. wait C (P y))

which uses C twice? A clue to the answer was provided many lectures ago
when we gave the asynchronous semantics. Recall that, for example

proc(c, send ¢ w; P)

/

®C*°

proc(c’, P) msg(c,send c w ; ¢ + ()

where ¢ is a freshly chosen continuation channel. So we’ll use this idea
here, even though for now our semantics is synchronous: sending will cre-
ate a fresh continuation channel for further communication. We bake this
into our representation, rather than using it only as a feature of our seman-
tics. So we define

Ty<recve; QM = recv € (\y. \c."Q,"y ©)

Of course, wait ¢ does not receive a continuation channel, since the associ-
ated process has terminated. So we get

"waitc; Q¢ = wait ¢ Q™
These constructs can now be linearly typed

recv : ch -o (ch -o ch -0 exp) -o exp.
wait : ch -o exp -o exp.

Let’s think about forwarding and spawning. Within a process, forward-

ing is
proc(c, ¢ + d)
which means that forwarding has ¢ as an implicit argument. Similarly,
spawning
proc(d,r < Py ; Qq)

creates a new channel ¢, which is provided by P, (and therefore implicit in
P, and used by @, where it is explicit. This means we have

Te+d° = fwd_ D
"2 P Q¢ = spawn_ P, (\x. "Q, " x)

from which we can read off the following linear types

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.5

fwd : ch -o exp.
spawn : exp -o (ch -o exp) -o exp.

In summary, for the constructs implementing forward, spawn, A ® B,
and 1, we have the following representation function where we assume
that channels c in the programming notation are translated to variables C
with the same name in the logical framework:

Te+d° = fwd_D

"o+ Py Q¢ = spawn_ P (\x. Q x) where "P, " =P,"Q, " =Q
Tsend cw P = send_ WP where"P ¢ =P

Ty < recv c; Qy"'d = recv C (\y. \c. Q y ¢ where '—Qy"'d =Q

Tclose ¢ = close_

Cwait ¢ ; Q¢ = wait C Q where TQ7 = Q

This gives rise to the following linear types for the process constructors:

ch : type.
exp : type.

fwd_ : ch -o exp.
spawn_ : exp -o (ch -o exp) -o exp.

send_ : ch -o exp -o exp.
recv : ch -o (ch -o ch -o exp) -o exp.

close_ : exp.
wait : ch -o exp -o exp.
2 Intrinsic Typing

At this point we achieved a partial victory: only process expressions which
treat channels linearly will be well-typed in the framework, providing a
modicum of correctness checking. However, many meaningless process
expressions can still be represented. For example,

T4 closex;y<recve;waitz;d<+y

does not make much sense since close x is matched up with a recv z instead
of a wait. And yet, its translation

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.6

examplel : exp =
spawn_ (close_) (\x. recv x (\y. \x. wait x (fwd_ y))).

type-checks perfectly.

Of course, the problem is that the translation enforces linearity but does
not enforce types. If we want to achieve this additional amount of precision,
we need to index both channels and expressions with their session types.
Fortunately, this can be done quite easily. We don’t even need to change
the representation function, just make their CLF types more precise. To
start with we define (on our small fragment so far):

tp : type.
tensor : tp -> tp -> tp.
one : tp.

ch : tp -> type.
exp : tp —-> type.

Processes proc P C define a process of type A that offers a channel of type
A, so we have
proc : exp A -> proc A -> type.

This declaration is schematic over A and Celf type reconstruction will de-
termine A wherever it sees proc P C from P and C.

For the language constructs, we just need to read the type indices off
the typing rules. We show a few examples, starting with identity.

id
d:AI—c<—d::(c:A)I

Recall that "¢ «+ d ¢ = fwd_ D which means that
fwd : ch A -0 exp A.

Here, the first A comes from the type of the channel d, while the expression
comes from the type of the (implicit) channel c.
Similarly

AbFEP, i (z:A) Ax:AE Qg (c:O)
AANFz+— P Qpi:(c:C)

cut
Since
Fx <« P, ; Q: “=spawn_"P, "™ (\x. "Q, " x)

we obtain

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.7

spawn_ : exp A -o (ch A -0 exp C) -o exp C.
As a last detailed example, let’s look at receiving by the client.
Ay A, x:BE Qy i (c: CO)
Az A®BFy<+recvz; Qy:(c:C)

QL
with
"y<recva; Q" =recv X (\y. \x."Q, "y x)
recv : ch (tensor A B) -o (ch A -o ch B -0 exp C) -o exp C.

Summarizing all the types so far, we have

tp : type.
tensor : tp -> tp -> tp.
one : tp.

ch : tp -> type.
exp : tp —> type.

fwd_ : ch A -0 exp A.
spawn_ : exp A -o (ch A -0 exp C) -o exp C.

send_ : ch A -o exp B -0 exp (tensor A B).
recv : ch (tensor A B) -o (ch A -0 ch B -0 exp C) -o exp C.

close_ : exp one.
wait : ch one -o exp C -o exp C.

proc : exp A -> ch A —-> type.
Now our previous example

examplel : exp =
spawn_ (close_) (\x. recv x (\y. \x. wait x (fwd_ y))).

will no longer type-check, but fail with the (slightly edited, replacing two
variables with underscores) message

Type-checking failed in declaration of examplel on line 17:
Unification failed: Constants tensor and one differ

Object 1 has type:

ch one

but expected:

ch (temsor _ _)

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.8

3 Choice

Choice, whether external or internal is not significant, reveals a new chal-
lenge. We decide to only implement binary choice just to keep the encoding
as straightforward as possible. We use internal choice as our example. We
have the following constructs

cm ; P
C.TT2 P
case c (m = Q1 | m2 = @Q2)

Since A® B is also positive, the sending constructs use the provider channel
and therefore have an implicit argument. We use select1_ and select2_
as our concrete names for the two sending constructs.

Teamy y P° = selectl_"P°
e 3 P = select2_"P¢
Fcasec (m = Q1| T2 = @Q2)™ = case C (\c. "Q1%c) (\c. "Q%c) 7?2

The problem here is the last line. Let’s examine the typing rule.

AcAFQ:(d:D) AeBFQy:(d: D)
A,c:A@Bl—casec(W1:>Q1 ’7T2=>Q2) b (dD)

®L

Since @ is an additive connective, all channels are propagated into both
branches of the case construct. In the first attempted encoding above, how-
ever, the context will be split between Q1% and "Q27. So we need to
exploit that the framework also has an additive connective, namely exter-
nal choice A~ & B~, with the proof term being a pair (M, N).

Teamy y P° = selectl_"P°

ey P° = select2_"P¢

Ccasec (m = Q1 | m2 = Q2)™ = case C <(\c. "Q1™c),(\c. TQx™ ¢)>
which yields the types

selectl_ : exp A -o exp (plus A B).
select2_ : exp B -o exp (plus A B).
case : ch (plus A B) -0 (ch A -0 exp C) & (ch B -0 exp C) -o exp C.

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.9

4 Operational Semantics: Forward and Spawn

Ideally, at the highest level of abstraction, we would like
c/fwd : proc (fwd_ D) C -o { C =D }.

that is, C and D are globally identified. Unfortunately, we omitted equality
as a type constructor in CLE, so we need a different idea. The the simplest
seems to be to actually synchronize with the provider of D and relabel it to
become the provider of C. Since our calculus is linear, there will be exactly
one provider of D, so this does not create any ambiguity or race conditions.

c/fud : proc P D * proc (fwd_ D) C -o { proc P C }.

The forwarding process itself of course terminates in this step. We can see
how the decision to leave the providing channel implicit helps here: if P
referred to the channel D multiple times as the concrete process syntax does,
then we would actually have to substitute C for D throughout P, which is a
somewhat complex operation. In the rule above, all implicit references are
now to C, where they previously referenced D.

For process spawn we need to create a fresh channel and start a new
process. As usual, we use existential quantification in the framework to
create a fresh parameter.

c/spawn : proc (spawn_ P (\x. Q x)) C
-o { Exists a. proc P a * proc (Q a) C }.

We see that P provides along the new channel a, while (Q a) is a client of
a.

5 Operational Semantics: Communication

The synchronous semantics is now a straightforward transcription of our
inference rule, taking care of creating and using continuation channels. As
we did for the description of the operational semantics we use the notation
c’ for the continuation channel of c.

c/tensor : proc (send_ W P) C * proc (recv C (\x. \c’. Q@ x c’)) D
-0 { Exists c¢’. proc P ¢’ * proc (Q W c’) D }.

In the right-hand side of this rule, we write Q W c’ to substitute W for x
and the continuation channel ¢’ for the bound variable c¢’. This takes ad-
vantage of S-reduction at the framework level to implement the name-for-
name substitution at the process level.

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.10

For 1, there will be no continuation channel so we just synchronize the
close_ with the matching wait.

c/one : proc (close_) C * proc (wait C Q) D
-o { proc Q D }.

There are two rules for A & B, depending on whether the first or the
second branch is selected.

c/plusl : proc (selecti_ P) C * proc (case C <(\c’. Q1 ¢’),(\c’.

-o { Exists c’. proc P ¢’ * proc (Q1 c’) D }.

c/plus2 : proc (select2_ P) C * proc (case C <(\c’. Q1 ¢’),(\c’.

-o { Exists c’. proc P ¢’ * proc (Q2 c’) D }.

Note that even though no types are mentioned, these rules are type-
checked, so both linearity and session-typing must at least be consistent.
Of course, we can still make mistakes that will pass this test. For example,
if we replace Q2 by Q1 in the c¢/plus2 rule, CLF type reconstruction will still
succeed by giving both branches the same type. We would need formal
metatheory to catch such an error, but there is currently no tool to support
such an activity.

We can try our semantics on some simple example: spawning a process
of type 1 which just closes, in parallel with one that just waits for that to
finish.

#query * 1 * 1

Q2 c’)>) D

Q2 c’)>) D

Pi c0. proc (spawn_ (close_) (\cl. wait c1 (close_))) cO -o {proc P cO}.

The Celf directive #query * 1 * 1 means that we run without bound, ex-
pecting 1 solution, looking for arbitrarily many, and running the query only
once. We write Pi c0O. to create a fresh initial channel c0. On the right
hand side of this negative type, we have proc P c0 which will test if the
tinal configuration (that is, the one where we have quiescence) consists of a
single process offering along c0. It will show this process, which we expect
to be close_. We get:

Solution: \!cO0. \X1. {
let {['a, [X2, X3]1} = c/spawn X1 in
let {X4} = c/one [X2, X3] in X4}

#P = close_

Query ok.

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.11

The resulting proof term is a representation of the computation of the pro-
cess expression above, that is, a sequent of configurations. Let’s write in
the state of the configuration at each line as a comment with the types. We
mark persistent variables with an exclamation mark !.

Solution: \!cO. \X1. { % 'cO:ch one, Xl:proc (spawn_ ..

let {['a, [X2, X3]]1} = c/spawn X1 in % !cO:ch one, 'a:ch one,

% X2:proc (close_) a, X3:proc (wait a ..
let {X4} = c/one [X2, X3] % 'cO:ch one, 'a:ch one, X4:proc (close_) cO

in X4}
#P = close_
Query ok.

We see that while expressions are typed linearly, channels are not linear
in configurations. This is not directly possibly, since channels appear in in-
dex positions of processes that provide or use them. However, the process
that provides each channel is treated as a linear resource.

Let’s write one more example, which represents a kind of negation,
where we think of bool = 1 & 1. The for ¢ : bool we think of c.7; ; close ¢
as true and c.m ; close c as false. The following program spawns a process
which behaves like false, which is then negated by its client.

C1 < (61.7T2 3 close Cl) 3
case ¢1 (m = co.my ; close ¢
| Ty = cg.71 ; close Co)

In the CLF encoding:

Pi c0. proc (spawn_ (select2_ close_)
(\cl. case c1 <(\c2. wait c2 (select2_ close.)) ,

(\c3. wait c3 (selectl_ close_))>)) cO

As expected, this will execute in 3 steps: one spawn, one select, and one
close, and end up as a process wishing to send m; and then closing the
channel ¢y.

Solution: \!'cO0. \X1. {
let {['a, [X2, X3]1} = c/spawn X1 in
let {['c’, [X4, X511} = c/plus2 [X2, X3] in
let {X6} = c/one [X4, X5] in X6}

#P = selectl_ close_

Query ok.

LECTURE NOTES NOVEMBER 29, 2016

D)

.) <0

Concurrent Cost Semantics L24.12

The signature and queries from this section can be found with the course
materials'. The completion with the remaining connectives A — B and
A & B is also available online?.

6 An Asynchronous Semantics

The representation and typing of all channels and process expressions re-
mains the same when we want to give an asynchronous semantics, but we
have two propositions proc(c, P) and msg(c, P) to define the operational
semantics. Only certain kinds of messages are permitted, but we will not
formalize this within the judgments.

First, spawn does not change, but a forwarding process interacts now
with a message rather than a process. Because our language fragment has
only positive connectives so far (A® B, 1, A® B) all messages come from the
provider of D, so the rule can essentially stay the same. If we add negative
propositions, forwarding may also need to interact with messages coming
along C (see Exercise 2).

proc : exp A -> ch A -> type.
msg : exp A -> ch A -> type.

c/fwd : msg P D * proc (fwd_ D) C
-o {msg P C }.
c/spawn : proc (spawn_ P (\x. Q x)) C
-o { Exists a. proc P a * proc (Q a) C }.

The simple send now decomposes into two. As a reminder, we show
the formulation using linear inference.

proc(c,send c w ; P)

®C¢
proc(c’, P) msg(c,send cw ; ¢+) *

msg(c,send cw ; ¢ < ') proc(d,y < recv ¢ ; Qy)
proc(d, [¢'/c]Quw)

In CLF syntax, these become

®Cr

"http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-sync.
clf

http://www.cs.cmu.edu/~fp/courses/15816-£16/misc/session/
session-complete-sync.clf

LECTURE NOTES NOVEMBER 29, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-sync.clf
http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-sync.clf
http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-complete-sync.clf
http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-complete-sync.clf

Concurrent Cost Semantics L24.13

s/tensor : proc (send_ W P) C
-o { Exists c’. proc P ¢’ * msg (send_ W (fwd_ c’)) C }.
r/tensor : msg (send_ W (fwd_ C’)) C * proc (recv C (\x. \¢’. Q x c’)) D
-o { proc (Q WC’) D }.

We see that the decision to parameterize by a continuation channel works
out well. Note that send creates the continuation channel, which is then
received together with the channel w.

The remainder of the rules are divided analogously into send and re-
ceive rules.

s/one : proc (close_) C
-o { msg (close_) C }.

r/one : msg (close_) C * proc (wait C Q) D
-0 { proc Q D }.

s/plusl : proc (selectl_ P) C
-o { Exists c’. proc P ¢’ * msg (selectl_ (fwd_ c’)) C }.

r/plusl : msg (selectl_ (fwd_ C’)) C * proc (case C <(\c’. Q1 ¢’),(\c’. Q2 c’)>) D
-o { proc (Q1 C’) D }.

s/plus2 : proc (select2_ P) C
-o { Exists c’. proc P ¢’ * msg (select2_ (fwd_ c’)) C }.

r/plus2 : msg (select2_ (fwd_ C’)) C * proc (case C <(\c’. Q1 ¢’),(\c’. Q2 ¢’)>) D
-o { proc (Q2 C’) D }.

Now, for example, the second query (slightly modified to send true in-
stead of false) ends in a configuration with no remaining process but two
messages, transmitting 7, followed by a close. We capture this when we
examine the final configuration by expecting it to consist of two messages,
one with a new destination (we couldn’t predict what it is called, so we
quantify over it) and a second one with the original destination.

#query * 1 *x 1
Pi c0. proc (spawn_ (selectl_ close_)
(\c1. case c1 <(\c2. wait c2 (select2_ close_)) ,
(\c3. wait c3 (selectl_ close_))>)) cO
-o { Exists c1. msg P c1 * msg (Q cl1) cO }.

Indeed, we obtain the expected answer and a proof term representing
the computation.

Solution: \'!'cO. \X1. {

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.14

let {['a, [X2, X3]1} = c/spawn X1 in
let {[!'c’, [X4, X5]1} = s/plusl X2 in

let {X6} = s/one X4 in
let {X7} = r/plusil [X5, X3] in
let {X8} = r/one [X6, X7] in

let {['c’_1, [X9, X10]1} = s/plus2 X8 in
let {X11} = s/one X9 in [!c’_1, [X11, X10]1}

#P = close_
#Q = \X1. select2_ (fwd_ X1)
Query ok.

Due to the increased parallelism afforded by asynchronous communica-
tion, some steps here could be carried out in parallel. For example, the
sending of close and the receiving of 7; are independent and could happen
in either order. We can see that because there is no dependencies between
these two lines: X6 does not occur in r/plusl [X5, X3] (nor does X7 occur
in s/one X4).

let {X6}
let {X7}

s/one X4 in
r/plusl [X5, X3] in

By true concurrency, the computation where these two lines are swapped
are indistinguishable from the given one.

The signature and queries from this section can be found with the course
materials®. The completion with the remaining connectives A — B and
A & B is also available®.

7 A Cost Semantics Tracking Total Work

We now want to instrument our semantics to compute the total work per-
formed by a concurrent computation. We define this here as the total num-
ber of communication steps that take place, and for simplicity we restrict
ourselves to the synchronous semantics (see Exercise 4).

For every process, we keep track of the total work that it has performed.
We count here the number of send operations. Since every message that is
sent is also received, counting the number of receives just doubles this cost.

*http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-async.
clf

*http://www.cs.cmu.edu/~fp/courses/15816-£16/misc/session/
session-complete-async.clf

LECTURE NOTES NOVEMBER 29, 2016

http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-async.clf
http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-async.clf
http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-complete-async.clf
http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-complete-async.clf

Concurrent Cost Semantics L24.15

Our basic predicate for linear inference is now proc(c, w, P), where w tracks
the amount of work performed by this process so far. We begin with the
rules for tensor, which is straightfoward.

proc(c, w,send c e ; P) proc(d, w’,y < recv ¢ ; Qy)

®C
proc(c,w + 1, P) proc(d,w’, Q.)

Spawning makes sure the new process starts at work 0.

pFOC(d, w, T Py Qm)
proc(c, 0, P.) proc(d,w,Q.)

spawn®

Forwarding is interesting, because the work performed by the forwarding
process must be accounted for. So we have to add it into the process that it
notifies of the forwarding.

proc(d,w, P) proc(c,w’,c + d)

fwd
proc(c, w + w', P)

If we decided to count forwarding as communication, we would send the
cost of the resulting process to w + w’ + 1. Similar reasoning applies to
process of type 1.

proc(c, w, close ¢) proc(d,w’,wait ¢ ; Q)

1C
proc(c,w + w' +1,Q)

The remaining rules and their transcription into Celf follows the pattern of
what we have done before.

For a work semantics for asynchronously communicating processes, see
Exercise 4.

8 A Cost Semantics for Span

The span of a concurrent computation can be defined in different ways. We
can say that the span consists of the number of communication steps where
everything that can happen in parallel, does. Another way to define it is by
looking at the dependency graph induced by the truly concurrent seman-
tics and define it as the longest path from the root (where the computation
starts) to the leaf (where the computation ends).

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.16

We specify this through a predicate proc(c, t, P), where t is the earliest
time that this process could be at the given stage of the computation. Again,
we only count explicit communication steps as costing time, but more com-
plex measures are certainly possible.

We begin again with sending a channel along a channel. The earliest
the two processes can synchronize is at time max(¢,t'), and then we have to
add 1 to be able to continue.

proc(c,t,send c e ; P) proc(d,t',y < recv ¢ ; Qy)

®C
proc(c, max(t,t') + 1, P) proc(d, max(t,t') + 1, Q)

Spawning makes sure the new process starts with the the clock of the parent
process, because that is the earliest time it could have been spawned. If we
like, we could also count the spawn itself; here we do not.

proc(d,t,z < Py ; Q)
proc(c, t, P.) proc(d,t,Q.)

spawn®

Forwarding can take place at the earliest that either process could have
gotten to this point.

proc(d, t, P) proc(c,t',c < d)

fwd
proc(c, max(t,t'), P)

If we decided to count forwarding as communication, we would set the
cost of the resulting process to w + w' + 1. Similar reasoning applies to
process of type 1.

proc(c, t,close ¢) proc(d,t’,wait ¢ ; Q)

proc(c, max(t,t') + 1, Q)

1C

One reason we are counting communication steps that advance the type,
but not spawns or forwards is that this allows us to use the type as a guide
for the number of communications that must happen, even if we do not
necessarily know their timing.

Again, transcription into CLF does not pose any particular challenges,
except perhaps implementing the arithmetic.

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.17

Exercises

Exercise 1 Our encoding takes advantage of the asymmetric nature of intu-
itionistic sequents so we can leave the offering channel implicit. Revise this
implementation so that the offering process is abstracted over the offering
channel, which would give the type

proc : (ch A -o proc A) -> ch A -> type.

Of course, the encoding of process expressions has to change accordingly
write. Encode this approach in Celf, rewrite the examples in the new syn-
tax, and compare.

Exercise 2 In the case of the asynchronous semantics, the simple rule
c/fwd : msg P D * proc (fwd_ D) C -o {msg P C}.

is no longer sufficient to implement forwarding. Exhibit a concrete, well-
typed process that will get stuck with only this rule and extend the imple-
mentation of forwarding that it works for all the connectives.

Exercise 3 Write a cost semantics that counts the total number of processes
that will be created during an execution.

Exercise 4 Give a cost semantics counting total work for asynchronous com-
munication. As before, only count sending of messages (not receipt) and
exclude forward and spawn.

Exercise 5 Give a cost semantics for span for asynchronous communication.
As before, only count the sending of message (not receipt) and exclude
forward and spawn.

Exercise 6 Extend the representation of SILL with recursively defined types
and recursively defined processes so that you can encode programs such as
the queue or stack. Discuss some of the options and obstacles, and imple-
ment your extension, with example, in Celf.

LECTURE NOTES NOVEMBER 29, 2016

Concurrent Cost Semantics L24.18

References

[BBMS16]

[CPWWO02]

[Pfe94]

[Ree09]

[SN11]

[WCPW02]

Peter Brottveit Bock, Alessandro Bruni, Agata Murawska, and
Carsten Schiirmann. Representing session types. Unpublished
manuscript, presented at the seminar in honor of Dale Miller’s
60th birthday, December 2016.

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin
Watkins. A concurrent logical framework II: Examples and
applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

Frank Pfenning. Structural cut elimination in linear logic.
Technical Report CMU-CS-94-222, Department of Computer
Science, Carnegie Mellon University, December 1994.

Jason C. Reed. A Hybrid Logical Framework. PhD thesis,
Carnegie Mellon University, September 2009. Available as
Technical Report CMU-CS-09-155.

Anders Schack-Nielsen. Implementing Substructural Logical
Frameworks. PhD thesis, IT University of Copenhagen, January
2011.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, 2002. Revised
May 2003.

LECTURE NOTES NOVEMBER 29, 2016

	Representing Channels and Process Expressions
	Intrinsic Typing
	Choice
	Operational Semantics: Forward and Spawn
	Operational Semantics: Communication
	An Asynchronous Semantics
	A Cost Semantics Tracking Total Work
	A Cost Semantics for Span
	Exercises
	References

