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Originally, linear logic was conceived by Girard [Gir87] as a classical sys-
tem, with one-sided sequents, an involutive negation, and an appropriate
law of excluded middle. For a number of the applications, such as func-
tional computation, logic programming, and implicit computational com-
plexity the intuitionistic version is more suitable. In the case of concur-
rent computation, both classical and intuitionistic systems may be used, al-
though the additional expressiveness afforded by the intuitionistic system
seems to have some advantages even in that setting.

In this lecture we present classical linear logic and then show that we
can easily interpret it intuitionistically. Briefly, classical linear logic can be
modeled intuitionistically as deriving a contradiction from linear assump-
tions. This is shown via a so-called double-negation translation. Its paramet-
ric nature allows a number of additional variants of classical linear logic to
be explained intuitionistically, in particular the so-called mix rules.

These lecture notes do not present the operational semantics of classi-
cal linear logic as a basis for concurrency which we presented in lecture.
The one we presented can be found in Section 5 of [CPT16] in a somewhat
different notation, another semantics is given by Wadler [Wad12].

1 Classical Linear Sequents

A sequent in classical linear logic just has the form

` A1, . . . , An

LECTURE NOTES DECEMBER 8, 2016



Classical Linear Logic L25.2

where A1, . . . , An are propositions. The comma separator can be read as a
form of disjunction, which does not exist in intuitionistic linear logic.

An important aspect of the system is a negation operator, written asA⊥,
which is defined for all propositions except that atomic ones. As we define
the rules for the classical connectives, we will also have to define negation.
We already note that

(A⊥)⊥ = A

is one of the basic laws.
The identity emphasizes the fact that reasoning in classical linear logic

is akin to deriving a contradiction.

` A,A⊥
id

Cut is somehow the dual—we do not cut a proposition, but a proposition
and its negation.

` Σ, A ` Σ′, A⊥

` Σ,Σ′
cut

2 Multiplicative Connectives

The connectives now are no longer defined by left and right rules, but by
right rules, negation, and right rules for the negated proposition. We can
see that this must be the case by looking at the cut rule.

The multiplicative conjunctionA⊗B is quite similar to the intuitionistic
version.

` Σ, A ` Σ′, B

` Σ,Σ′, A⊗B
⊗

The negation (A ⊗ B)⊥ = A⊥ O B⊥ introduces a new connective O which
does not exist in intuitionistic linear logic.

` Σ, A,B

` Σ, AOB
O

It is a multiplicative form of disjunction, and clearly satisfies the law of
excluded middle A O A⊥. We can check the cut reduction and identity
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expansion, just as we did in the intuitionistic case. First, the cut reduction:

` Σ, A ` Σ′, B

` Σ,Σ′, A⊗B
⊗

` Σ′′, A⊥, B⊥

` Σ′′, A⊥ OB⊥
O

` Σ,Σ′,Σ′′
cut

−→R

` Σ′, B

` Σ, A ` Σ′′, A⊥, B⊥

` Σ,Σ′′, B⊥
cut

` Σ,Σ′,Σ′′
cut

Second, the identity expansion:

` A⊗B,A⊥ OB⊥
idA⊗B

−→R

` A,A⊥
idA

` B,B⊥
idB

` A⊗B,A⊥, B⊥
⊗

` A⊗B,A⊥ OB⊥
O

We will not continue to do so, but leave it as an exercise to check cut reduc-
tion and identity expansion.

The multiplicative units do not present surprises. Note that unlike AO
B, ⊥ can actually be given meaning intuitionistically.

` 1
1

1⊥ = ⊥
` Σ

` Σ,⊥
⊥

Not surprisingly, ⊥ is the identity for O.

3 Additive Connectives

The additives do not differ much in their intuitionistic and classical ver-
sions.

` Σ, A

` Σ, A⊕B
⊕1

` Σ, B

` Σ, A⊕B
⊕2

In a classical calculus, ⊕ and N are duals

(A⊕B)⊥ = A⊥ NB⊥
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and the rule for N are as expected, copying the context Σ to both premises.

` Σ, A ` Σ, B

` Σ, ANB
N

The units present no particular surprises or difficulties.

` Σ,>
>

>⊥ = 0 no rule for 0

4 Exponential Modalities

Girard’s formulation of the modalities was in terms of explicit rules for
weakening, contraction, and dereliction. However, it is also possible to
present classical linear logic using two judgments, truth and possibility.
This is what Andreoli [And92] calls the dyadic formulation of linear logic.
We show here the original rules for reference; other two-sided formulations
can be found in [CCP03]. Note that Girard’s formulation does not lend it-
self to a structural proof of cut elimination, which Andreoli did not present
but can be found in [CCP03] and goes back to an another unpublished tech-
nical report [Pfe94].

In order to explain the rules for !A we have to define its dual,

(!A)⊥ = ?A⊥

Persistent resources become formulas ?A, because we are working just on
the right of the sequent. The ! rule requires there to be no linear resources,
but permits persistent ones. These are now marked with ?, so we obtain

` ?Σ, A

` ?Σ, !A
!

Conversely, a persistent formula is true, which becomes

` Σ, A

` Σ, ?A
?

Why do not retain a copy of ?A in the premise, because we have explicit
rules for weakening and contraction of persistent propositions.

` Σ

` Σ, ?A
Weaken

` Σ, ?A, ?A

` Σ, ?A
Contract
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5 Double-Negation Interpretation

We now follow [CCP03], interpreting classical linear logic in intuitionistic
linear logic. The technique of a double-negation translation is quite common
in logics [Fri78] and is related to conversion to continuation-passing style
in programming languages.

Roughly, we think of classical ` Σ as intuitionistic ¬[[Σ]] ` ⊥, that is,
deriving a contradiction from the negation of the translation of Σ. It is not
immediately clear what should play the role of negation on the intuitionis-
tic side, however. Instead of using ⊥ and ¬A (which we have yet to define
intuitionistically), we use a new atomic proposition p and translate ` Σ to
[[Σ]]p ( p ` p. We will later exploit the fact that the translation is parametric
in p by considering some choices for what p might be. We write

∼pA = A( p

to emphasize the interpretation of the translation as a form of negation. We
usually omit the p, since it is never changed throughout a translation.

The theorem we are striving for is

` Σ iff ∼p[[Σ]]p ` p

Instead of just presenting the translation, we consider various cases to see
what it should be. For example, what happens with atoms? Could we just
translate atoms to themselves?

` P, P⊥
id

If we set
[[P ]] = P
[[P⊥]] = ∼P

This means we would have to prove

∼P,∼(∼P ) ` p

which is
P ( p, (P ( p) ( p ` p

and easy to show.
Let’s try A⊗B.

` Σ, A ` Σ′, B

` Σ,Σ′, A⊗B
⊗
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If we generate a tensor, but double-negate the subformulas,

[[A⊗B]] = (∼∼[[A]])⊗ (∼∼[[B]])

then the sequent we have to show after translation would be

∼[[Σ]],∼[[Σ′]],∼((∼∼[[A]])⊗ (∼∼[[B]])) ` p

After applying (L and closing the subgoals with the identity, we are look-
ing at

...
∼[[Σ]],∼[[Σ′]] ` (∼∼[[A]])⊗ (∼∼[[B]]) p ` p

id

∼[[Σ]],∼[[Σ′]],∼((∼∼[[A]])⊗ (∼∼[[B]])) ` p
(L

Now we can apply the ⊗R rule and then (R to bring ∼[[A]] back to the
left-hand side.

...
∼[[Σ]],∼[[A]] ` p

∼[[Σ]] ` ∼∼[[A]]
(R

...
∼[[Σ′]],∼[[B]] ` p

∼[[Σ′]] ` ∼∼[[B]]
(R

∼[[Σ]],∼[[Σ′]] ` (∼∼[[A]])⊗ (∼∼[[B]])
⊗R

p ` p
id

∼[[Σ]],∼[[Σ′]],∼((∼∼[[A]])⊗ (∼∼[[B]])) ` p
(L

At this point we can apply the “induction hypothesis” of the translation,
asserting that the open premises follow since ` Σ, A and ` Σ, B.

For AOB, matters are a bit more complicated.

` Σ, A,B

` Σ, AOB
O

Since there is no O connective on the intuitionistic side, we have to translate
uses of the O rule into application of the ⊗L rule. This makes sense, since
O was justified as the formal dual of ⊗. This means we have to distribute
the negations a bit differently.

[[AOB]] = ∼(∼[[A]]⊗∼[[B]])

Then we get (in somewhat abbreviated form)

...
∼[[Σ]],∼[[A]],∼[[B]]

∼[[Σ]],∼[[A]]⊗∼[[B]]
⊗L

∼[[Σ]],∼∼(∼[[A]]⊗∼[[B]])
(L,(R
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where the open subproof follows again inductively, from the translation of
the premise of the classical O rule.

We can continue to reason along these lines. For connectives where
there is an intuitionistic counterpart, we just double-negate the subformu-
las. For those where there is not, we negate once, use the intuitionistic dual,
and then negate once again. This leads us to the following table.

[[P ]] = P
[[P⊥]] = ∼P

[[A⊗B]] = ∼∼[[A]]⊗∼∼[[B]]
[[AOB]] = ∼(∼[[A]]⊗∼[[B]])

[[1]] = 1
[[⊥]] = ∼1

[[A⊕B]] = ∼∼[[A]]⊕∼∼[[B]]
[[ANB]] = ∼∼[[A]] N∼∼[[B]]

[[0]] = 0
[[>]] = >

[[!A]] = !∼∼[[A]]
[[?A]] = ∼!∼[[A]]

There are more economical translations where some double negations are
omitted, but the one shown above seems most systematic.

6 Correctness of the Translation

From our little derivation, it is easy to see the following:

Theorem 1 (From CLL to ILL) If ` Σ then ∼[[Σ]]p ` p.

Proof: By induction on the structure of the given derivation. A few lemmas
are needed for the exponentials (see [CCP03]), to bridge the gap between
the monadic and dyadic presentations of the logic. 2

The converse requires an entirely different technique. First we observe
that intuitionistic linear logic makes some finer distinctions (especially in
the treatment of linear implication). If these distinctions are ignored, we
can prove the result classically. In this translation, we think of A ( B =
A⊥ OB, on the classical side.
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Lemma 2 If Γ ; ∆→ A then ` (!Γ)⊥,∆⊥, A

Proof: By induction on the given derivation, using some lemmas regarding
classical provability. 2

The second lemma we need is that, classically, the translation is essen-
tially the identity, if we use ⊥.

Lemma 3 For any proposition A, [[A]]⊥
CLL≡ A.

Proof: A simple induction on the structure of A, mostly exploiting that

∼⊥∼⊥A
CLL≡ A. 2

Theorem 4 (From ILL to CLL) If ∼[[Σ]]p ` p then ` Σ.

Proof: If Σ = A1, . . . , An, we have

∼p[[A1]]p, . . . ,∼p[[An]]p ` p

Since classical logic proves more (Lemma 2), we get

` (∼p[[A1]]p)
⊥, . . . , (∼p[[An]]p)

⊥, p

This proof is parametric in p, so we can substitute p = ⊥ throughout the
proof and obtain

` (∼⊥[[A1]]⊥)⊥, . . . , (∼⊥[[An]]⊥)⊥,⊥

Now we recall that (∼⊥A)⊥ = (A⊥O⊥)⊥ = (A⊗1). Since A⊗1
CLL≡ A we

can use cut multiple times and arrive at

` [[A1]]⊥, . . . , [[An]]⊥,⊥

Then we recall that ⊥⊥ = 1 so we can cut this with ` 1 to get

` [[A1]]⊥, . . . , [[An]]⊥

Finally recall that [[A]]⊥
CLL≡ A. Using cut A number of times we get

` A1, . . . , An

which is what we needed to show. 2
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7 Mix and Other Variations

In his original paper [Gir87], Girard also discussed a variant of linear logic
with the rules of mix. They are

` ·
mix0

` Σ ` Σ′

` Σ,Σ′
mix2

It turns out that the logic with these roles (and good proof-theoretic proper-

ties), can also be characterized with axioms postulating that ⊥ CLL≡ 1. Why
is that? If ⊥ and 1 are equivalent, this means we have ` 1,1 and ` ⊥,⊥
since 1⊥ = ⊥ and ⊥⊥ = 1.

Then we can derive mix0 as

` 1
1
` ⊥,⊥

` ⊥
cut

` 1
1

` ·
cut

and mix2 as

` Σ

` Σ,⊥
⊥

` Σ′

` Σ′,⊥
⊥
` 1,1

` Σ′,1
cut

` Σ,Σ′
cut

Now we can proceed as in the previous section, and exploit the parametric-
ity of the translation by using

p = 1

In the crucial step, we use

(∼1A)⊥ = (A⊥ O 1)⊥ = A⊗⊥ MIX≡ A⊗ 1

In this way we come to the conclusion that using the mix rules in the
classical setting is just like trying consume all linear resources (proving 1),
rather than trying to derive a contradiction (proving ⊥). Since the process
calculus admits such as interpretation, it seems reasonable that in encod-
ings of concurrent computation the mix rule is difficult to deny. In the
intuitionistic case, we can derive a counterpart as follows.
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A process that does not offer any external services, has the form

Γ ; ∆ ` P :: z : 1

Two such processes can be combined as follows:

Γ ; ∆ ` P :: z : 1

Γ ; ∆′ ` Q :: w : 1

Γ ; ∆′, z:1 ` z().Q :: w : 1
1L

Γ ; ∆,∆′ ` (νz)(P | z().Q) :: w : 1
cut

This, however, does not quite have the desired effect, because Q cannot re-
duce until P has completed its computation. It is, in effect, a sequential
composition. This is why, in most recent incarnations of the proof term as-
signment, we have separated the input prefix from its scope. In the earliest
paper [CP10], the 1L rule was entirely silent, but that created some small
discord between the proof theory and the process reductions, as attested
by the relative complexity of the bisimulation theorems in that paper. With
the newer process assignment we obtain:

Γ ; ∆ ` P :: z : 1

Γ ; ∆′ ` Q :: w : 1

Γ ; ∆′, z:1 ` z().0 | Q :: w : 1
1L

Γ ; ∆,∆′ ` (νz)(P | z().0 | Q) :: w : 1
cut

This now permits P and Q to proceed in parallel.
We can replace p by other constants and obtain other interpretations. At

this point, one of them is still open, in the sense that we have not found a
good independent proof-theoretically satisfying characterization (see [CCP03]).
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Exercises

Exercise 1 (Classical Harmony) Give the missing cut reductions and iden-
tity expansions for classical linear logic.

Exercise 2 (Dyadic Classical Linear Logic) Give the rules for a one-sided,
two-zone sequent calculus based on the same ideas as separating persis-
tent resources from linear ones. Show that derivable sequents are the same
as the ones for the one-sided, one-zone sequent calculus presented in this
lecture.

Exercise 3 (Mix) Prove that in the presence of the mix rules, ` 1,1 and
` ⊥,⊥ are derivable.
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