Final Exam

15-816 Substructural Logics
Frank Pfenning

December 12, 2016
Name:
Sample Solution
Andrew ID: fp

Instructions

- This exam is closed-book, closed-notes.
- You have 3 hours to complete the exam.
- There are 6 problems.

	Ordered Logic	Focusing	Call by Push Value	Cost Semantics	ssos	True Concurency	
	Prob 1	Prob 2	Prob 3	Prob 4	Prob 5	Prob 6	Total
Score	$\mathbf{4 5}$	$\mathbf{4 5}$	$\mathbf{6 0}$	$\mathbf{4 0}$	$\mathbf{4 0}$	$\mathbf{2 0}$	$\mathbf{2 5 0}$
Max	45	45	60	40	40	20	250

Problem 1: Ordered Logic (45 pts)

There is a "quick check" whether a sequent in the fragment of ordered logic with $A \backslash B$ and $A \bullet B$ may be provable by translating the sequent into the free group over its propositional variables and checking whether the antecedents and succedent denote the same group element.

Recall that a group can be defined by a binary operator $a \cdot b$, a unit element e, and an inverse operator a^{-1} satisfying the laws on the left, with some additional useful properties on the right.

$$
\begin{array}{ll}
(a \cdot b) \cdot c=a \cdot(b \cdot c) & \left(a^{-1}\right)^{-1}=a \\
a \cdot e=a=e \cdot a & e^{-1}=e \\
a \cdot a^{-1}=e=a^{-1} \cdot a & (a \cdot b)^{-1}=b^{-1} \cdot a^{-1}
\end{array}
$$

The interpretation of propositions and antecedents is defined by

$$
\begin{array}{ll}
\llbracket p \rrbracket & =p \\
\llbracket A \bullet B \rrbracket & =\llbracket A \rrbracket \cdot \llbracket B \rrbracket \\
\llbracket A \text { for atoms or propositional variables } p \\
\llbracket A \backslash B \rrbracket & =\llbracket A \rrbracket \rrbracket^{-1} \cdot \llbracket B \rrbracket \\
\llbracket \rrbracket & =e \\
\llbracket \rrbracket \\
\llbracket \Omega_{1} \Omega_{2} \rrbracket & =\llbracket \Omega_{1} \rrbracket \cdot \llbracket \Omega_{2} \rrbracket
\end{array}
$$

Then for any A such that $\Omega \vdash A$ we have $\llbracket \Omega \rrbracket=\llbracket A \rrbracket$. For example, $\vdash a \backslash(b \backslash(b \bullet a))$ and

$$
\llbracket a \backslash(b \backslash(b \bullet a)) \rrbracket=a^{-1} \cdot \llbracket b \backslash(b \bullet a) \rrbracket=a^{-1} \cdot b^{-1} \cdot \llbracket b \bullet a \rrbracket=a^{-1} \cdot b^{-1} \cdot b \cdot a=a^{-1} \cdot a=e=\llbracket \rrbracket
$$

Task 1 (5 pts). Apply this test to check whether

$$
((a \backslash b) \backslash(a \backslash a)) \backslash c \vdash(a \backslash a) \backslash((b \backslash a) \backslash c)
$$

might be provable. Do not try to prove or refute this formula.

$$
\begin{array}{rlrl}
& \llbracket((a \backslash b) \backslash(a \backslash a)) \backslash c \rrbracket & & \llbracket(a \backslash a) \backslash((b \backslash a) \backslash c) \rrbracket \\
= & \llbracket(a \backslash b) \backslash(a \backslash a) \rrbracket^{-1} \cdot c & = & \llbracket a \backslash a \rrbracket^{-1} \cdot \llbracket(b \backslash a) \backslash c \rrbracket \\
= & \left(\llbracket a \backslash b \rrbracket^{-1} \cdot \llbracket a \backslash a \rrbracket\right)^{-1} \cdot c & = & \left(a^{-1} \cdot a\right)^{-1} \cdot \llbracket b \backslash a \rrbracket^{-1} \cdot c \\
= & \left(\left(a^{-1} \cdot b\right)^{-1} \cdot\left(a^{-1} \cdot a\right)\right)^{-1} \cdot c & = & \left(b^{-1} \cdot a\right)^{-1} \cdot c \\
= & \left(b^{-1} \cdot a \cdot a^{-1} \cdot a\right)^{-1} \cdot c & = & a^{-1} \cdot b \cdot c \\
= & a^{-1} \cdot b \cdot c & & \\
\text { Yes, they are equal! The sequent may be provable. }
\end{array}
$$

Task 2 (5 pts). Find two propositions A_{0} and B_{0} consisting only of propositional variables and the connective \backslash such that $A_{0} \vdash B_{0}$ passes the test but is not provable.

$$
\begin{array}{ll}
A_{0}= & a \backslash a \\
B_{0}= & b \backslash b
\end{array}
$$

Task 3 (20 pts). Fill in some cases in the proof that $\Omega \vdash A$ implies $\llbracket \Omega \rrbracket=\llbracket A \rrbracket$.
Proof: By induction of the deduction of $\Omega \vdash A$.
Case: Rule id

$$
\overline{A \vdash A} \text { id }
$$

Then $\llbracket \Omega \rrbracket=\llbracket A \rrbracket=\llbracket A \rrbracket$.

Case: Rule $\backslash R$

$$
\frac{A \Omega \vdash B}{\Omega \vdash A \backslash B} \backslash R
$$

Then $\llbracket A \rrbracket \cdot \llbracket \Omega \rrbracket=\llbracket B \rrbracket$ by induction hypothesis. Multiply both sides by $\llbracket A \rrbracket^{-1}$ to obtain $\llbracket \Omega \rrbracket=\llbracket A \rrbracket^{-1} \cdot \llbracket B \rrbracket=\llbracket A \backslash B \rrbracket$

Case: Rule $\backslash L$

$$
\frac{\Omega^{\prime} \vdash A \quad \Omega_{L} B \Omega_{R} \vdash C}{\Omega_{L} \Omega^{\prime}(A \backslash B) \Omega_{R} \vdash C} \backslash L
$$

Then $\llbracket \Omega^{\prime} \rrbracket=\llbracket A \rrbracket$ and $\llbracket \Omega_{L} \rrbracket \cdot \llbracket B \rrbracket \cdot \llbracket \Omega_{R} \rrbracket=\llbracket C \rrbracket$ by induction hypothesis.
Now $\llbracket \Omega_{L} \rrbracket \cdot \llbracket \Omega^{\prime} \rrbracket \cdot\left(\llbracket A \rrbracket^{-1} \cdot \llbracket B \rrbracket\right) \cdot \llbracket \Omega_{R} \rrbracket=\llbracket \Omega_{L} \rrbracket \cdot \llbracket A \rrbracket \cdot \llbracket A \rrbracket^{-1} \cdot \llbracket B \rrbracket \cdot \llbracket \Omega_{R} \rrbracket=\llbracket C \rrbracket$.

Task 4 (10 pts). Extend the translation to encompass $A / B, A \circ B$ and $\mathbf{1}$ so that the test remains valid. You do not need to extend the proof.

$$
\begin{array}{lll}
\llbracket A / B \rrbracket & = & \llbracket A \rrbracket \cdot \llbracket B \rrbracket^{-1} \\
\llbracket A \circ B \rrbracket & = & \llbracket B \rrbracket \cdot \llbracket A \rrbracket \\
\llbracket \mathbf{1} \rrbracket & = & e
\end{array}
$$

Task 5 (5 pts). Explain how to adapt this test to multiplicative linear logic with connectives $A \multimap B$, $A \otimes B$, and 1, and provide the interpretation of these connectives below.

We add commutativity to the laws, $a \cdot b=b \cdot a$, so that the interpretation is into the free Abelian group over the propositional variables.

$$
\begin{aligned}
& \llbracket A \multimap B \rrbracket=\llbracket A \rrbracket^{-1} \cdot \llbracket B \rrbracket \\
& \llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \cdot \llbracket B \rrbracket \\
& \llbracket \mathbf{1 \rrbracket}=
\end{aligned}
$$

Problem 2: Focusing (45 pts)

Consider the sentence John never works for Jane where we attached the following types to the sentence constituents:

Task 1 (5 pts). Assume n is positive and s is negative. Polarize the following definitions by inserting the minimal number of shifts.

$$
\begin{aligned}
& \mathrm{adv}^{-}=\left(n^{+} \backslash s^{-}\right) / \downarrow\left(n^{+} \backslash s^{-}\right) \\
& \mathrm{itv}^{-}=n^{+} \backslash s^{-} \\
& \text {prep }^{-}=\left(\downarrow s^{-} \backslash s^{-}\right) / n^{+}
\end{aligned}
$$

Task $2(20 \mathrm{pts})$. Provide all the synthetic rules of inference that arise from focusing on propositions in the sequent that represents parsing John never works for Jane as a sentence.

$$
\begin{aligned}
& \frac{\Omega_{12}=n^{+}}{\Omega_{12} \vdash\left[n^{+}\right]} \text {id }^{+} \frac{\Omega_{11}=\Omega_{2}=; C=s^{-}}{\Omega_{11}\left[s^{-}\right] \Omega_{2} \vdash C} \text { id }^{-} \\
& \Omega_{1}\left[\text { itv }{ }^{-}\right] \Omega_{2} \vdash C \quad \backslash R ; \Omega_{1}=\Omega_{11} \Omega_{12} \\
& \frac{\frac{\Omega_{21}=n^{+}}{\Omega_{21} \vdash\left[n^{+}\right]} \text {id }^{+} \frac{\frac{\Omega_{12} \vdash s^{-}}{\Omega_{12} \vdash\left[\downarrow s^{-}\right]} \downarrow R \frac{\Omega_{11}=\Omega_{22}=;}{\Omega_{1}\left[\downarrow s^{-} \backslash s^{-}\right] \Omega_{22} \vdash C}}{\Omega_{11}\left[s^{-}\right] \Omega_{22} \vdash C}}{s^{-}} \text {id }^{-} / R ; \Omega_{2}=\Omega_{21}=\Omega_{22} \Omega_{12} \\
& \frac{\Omega \vdash s^{-}}{\Omega \text { prep }^{-} n^{+} \vdash s^{-}} \text {PREP }
\end{aligned}
$$

Task 3 (20 pts). Provide all the possible complete or partial failing proofs ending in

$$
n \text { adv itv prep } n \vdash s
$$

using only the synthetic rules of inference. We think of proof construction proceeding upwards, from the conclusion. Write out the (partial) proof below and fill in:

- There are 2 different complete proofs.
- There are 0 failing incomplete proofs.

Initially, only two rules apply: ADV or PREP. After that first step, all the steps are forced. We only count situations where a rule can proceed at least for one step, which is why our answer above is 0 (there are other correct answers, depending on the more precise definition).

$$
\begin{array}{cc}
\frac{\overline{n \text { itv } \vdash s} \text { ITV }}{\frac{n \text { itv prep } n \vdash s}{n \text { adv itv prep } n \vdash s} \text { PREP }} \text { ADV } & \frac{\overline{n \text { itv } \vdash s}}{n \text { adv itv } \vdash s} \text { ADV } \\
\frac{n \text { adv itv prep } n \vdash s}{n} \text { PREP }
\end{array}
$$

Problem 3: Call-by-Push-Value (60 pts)

In this problem we explore call-by-push-value (CBPV)
Task 1 (5 pts). In CBPV,
computations are (circle one)
(i) positive or (ii) negative NEGATIVE
values are (circle one)
(i) positive or (ii) negative POSITIVE

Task 2 (20 pts). Annotate the given rules with their terms in CBPV on the right and give the types A and B their correct polarity. Use M, N to stand for computations and V, W for values.

$$
\left.\begin{array}{c|}
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \rightarrow I \\
\frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \rightarrow E \\
\frac{\frac{\Gamma, x: A^{+} \vdash M: B^{-}}{\Gamma \vdash \lambda x \cdot M: A^{+} \rightarrow B^{-}} \rightarrow I}{} \\
\frac{\Gamma \vdash A}{\Gamma \vdash \downarrow A} \downarrow I \\
\frac{\Gamma \vdash A^{+} \rightarrow B^{-} \quad \Gamma \vdash V: A^{+}}{\Gamma \vdash M: B^{-}} \rightarrow E \\
\frac{\Gamma \vdash \downarrow A}{\Gamma \vdash A} \downarrow E
\end{array}\right]
$$

Task 3 (5 pts). Give the local reduction(s) for $\rightarrow I$ followed by $\rightarrow E$. You only need to express it on the proof terms, not the deductions.

$$
(\lambda x . M) V \longrightarrow[V / x] M
$$

Task 4 (5 pts). Give the local reduction(s) for $\downarrow I$ followed $\downarrow E$. You only need to express it on the proof terms, not the deductions.

$$
\text { force (thunk } M \text {) } \longrightarrow M
$$

Task 5 (5 pts). Polarize the following two types using only \downarrow, also assigning polarities to type variables A, B, and C in each case.

Other polarizations are possible; here is one where all propositional variables are negative.

$$
\begin{aligned}
\downarrow A^{-} & \rightarrow\left(\downarrow B^{-} \rightarrow A^{-}\right) \\
\downarrow\left(\downarrow A^{-} \rightarrow\left(\downarrow B^{-} \rightarrow C^{-}\right)\right) & \rightarrow\left(\downarrow\left(\downarrow A^{-} \rightarrow B^{-}\right) \rightarrow\left(\downarrow A^{-} \rightarrow C^{-}\right)\right)
\end{aligned}
$$

Task 6 (5 pts). We write \bar{E} for the translation of a simply-typed term E into CBPV. Insert appropriate constructs so that the following simply-typed term is well-typed under CBPV and your polarization.

$$
\begin{aligned}
K & : A \rightarrow(B \rightarrow A) \\
& =\lambda x \cdot \lambda y \cdot x \\
\bar{K} & =\lambda x . \lambda y . \text { force } x
\end{aligned}
$$

Task 7 (5 pts). Insert appropriate constructs so that the following simply-typed terms well-typed under CBPV and your polarization

$$
\begin{aligned}
S & :(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) \\
& =\lambda x \cdot \lambda y \cdot \lambda z \cdot(x z)(y z) \\
\bar{S} & =\lambda x \cdot \lambda y \cdot \lambda z \cdot((\text { force } x) z)(\text { thunk }((\text { force } y) z))
\end{aligned}
$$

Task 8 (10 pts). Compute the terminal computation or value corresponding to the properly polarized form of $(S K) K$ by applying local reductions anywhere in the term. Show the result of each reduction.

$$
\begin{aligned}
\overline{(S K) K}= & \bar{S}(\text { thunk } \bar{K})(\text { thunk } \bar{K}) \\
\longrightarrow & \lambda y \cdot \lambda z \cdot((\text { force }(\text { thunk } \bar{K})) z)(\text { thunk }((\text { force } y) z)) \\
\longrightarrow & \lambda z .((\text { force }(\text { thunk } \bar{K})) z)(\text { thunk }((\text { force }(\text { thunk } \bar{K})) z)) \\
& \text { at this point we have a terminal computation, but to see what we have } \ldots \\
\longrightarrow & \lambda z \cdot(\bar{K} z)(\text { thunk }(\bar{K} z)) \\
\longrightarrow & \lambda z .(\lambda y . \text { force } z)(\text { thunk }(\bar{K} z)) \\
\longrightarrow & \lambda z . \text { force } z
\end{aligned}
$$

Problem 4: Cost Semantics (40 pts)

In this problem with consider the ordered substructural operational semantics for the subsingleton fragment of ordered logic with \oplus and 1

Task 1 (20 pts). Complete the following rules to describe asynchronous communication. The first two rules have been filled in for you.

$$
\frac{\operatorname{proc}(P \mid Q)}{\operatorname{proc}(P) \operatorname{proc}(Q)} \quad \quad \quad \operatorname{proc}(\leftrightarrow)
$$

Computation rules for $\oplus\left(\right.$ process expressions R. $l_{k} ; P$ and (caseL $\left.\left.\left(l_{i} \Rightarrow Q_{i}\right)_{i \in I}\right)\right)$

$$
\frac{\operatorname{proc}\left(\mathrm{R} . l_{k} ; P\right)}{\operatorname{proc}(P) \operatorname{msg}\left(\mathrm{R} . l_{k} ; \leftrightarrow\right)} \quad \frac{\operatorname{msg}\left(\mathrm{R} . l_{k} ; \leftrightarrow\right)}{\operatorname{proc}\left(\operatorname{caseL}\left(l_{i} \Rightarrow Q_{i}\right)_{i \in I}\right)} \underset{\operatorname{proc}\left(Q_{k}\right)}{ }
$$

Rules for 1 (process expressions closeR and waitL ; Q)

$\frac{\operatorname{proc}(\text { closeR })}{\operatorname{msg}(\operatorname{closeR})}$	$\frac{\operatorname{msg}(\text { closeR }) \operatorname{proc}(\text { waitL } ; Q)}{\operatorname{proc}(Q)}$

Task 2 (20 pts). Instrument the operational semantics to count the total number of processes that are spawned. Assume we start with the configuration $\operatorname{proc}(1, P)$ for $\cdot \vdash P: 1$. If we terminate with the configuration $\mathrm{msg}(k$, closeR) then k should be the total number of processes spawned during the computation. Do not count any messages. Feel free to substitute, add, or delete rules.

$$
\begin{aligned}
& \frac{\operatorname{proc}(k, P \mid Q)}{\operatorname{proc}(1, P) \operatorname{proc}(k, Q)} \text { spawn } \quad \frac{\operatorname{msg}\left(k^{\prime}, P\right) \operatorname{proc}(k, \leftrightarrow)}{\operatorname{msg}\left(k^{\prime}+k, P\right)} \text { forward }^{+} \\
& \frac{\operatorname{proc}\left(k, \mathrm{R} . l_{k} ; P\right)}{\operatorname{proc}(k, P) \operatorname{msg}\left(0, \mathrm{R} . l_{k} ; \leftrightarrow\right)} \oplus s \quad \frac{\operatorname{msg}\left(0, \mathrm{R} . l_{k}\right)}{\operatorname{proc}\left(k, \operatorname{caseL}\left(l_{i} \Rightarrow Q_{i}\right)_{i \in I}\right)} \oplus r \\
& \frac{\operatorname{proc}(k, \text { closeR })}{\operatorname{msg}(k, \operatorname{closeR})} \mathbf{1} s \quad \frac{\operatorname{msg}(k, \text { closeR }) \operatorname{proc}\left(k^{\prime}, \text { waitL } ; Q\right)}{\operatorname{proc}\left(k+k^{\prime}, Q\right)} \mathbf{1} r
\end{aligned}
$$

If we had negative connectives, we should also have

$$
\frac{\operatorname{proc}\left(k^{\prime}, \leftrightarrow\right) \operatorname{msg}(k, P)}{\operatorname{msg}\left(k^{\prime}+k, P\right)} \text { forward }^{-}
$$

but there are other ways to solve the counting problem for forwarding.

Problem 5: Substructural Operational Semantics (40 pts)

Consider the typing rules for the constructs in call-by-push-value associated with $\uparrow A^{+}$.

$$
\frac{\Gamma \vdash V: A^{+}}{\Gamma \vdash \text { return } V: \uparrow A^{+}} \uparrow I \quad \frac{\Gamma \vdash M: \uparrow A^{+} \quad \Gamma, x: A^{+} \vdash N: C^{-}}{\Gamma \vdash \text { let val } x=M \text { in } N: C^{-}} \uparrow E
$$

We present the evaluation rules in the form of an ordered substructural operational semantics, which is based on three predicates eval $(M), \operatorname{retn}(T)$, and cont (K), where M is a computation, T is a terminal computation, and K is a continuation with a "hole" indicated by an underscore.

```
ev_letval : eval(let val }x=M\mathrm{ in N)\^(eval (M) • cont(let val }x=_ in N)
ev_return : eval(return }V)\\uparrow\mathrm{ retn(return }V
rt_return : retn (return V)\bullet cont(let val }x=_ in N)\\uparrow eval([V/x]N
```

Task 1 (20 pts). Re-express the ordered specification in a linear framework such as CLF by adding destinations.

```
ev_letval : eval(let val \(x=M\) in \(N, D\) )
    \(\multimap \uparrow\left(\exists d^{\prime} . \operatorname{eval}\left(M, d^{\prime}\right) \otimes \operatorname{cont}\left(d^{\prime}\right.\right.\), let val \(x=\_\)in \(\left.\left.N, D\right)\right)\)
ev_return : eval(return \(\left.V, D^{\prime}\right) \multimap \uparrow\) retn \(\left(\right.\) return \(\left.V, D^{\prime}\right)\)
rt_return : retn \(\left(\right.\) return \(\left.V, D^{\prime}\right) \otimes \operatorname{cont}\left(D^{\prime}\right.\), let val \(x=\_\)in \(\left.N, D\right) \multimap \uparrow\) eval \(([V / x] N, D)\)
```

Task 2 (20 pts). Now we would like to introduce some parallelism into the evaluation of let val $x=$ M in N. Informally, we evaluate M and N concurrently, with a new destination d for x acting as a form of channel connecting M and N.

In the specification, you may need a different form of continuation, and revise and possibly add some rules. Introduce a new persistent predicate bind (V, d) which states that the value of the destination d is permanently the value V.

We introduce a val d, a value that refers to a destination d. In the rule for evaluation of letval we substitute a new val d^{\prime} it for the value variable x.

$$
\begin{aligned}
& \text { ev_letval }: \text { eval }(\text { let val } x=M \text { in } N, D) \multimap \uparrow\left(\exists d^{\prime} . \operatorname{eval}\left(M, d^{\prime}\right) \otimes \operatorname{eval}\left(\left[\operatorname{val} d^{\prime} / x\right] N, D\right)\right) \\
& \text { ev_return }: \text { eval }\left(\text { return } V, D^{\prime}\right) \multimap \uparrow \underline{\operatorname{bind}}\left(V, D^{\prime}\right)
\end{aligned}
$$

Now we need to update the rules that depend on the shape of a value to dereference in case they see a value destination. Here is one possible way to accomplish this, using the example of the force construct.

```
ev_force : eval(force (thunk M),D)\multimap\uparrow eval(M,D)
ev_force_val : eval(force (val D'),D)\otimes\underline{\operatorname{ind}}(V,\mp@subsup{D}{}{\prime})\multimap\uparrow eval(force V,D)
```


Problem 6: True Concurrency (20 pts)

Task $\mathbf{1}$ (10 pts). What is true concurrency?

We say a semantics is truly concurrent if there is no way to observe the relative order of independent events.

Task 2 (10 pts). How is true concurrency manifest in the Concurrent Logical Framework (CLF)?

In CLF, steps in the computation are represented by $p=R$, where R is a term consuming antecedents describing the state of the computation, and p is a pattern binding variables that name new components of the state. Two events $p=R$ and $q=S$ are independent if no variables in p are used in S and no variables in q are used in R. Then the expressions

$$
(\text { let val } p=R \text { in let val } q=S \text { in } E)=(\text { let val } q=S \text { in let val } p=R \text { in } E)
$$

are equal and therefore indistinguishable in the framework.

Appendix: Some Inference Rules

$$
\begin{aligned}
\text { Propositions } A, B, C: & := \\
& p|A \oplus B| A \& B \mid \mathbf{1} \\
& A / B|B \backslash A| A \bullet B \mid A \circ B
\end{aligned}
$$

Judgmental rules

$$
\overline{A \vdash A} \text { id }_{A} \quad \frac{\Omega \vdash A \Omega_{L} A \Omega_{R} \vdash C}{\Omega_{L} \Omega \Omega_{R} \vdash C} \operatorname{cut}_{A}
$$

Propositional rules

$$
\begin{aligned}
& \frac{A \Omega \vdash B}{\Omega \vdash A \backslash B} \backslash R \quad \frac{\Omega^{\prime} \vdash A \quad \Omega_{L} B \Omega_{R} \vdash C}{\Omega_{L} \Omega^{\prime}(A \backslash B) \Omega_{R} \vdash C} \backslash L \\
& \frac{\Omega A \vdash B}{\Omega \vdash B / A} / R \quad \frac{\Omega^{\prime} \vdash A \Omega_{L} B \Omega_{r} \vdash C}{\Omega_{L}(B / A) \Omega^{\prime} \Omega_{R} \vdash C} / L \\
& \frac{\Omega \vdash A \quad \Omega^{\prime} \vdash B}{\Omega \Omega^{\prime} \vdash A \bullet B} \bullet R \quad \frac{\Omega_{L} A B \Omega_{R} \vdash C}{\Omega_{L}(A \bullet B) \Omega_{R} \vdash C} \bullet L \\
& \frac{\Omega \vdash B \quad \Omega^{\prime} \vdash A}{\Omega \Omega^{\prime} \vdash A \circ B} \circ R \quad \frac{\Omega_{L} B A \Omega_{R} \vdash C}{\Omega_{L}(A \circ B) \Omega_{R} \vdash C} \circ L \\
& \overline{\cdot \vdash \mathbf{1}} \mathbf{1} R \quad \frac{\Omega_{L} \Omega_{R} \vdash C}{\Omega_{L} \mathbf{1} \Omega_{R} \vdash C} \mathbf{1} L \\
& \frac{\Omega \vdash A}{\Omega \vdash A \oplus B} \oplus R_{1} \quad \frac{\Omega \vdash B}{\Omega \vdash A \oplus B} \oplus R_{2} \quad \frac{\Omega_{L} A \Omega_{R} \vdash C \quad \Omega_{L} B \Omega_{R} \vdash C}{\Omega_{L}(A \oplus B) \Omega_{R} \vdash C} \oplus L \\
& \frac{\Omega \vdash A \Omega \vdash B}{\Omega \vdash A \& B} \& R \quad \frac{\Omega_{L} A \Omega_{R} \vdash C}{\Omega_{L}(A \& B) \Omega_{R} \vdash C} \& L_{1} \frac{\Omega_{L} B \Omega_{R} \vdash C}{\Omega_{L}(A \& B) \Omega_{R} \vdash C} \& L_{2}
\end{aligned}
$$

Types

$$
\begin{aligned}
A, B, C::= & \oplus\left\{l_{i}: A_{i}\right\}_{i \in I}\left|\&\left\{l_{i}: A_{i}\right\}_{i \in I}\right| \mathbf{1} \\
& |=B| B \backslash A|A \bullet B| A \circ B
\end{aligned}
$$

Processes $P, Q \quad::=x \leftarrow y \quad$ identity/forward
$\mid x \leftarrow P_{x} ; Q_{x} \quad$ cut/spawn
$\left|x . l_{k} ; P\right|$ case $x\left(l_{i} \Rightarrow Q_{i}\right)_{i \in I} \quad \oplus, \&$
close $x \mid$ wait $x ; Q \quad \mathbf{1}$
send $x y ; P \mid y \leftarrow \operatorname{recv} x ; Q_{x} \quad /, \backslash, \bullet, \circ$

Judgmental Rules

$$
\frac{\Omega \vdash P_{x}::(x: A) \quad \Omega_{L}(x: A) \Omega_{R} \vdash Q_{x}::(z: C)}{\Omega_{L} \Omega \Omega_{R} \vdash\left(x \leftarrow P_{x} ; Q_{x}\right)::(z: C)} \text { cut } \quad \overline{y: A \vdash x \leftarrow y::(x: A)} \text { id }
$$

Propositional Rules

Computation Rules

$$
\frac{\operatorname{proc}\left(z, x \leftarrow P_{x} ; Q_{x}\right)}{\operatorname{proc}\left(w, P_{w}\right) \operatorname{proc}\left(z, Q_{w}\right)} \operatorname{cmp}^{w} \quad \frac{\operatorname{proc}(x, x \leftarrow y)}{x=y} \text { fwd } \quad \frac{\operatorname{proc}(x, \text { close } x) \operatorname{proc}(z, \text { wait } x ; Q)}{\operatorname{proc}(z, Q)} 1 C
$$

$$
\frac{\operatorname{proc}\left(x, x . l_{k} ; P\right) \operatorname{proc}\left(z, \operatorname{case} x\left(l_{i} \Rightarrow Q_{i}\right)_{i \in I}\right)}{\operatorname{proc}(x, P) \operatorname{proc}\left(z, Q_{k}\right)} \oplus C \frac{\operatorname{proc}\left(x, \operatorname{case} x\left(l_{i} \Rightarrow P_{i}\right)_{i \in I}\right) \operatorname{proc}\left(z, x . l_{k} ; Q\right)}{\operatorname{proc}(x, Q) \operatorname{proc}\left(z, P_{k}\right)} \& C
$$

$$
\frac{\operatorname{proc}\left(x, y \leftarrow \operatorname{recv} x ; P_{y}\right) \quad \operatorname{proc}(z, \text { send } x w ; Q)}{\operatorname{proc}\left(x, P_{w}\right)} / C, \backslash C \frac{\operatorname{proc}(z, Q)}{} \frac{\operatorname{proc}(x, \operatorname{send} x w ; P) \operatorname{proc}\left(z, y \leftarrow \operatorname{recv} x ; Q_{y}\right)}{\operatorname{proc}(P) \operatorname{proc}\left(Q_{w}\right)} \bullet C, \circ C
$$

$$
\begin{aligned}
& \frac{\Omega \vdash P::\left(x: A_{k}\right) \quad(k \in I)}{\Omega \vdash\left(x . l_{k} ; P\right)::\left(x: \oplus\left\{l_{i}: A_{i}\right\}_{i \in I}\right)} \oplus R_{k} \quad \frac{\Omega_{L}\left(x: A_{i}\right) \Omega_{R} \vdash Q_{i}::(z: C) \quad(\forall i \in I)}{\Omega_{L}\left(x: \oplus\left\{l_{i}: A_{i}\right\}_{i \in I}\right) \Omega_{R} \vdash \operatorname{case} x\left(l_{i} \Rightarrow Q_{i}\right)_{i \in I}::(z: C)} \oplus L \\
& \frac{\Omega \vdash P_{i}::\left(x: A_{i}\right) \quad(\forall i \in I)}{\left.\Omega \vdash \operatorname{case} x\left(l_{i} \Rightarrow P_{i}\right)_{i \in I}::\left(x: \&\left\{l_{i}: A_{i}\right\}_{i \in I}\right)\right)} \& R \frac{\Omega_{L}\left(x: A_{k}\right) \Omega_{R} \vdash P::(z: C) \quad(k \in I)}{\Omega_{L}\left(x: \&\left\{l_{i}: A_{i}\right\}_{i \in I}\right) \Omega_{R} \vdash\left(x: l_{k} ; Q\right)::(z: C)} \& L_{k} \\
& \frac{\Omega_{L} \Omega_{R} \vdash Q::(z: C)}{-\vdash \text { close } x::(x: \mathbf{1})} \mathbf{1} R \quad \frac{\Omega_{L}(x: \mathbf{1}) \Omega_{R} \vdash(\text { wait } x ; Q)::(z: C)}{} \mathbf{1} L \\
& \frac{\Omega(y: A) \vdash P_{y}::(x: B)}{\Omega \vdash\left(y \leftarrow \operatorname{recv} x ; P_{y}\right)::(x: B / A)} / R \frac{\Omega_{L}(x: B) \Omega_{R} \vdash Q::(z: C)}{\Omega_{L}(x: B / A)(w: A) \Omega_{R} \vdash(\operatorname{send} x w ; Q)::(z: C)} / L^{*} \\
& \frac{(y: A) \Omega \vdash P_{y}::(x: B)}{\Omega \vdash\left(y \leftarrow \operatorname{recv} x ; P_{y}\right)::(x: A \backslash B)} \backslash R \frac{\Omega_{L}(x: B) \Omega_{R} \vdash Q::(z: C)}{\Omega_{L}(w: A)(x: A \backslash B) \Omega_{R} \vdash(\operatorname{send} x w ; Q)::(z: C)} \backslash L^{*} \\
& \frac{\Omega \vdash P::(x: B)}{(w: A) \Omega \vdash(\operatorname{send} x w ; P)::(x: A \bullet B)} \bullet R^{*} \frac{\Omega_{L}(y: A)(x: B) \Omega_{R} \vdash Q_{y}::(z: C)}{\Omega_{L}(x: A \bullet B) \Omega_{R} \vdash\left(y \leftarrow \operatorname{recv} x ; Q_{y}\right)::(z: C)} \bullet L \\
& \frac{\Omega \vdash P::(x: B)}{\Omega(w: A) \vdash(\operatorname{send} x w ; P)::(x: A \circ B)} \circ R^{*} \frac{\Omega_{L}(x: B)(y: A) \Omega_{R} \vdash Q_{y}::(z: C)}{\Omega_{L}(x: A \bullet B) \Omega_{R} \vdash\left(y \leftarrow \operatorname{recv} x ; Q_{y}\right)::(z: C)} \circ L
\end{aligned}
$$

