
Midterm Exam

15-816 Substructural Logics
Frank Pfenning

October 18, 2016

Name: Sample Solution Andrew ID: fp

Instructions

• This exam is closed-book, closed-notes.

• You have 80 minutes to complete the exam.

• There are 5 problems.

Peg Ordered Ordered

Solitaire Contradiction Negation Programming Affine Logic

Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Total

Score 25 25 30 25 45 150

Max 25 25 30 25 45 150

1

1 Peg Solitaire (25 pts)

Peg solitaire is a board game/puzzle for one player. Here, we are playing the one-dimensional
version. The board consists of a linear arrangement of holes some of which are filled with pegs.
For example, using o for holes and * for pegs

o o o o * * o * o o

The only legal move is a jump when a peg jumps over another peg right next to it and lands in an
empty hole right behind it. The peg that is jumped over is removed. In the above situation there
are two possible moves, resulting in one of the following two positions.

o o o o o o * * o o (after leftmost peg jumps right)

o o o * o o o * o o (after middle peg jumps left)

Player wins if there is only a single peg left. Player loses if no move is possible and there is more
than one peg on the board. In the above two positions, the first one is winnable with either of the
two possible moves, while in the second one player has lost.

We represent a position with the following ordered propositions:

peg there is a peg filling a hole
hole there is an empty hole
$ marks the left and right ends of the board

For example, the (winnable) initial position

* * * * o *

would be represented by
$ peg peg peg peg hole peg $

2

Task 1 (25 pts). Write an ordered logical specification such that for any board representation Ω, we
have

Ω
...

win

if and only if player can win. It does not matter what the final state looks like if the initial position
is not winnable, or if the context is not a valid representation of a board.

peg peg hole

hole hole peg
jr

hole peg peg

peg hole hole
jl

$ hole

$
$r

hole $

$
$l

$ peg $

win
w

3

2 Contradiction (25 pts)

As we already have seen in subsingleton logic, it is possible to have an empty succedent in a
sequent, Ω ` ·. Logically, this represents a form of contradiction that is precise about the ordered
use of the antecedents in deriving it. We can internalize this in the logic with the proposition ⊥
and the following rules:

Ω ` ·
Ω ` ⊥

⊥R
⊥ ` ·

⊥L

All the other left rules and cut are then generalized to allow either one or no succedents.

Task 1 (5 pts). Show the cut reduction(s) for ⊥.

D
Ω ` ·
Ω ` ⊥

⊥R
⊥ ` ·

⊥L

Ω ` ·
cut

=⇒R

D
Ω ` ·

Task 2 (10 pts). On the computational side of ordered logic, we assign a processes P to the new
judgment A1 . . . An ` · by writing (x1:A1) . . . (xn:An) ` P . We think of the process P as detached
in that it has no client. Assign process expressions to the ⊥R and ⊥L rules, choosing from the
existing syntax for processes (see page 12 if you need to refresh your memory).

Ω ` P

Ω ` wait x ; P :: (x : ⊥)
⊥R

x:⊥ ` close x
⊥L

Task 3 (10 pts). Show the synchronous computation rule ⊥C based on the cut reduction, writing
proc(P) for a process with no clients and, as usual, proc(x, P) for a process offering along x

proc(x,wait x ; P) proc(close x)

proc(P)
⊥C

4

3 Negation (30 pts)

Once we have empty succedents as introduced in Problem 2, we can define a form of ordered
negation. The proposition ¬A should be true if the assumption A is contradictory.

The following attempt at defining right and left rules fails.

Ω A ` ·
Ω ` ¬A

¬R??
Ω ` A

Ω ¬A ` ·
¬L??

Task 1 (5 pts). Show that the identity expansion fails.

Identity expansion fails since the only possible attempt at constructing a cut-free proof fails.

¬A ` ¬A
id¬A

=⇒E??

no rule applicable
(¬A) A ` ·

¬A ` ¬A
¬R?? (only rule applicable)

Task 2 (5 pts). Show that cut reduction fails.

Cut reduction fails since the endsequents do not match without a rule of exchange.

D
Ω′ A ` ·
Ω′ ` ¬A

¬R??

E
Ω ` A

Ω ¬A ` ·
¬L??

Ω Ω′ ` ·
cut¬A

=⇒R??

E
Ω ` A

D
Ω′ A ` ·

Ω′ Ω ` ·
cutA

Task 3 (10 pts). Analyze the above failures and fix the rule(s) for negation so that identity expan-
sion and cut reduction hold. You do not need to show explicitly that they are now correct.

To repair the “wrong-sidedness” of the rules, we can use either

A Ω ` ·
Ω ` ¬A

¬R
Ω ` A

Ω ¬A ` ·
¬L

or
Ω A ` ·
Ω ` ¬A

¬R
Ω ` A

¬A Ω ` ·
¬R

which define two different symmetric versions of negation.

5

Task 4 (10 pts). With the repaired rule(s), prove or refute A ` ¬¬A for a propositional variable A.
If it is not true in general, find a more specific proposition B such that B ` ¬¬B.

It cannot be proven since the only possible attempt at constructing a cut-free proof fails, no
matter which of the two rules we choose.

no rule applicable
(¬A) A ` ·

A ` ¬¬A
¬R

If we think of the two possible rule sets in Task 3 to define two different negations, the outer
and inner negations in ¬¬A would have to be two different ones for A ` ¬¬A to hold in
general. On the other hand, for B = 1 we have

· ` 1
1R

¬1 ` ·
¬L

· ` ¬¬1
¬R

1 ` ¬¬1
1L

6

4 Ordered Programming (25 pts)

Recall the definition of lists
listA = ⊕{cons : A • listA, nil : 1}

and the following operations on them

· ` nil :: (l:listA)
(x:A) (k:listA) ` cons :: (l:listA)

(l1:listA) (l2:listA) ` append :: (l:listA)

We consider a new type
optionA = ⊕{some : A, none : 1}

Task 1 (5 pts). Give a process definition

· ` none :: (o : optionA)

o← none =

o← none =
o.none ; close o

Task 2 (5 pts). Give a process definition

x:A ` some :: (o : optionA)

o← some← x =

o← some← x =
o.some ; o← x

7

Task 3 (15 pts). Next we write a process that compresses a list of optional elements by keeping
only the ones that contain actual elements. For this purpose we use the type listoptionA

k:listoptionA ` compress :: (l : listA)

You may freely use none, some, nil, cons, and append in your definition, but if you use any other
auxiliary process definitions, clearly state their their types and implementations.

l← compress← k =

l← compress← k =
case k (nil⇒ wait k ; l.nil ; close l

| cons⇒ o← recv k ;
case o (some⇒ l.cons ; send l o ;

l← compress← k
| none⇒ wait o ;

l← compress← k))

8

5 Ordered Affine Logic (45 pts)

In this problem we explore the affine version of ordered logic where antecedents need not be used,
which is specified with a structural rule of weakening. We write AF for affine propositions. All the
connectives and rules from ordered logic carry over, and we add:

Ω1 Ω2 ` CF

Ω1 AF Ω2 ` CF

weaken

Task 1 (10 pts). Prove or refute
AF (BF •AF) BF ` AF •BF

One proof below. There is also a shorter one that weakens B •A immediately and then proves
A B ` A •B.

A ` A
id

A B ` A
weaken

B ` B
id

A B ` B
weaken

A B A B ` A •B
•R

A (B •A) B ` A •B
•L

Task 2 (10 pts). There are some new cases in the proof of admissibility of cut. Show the case where
the principal proposition of the cut is the result of weakening and complete the proof for this case.

D
Ω `̀ A arbitrary, and E =

E ′
Ω1 Ω2 `̀ C

Ω1 A Ω2 `̀ C
weaken

We need to show Ω1 Ω Ω2 `̀ C. We obtain this from E ′ by repeated application of the weak-
ening rule.

9

Now we combine the ordered and ordered affine logic with two modalities, ↑FOAO and ↓FOAF.

Ordered affine AF ::= . . . | ↑FOAO

Ordered AO ::= . . . | ↓FOAF

Because relative order matters, we cannot separate ordered and ordered affine propositions into
disjoint contexts. Instead, we have a mixed context Ω and write “Ω aff” if all propositions in Ω
have the form AF, and “Ω ord” if all propositions in Ω have the form AO.

Task 3 (5 pts). State the independence principle for this combination of logics.

An affine succedent cannot depend on an ordered antecedent.

Task 4 (5 pts). The independence principle allows only some sequents Ω ` Am as well-formed.
State which sequents should be allowed.

Ω ` AO is always well-formed.
Ω ` AF requires that Ω aff.

Task 5 (15 pts). Complete the following table of left and right rules for the shift modalities. You
should always assume the conclusions are well-formed according to the criteria from Task 4. In
some cases you have to add conditions to the premises to make sure they are also well-formed.
The additional conditions should have the form Ω aff, Ω ord, m = F, or m = O. You should only
add them where necessary.

Ω ` AO

Ω ` ↑FOAO

↑R
Ω1 AO Ω2 ` Cm

Ω1 (↑FOAO) Ω2 ` Cm

↑L

Ω ` AF

Ω ` ↓FOAF

↓R
Ω1 AF Ω2 ` Cm

Ω1 (↓FOAF) Ω2 ` Cm

↓L

Ω ` AO

Ω ` ↑FOAO

↑R
m = O Ω1 AO Ω2 ` Cm

Ω1 (↑FOAO) Ω2 ` Cm

↑L

Ω aff Ω ` AF

Ω ` ↓FOAF

↓R
Ω1 AF Ω2 ` Cm

Ω1 (↓FOAF) Ω2 ` Cm

↓L

10

Appendix: Some Inference Rules

Propositions A,B,C ::= p | A⊕B | A N B | 1
| A / B | B \A | A •B | A ◦B

Judgmental rules

A ` A
idA

Ω ` A ΩL A ΩR ` C

ΩL Ω ΩR ` C
cutA

Propositional rules

A Ω ` B

Ω ` A \B
\R

Ω′ ` A ΩL B ΩR ` C

ΩL Ω′ (A \B) ΩR ` C
\L

Ω A ` B

Ω ` B / A
/R

Ω′ ` A ΩL B Ωr ` C

ΩL (B / A) Ω′ ΩR ` C
/L

Ω ` A Ω′ ` B

Ω Ω′ ` A •B
•R

ΩL A B ΩR ` C

ΩL (A •B) ΩR ` C
•L

Ω ` B Ω′ ` A

Ω Ω′ ` A ◦B
◦R

ΩL B A ΩR ` C

ΩL (A ◦B) ΩR ` C
◦L

· ` 1
1R

ΩL ΩR ` C

ΩL 1 ΩR ` C
1L

Ω ` A

Ω ` A⊕B
⊕R1

Ω ` B

Ω ` A⊕B
⊕R2

ΩL A ΩR ` C ΩL B ΩR ` C

ΩL (A⊕B) ΩR ` C
⊕L

Ω ` A Ω ` B

Ω ` A N B
NR

ΩL A ΩR ` C

ΩL (A N B) ΩR ` C
NL1

ΩL B ΩR ` C

ΩL (A N B) ΩR ` C
NL2

11

Types A,B,C ::= ⊕{li : Ai}i∈I | N{li : Ai}i∈I | 1
| A / B | B \A | A •B | A ◦B

Processes P,Q ::= x← y identity/forward
| x← Px ; Qx cut/spawn
| x.lk ; P | case x (li ⇒ Qi)i∈I ⊕,N
| close x | wait x ; Q 1
| send x y ; P | y ← recv x ; Qx /, \, •, ◦

Judgmental Rules

Ω ` Px :: (x:A) ΩL (x:A) ΩR ` Qx :: (z:C)

ΩL Ω ΩR ` (x← Px ; Qx) :: (z:C)
cut

y:A ` x← y :: (x:A)
id

Propositional Rules

Ω ` P :: (x:Ak) (k ∈ I)

Ω ` (x.lk ; P) :: (x : ⊕{li:Ai}i∈I)
⊕Rk

ΩL (x:Ai) ΩR ` Qi :: (z:C) (∀i ∈ I)

ΩL (x:⊕{li:Ai}i∈I) ΩR ` case x (li ⇒ Qi)i∈I :: (z:C)
⊕L

Ω ` Pi :: (x:Ai) (∀i ∈ I)

Ω ` case x (li ⇒ Pi)i∈I :: (x:N{li:Ai}i∈I))
NR

ΩL (x:Ak) ΩR ` P :: (z:C) (k ∈ I)

ΩL (x : N{li:Ai}i∈I) ΩR ` (x.lk ; Q) :: (z:C)
NLk

· ` close x :: (x:1)
1R

ΩL ΩR ` Q :: (z:C)

ΩL (x:1) ΩR ` (wait x ; Q) :: (z:C)
1L

Ω (y:A) ` Py :: (x:B)

Ω ` (y ← recv x ; Py) :: (x:B / A)
/R

ΩL (x:B) ΩR ` Q :: (z:C)

ΩL (x:B / A) (w:A) ΩR ` (send x w ; Q) :: (z:C)
/L∗

(y:A) Ω ` Py :: (x:B)

Ω ` (y ← recv x ; Py) :: (x:A \B)
\R

ΩL (x:B) ΩR ` Q :: (z:C)

ΩL (w:A) (x:A \B) ΩR ` (send x w ; Q) :: (z:C)
\L∗

Ω ` P :: (x:B)

(w:A) Ω ` (send x w ; P) :: (x:A •B)
•R∗

ΩL (y:A) (x:B) ΩR ` Qy :: (z:C)

ΩL (x:A •B) ΩR ` (y ← recv x ; Qy) :: (z:C)
•L

Ω ` P :: (x:B)

Ω (w:A) ` (send x w ; P) :: (x:A ◦B)
◦R∗

ΩL (x:B) (y:A) ΩR ` Qy :: (z:C)

ΩL (x:A •B) ΩR ` (y ← recv x ; Qy) :: (z:C)
◦L

Computation Rules

proc(z, x← Px ; Qx)

proc(w,Pw) proc(z,Qw)
cmpw proc(x, x← y)

x = y fwd

proc(x, close x) proc(z,wait x ; Q)

proc(z,Q)
1C

proc(x, x.lk ; P) proc(z, case x (li ⇒ Qi)i∈I)

proc(x, P) proc(z,Qk)
⊕C

proc(x, case x (li ⇒ Pi)i∈I) proc(z, x.lk ; Q)

proc(x,Q) proc(z, Pk)
NC

proc(x, y ← recv x ; Py) proc(z, send x w ; Q)

proc(x, Pw) proc(z,Q)
/C, \C

proc(x, send x w ; P) proc(z, y ← recv x ; Qy)

proc(P) proc(Qw)
•C, ◦C

12

