
C. Kirchner and H. Kirchner (Eds.): Automated Deduction, CADE-15

LNAI 1421, pp. 175–190, 1998. c© Springer–Verlag Berlin Heidelberg 1998

Elimination of Equality via Transformation with
Ordering Constraints

Leo Bachmair?1, Harald Ganzinger??2, and Andrei Voronkov3

1 Comp. Sci. Dept., SUNY at Stony Brook, NY 11794, U.S.A.,
leo@cs.sunysb.edu

2 MPI Informatik, D-66123 Saarbrücken, Germany,
hg@mpi-sb.mpg.de

3 Comp. Sci. Dept., Uppsala U., S 751 05 Uppsala, Sweden,
voronkov@csd.uu.se

Abstract. We refine Brand’s method for eliminating equality axioms by
(i) imposing ordering constraints on auxiliary variables introduced during
the transformation process and (ii) avoiding certain transformations of
positive equations with a variable on one side. The refinements are both
of theoretical and practical interest. For instance, the second refinement
is implemented in Setheo and appears to be critical for that prover’s
performance on equational problems. The correctness of this variant of
Brand’s method was an open problem that is solved by the more general
results in the present paper. The experimental results we obtained from
a prototype implementation of our proposed method also show some
dramatic improvements of the proof search in model elimination theorem
proving. We prove the correctness of our refinements of Brand’s method
by establishing a suitable connection to basic paramodulation calculi and
thereby shed new light on the connection between different approaches
to equational theorem proving.

1 Introduction

Efficient techniques for handling equality are a key component of automated
reasoning systems. The most successful approaches to date are based on re-
finements of paramodulation, such as the superposition calculus, but these are
unfortunately not fully compatible with tableau-based provers or model elimi-
nation methods. Various attempts have been made recently to improve the han-
dling of equality in such provers (Moser, Lynch & Steinbach 1995, Degtyarev &
Voronkov 1996b, Degtyarev & Voronkov 1996a), but they usually require subtle
interactions between paramodulation-based and model elimination-based sub-
components and therefore are difficult to integrate into existing provers. Most
? Work supported in part by NSF under grants INT-9314412 and CCR-9510072.

?? Work supported in part by DFG under grants Ga 261/7-1, 8-1, and by the ESPRIT
Basic Research Working Group 22457 (CCL II).



176 Leo Bachmair et al.

current model elimination provers rely instead on preprocessing steps that trans-
form formulas from logic with equality into logic without equality, see the survey
(Schumann 1994).

Brand’s modification method (Brand 1975), which consists of three steps.
First, terms are flattened by introducing new auxiliary variables, so that only
variables occur as arguments of function symbols. The axioms expressing the
monotonicity properties of equality are not needed for the resulting flat clauses.
Second, all symmetric variants of a clause (which are obtained by switching
the arguments of equations) are added to the given set of clauses, so that the
symmetry axioms of equality may be dispensed with. Third, the transitivity
axioms are internalized by splitting positive equations s ≈ t into (clauses that
represent) implications t ≈ x → s ≈ x with a new auxiliary variable x, called a
“link” variable.

In this article, we improve Brand’s modification in various ways. We sys-
tematically add ordering constraints during the transformation process, so as
to be able to better control the theorem proving process on the transformed
clauses. For example, a link variable x will be constrained via s � x and t � x
to terms smaller than s and smaller than or equal to t. Ordering constraints
intuitively reflect assumptions about the form of equational proofs of s ≈ t and
are related to rewrite techniques as used in paramodulation and superposition
calculi. The rationale for transitivity elimination is that a sequence of equational
replacements

s = s0 ≈ s1 ≈ . . . ≈ sn = t

(using equations si≈si+1) can be simulated by a sequence of resolution inferences
from the goal clause s 6≈ z ∨ t 6≈ z and (clauses representing the) equivalences
si ≈ xi ↔ si+1 ≈ xi, plus a final resolution step with the reflexivity axiom x≈ x
that instantiates the link variables. The ordering constraints ensure that the
variables xi can only be instantiated by minimal terms among the si and block
the search for alternative equational proofs that apply the same equations but
differ in the instantiation of the link variables.

Aside from the ordering constraints, we also propose more subtle changes
to the transformation process. In particular, we never split a positive equation
t ≈ x where the right-hand side is already a variable. This may seem to be
a minor technical aspect, but the optimization (Moser & Steinbach 1997) has
been implemented in the Setheo model elimination theorem prover and is crucial
for that prover’s successful performance on many equational problems (Ibens
& Letz 1997).1 The completeness of this optimization (without any ordering
constraints) had been an open problem2 that follows from the more general
results in the present paper. Our completeness proof is comparatively simple,

1 The optimized transformation avoids the generation of negative equations x 6≈ y
between two variables. Model elimination or resolution inferences with such literals
correspond to paramodulation inferences into or from variables, most of which are
redundant and ought to be avoided.

2 The proof in (Moser & Steinbach 1997) contains a non-trivial gap which this paper
closes.



Elimination of Equality via Transformation with Ordering Constraints 177

but draws on rather non-trivial results about basic superposition, some of which
have been obtained only very recently (Bachmair & Ganzinger 1997). In essence,
we show how refutational proofs by strict basic superposition with flat clauses
can be simulated by resolution with the corresponding transformed clauses. In
addition to the theoretical results, we also report on experiments with model
elimination theorem which appear to indicate the practical usefulness of the
proposed method in that context.

This extended abstract does not contain all proofs. For details we refer to
the full paper in (Bachmair, Ganzinger & Voronkov 1997).

2 Preliminaries

The transformations described below will be applied to clauses with equality. We
use the symbol ≈ to denote the equality predicate and assume, for simplicity, that
this is the only predicate in the original language. A different symbol ' is used to
denote the predicate that replaces equality as part of the transformation process.
Semantically, the difference between the two symbols is that ≈ is interpreted as
a congruence relation, whereas no restrictions are imposed on the interpretation
of '. In other words, the original formulas with ≈ are interpreted in a logic with
equality, whereas the transformed formulas with ' are interpreted in a logic
without equality. The aim is to design transformations so that the original clause
set is satisfiable in an equality interpretation if, and only if, the transformed
clause set is satisfiable in general.

Formally, a clause is a disjunction of literals; a literal being either an atomic
formula or the negation thereof. Negated equality atoms are written as s 6≈ t
or s 6' t, respectively. Disjunction is associative and commutative, and hence
clauses may be viewed as multisets of literals. The empty clause is denoted by
2. By an equational clause we mean a clause that contains only ≈, but not '.
Satisfiability and logical consequence (denoted by |=) are defined in the usual
way, with the proviso that the interpretation of ≈ has to be a congruence (while
' may be interpreted as an arbitrary binary relation).3

Substitutions will be denoted by the letters σ, τ and ρ. Variable renamings are
substitutions sending variables to variables. The result of applying a substitution
σ to an expression (e.g., a clause or term) E is denoted Eσ. We write E[s] to
indicate that s is a subterm of E and write E[t] to denote the expression obtained
from E by replacing one specified occurrence of s by t. We also write E(s) to
indicate that s occurs in E and denote by E(t) the result of simultaneously
replacing all occurrences of s in E by t.

A constraint is a, possibly empty, conjunction of atomic formulas s = t
(called an atomic equality constraint) or s � t or s � t (called atomic ordering
constraints). The empty conjunction is denoted by >. The letters γ and δ are
used to denote constraints. A constrained clause is a pair of a clause C and a

3 On one or two occasions we will explicitly relax the restriction on the interpretation
of ≈.



178 Leo Bachmair et al.

constraint γ, written as C · γ. We call C the clause part and γ the constraint
part of C · γ.

A substitution σ is said to be a solution of an atomic equality constraint s = t
if sσ and tσ are syntactically identical. It is a solution of an atomic ordering
constraint s � t (with respect to a completable reduction ordering >) if sσ > tσ;
and a solution of s � t if it is a solution of s = t or s � t. Finally, we say that σ
is a solution of a general constraint γ if it is a solution of all atomic constraints
in γ. A constraint is satisfiable if it has a solution.

A ground instance of a constrained clause C ·γ is any ground clause Cσ such
that the constraint γσ is satisfiable. A constrained clause C is more general than
a constrained clause D, denoted D ⊆ C, if every ground instance of D is also
a ground instance of C. We call two constrained clauses C and D equivalent if
C ⊆ D and D ⊆ C, i.e. when C and D have the same ground instances.

Constraints γ1 and γ2 are equivalent with respect to a set V of variables if
for every solution σ1 of γ1 there exists a solution σ2 of γ2 such that σ1 and σ2

agree on the variables in V , and vice versa. We shall identify constrained clauses
C · γ1 and C · γ2 when the constraints γ1 and γ2 are equivalent with respect to
the variables in C. In this case C · γ1 and C · γ2 are equivalent. We identify a
constrained clause C · > with the unconstrained clause C. A contradiction is a
constrained clause 2 · γ with an empty clause part such that the constraint γ is
satisfiable. A clause is called void if its constraint is unsatisfiable. A void clause
has no ground instances and therefore is redundant.

A set S of constrained clauses is satisfiable if the set of all its ground instances
is satisfiable. Evidently, removal of void clauses and replacement of clauses by
equivalent ones preserves the (un)satisfiability of S.

If I is an inference system and N is a set of clauses then I(N) denotes the
set of clauses that can be derived by applying an inference rule in I to premises
in N . Likewise, I∗(N) denotes the set of clauses that can be derived from N by
repeated application of inferences in I. In all calculi of this paper the premises
of inference rules are assumed to have disjoint variables, which can be achieved
by renaming.

3 Transformations

Given a set of equational clauses N , we apply various transformation rules and
replace the equality predicate ≈ by the predicate ' to obtain a modified clause
set N ′, such that the transformed set N ′ is satisfiable if, and only if, the origi-
nal set N is equationally satisfiable. Each part of the transformation process is
designed to eliminate certain equality axioms and can be described by a set of
(schematic) transformation rules to be applied to clauses. If R is a set of such
transformation rules, we say that a (constrained) clause is in R-normal form if
no rule in R can be applied to it. Most of the transformations described below
define normal forms that are unique up to renaming of variables. If N is a set
of (constrained) clauses, we denote by R(N) the set of all R-normal forms of
clauses in N .



Elimination of Equality via Transformation with Ordering Constraints 179

3.1 Elimination of Monotonicity

A clause is said to be flat if variables are the only proper subterms of terms. Thus,
f(x) 6≈ y ∨ h(x)≈ a is flat, but f(f(x))≈ x and f(a)≈ x are not. A constrained
clause C · γ is called flat if its clause part C is flat (but the constraint part γ
may contain non-flat terms).

It is fairly straightforward to flatten clauses by abstracting subterms via
introduction of new variables. This can be described by a set M of (schematic)
transformation rules

C(s) · γ ⇒ (s 6≈ x ∨ C(x)) · γ
where x is a variable not occurring in C and s is a non-variable term that occurs
at least once as an argument of a function symbol in C. The rules in M are called
subterm abstraction rules.

For example, the unit clause i(x) ∗ x ≈ e contains one nested non-variable
subterm, namely i(x). Subterm abstraction yields a clause i(x) 6≈z ∨ z ∗ x≈e that
is unique up to renaming of the new variable z. The unit clause i(y)≈ i(x∗y)∗x
contains three nested non-variable terms, i(y), i(x ∗ y), and x ∗ y, which are
eliminated in three steps to yield a transformed clause

i(y) 6≈ x1 ∨ i(x3) 6≈ x2 ∨ x ∗ y 6≈ x3 ∨ x1 ≈ x2 ∗ x.

A (constrained) clause is flat if, and only if, it is in M-normal form. The
M-normal forms of a clause are unique up to renaming of the newly introduced
variables (and hence we will speak of the M-normal form). Our interest in flat
clauses stems from the following result:

Proposition 1 (Brand 1975). Let N be a set of equational clauses and N ′ be
obtained from N by replacing each clause by its M-normal form. Then N has
an equality model if, and only if, N ′ has a model in which the predicate ≈ is
interpreted as an equivalence (but not necessarily a congruence) relation.

In other words, the monotonicity axioms are not needed for testing satisfiabil-
ity of flat equational clauses. Note that for obtaining flat clauses we need not
abstract all occurrences of a subterm at once. With the rewrite system M the
multiple occurrences of the nested term g(x) in

f(g(x)) 6≈ h(x) ∨ h(g(x)) ≈ x

are eliminated all at once to yield the M-normal form

g(x) 6≈ z ∨ f(z) 6≈ h(x) ∨ h(z) ≈ x.

We may instead abstract the different occurrences separately to obtain a different
flat clause,

g(x) 6≈ z1 ∨ g(x) 6≈ z2 ∨ f(z1) 6≈ h(x) ∨ h(z2) ≈ x.



180 Leo Bachmair et al.

3.2 Partial Elimination of Reflexivity

We may use equality constraints to get rid of certain undesirable negative equal-
ity literals:

(x 6≈ y ∨ C) · γ ⇒ C · (γ ∧ x = y)

where x and y are variables. This transformation is called reflexivity resolution
as it represents an instance of resolution with the reflexivity axiom. We denote
the corresponding set of transformation rules by R.

3.3 Elimination of Symmetry

Next we replace the equality predicate ≈ by the predicate ' and eliminate
the need for the symmetry axioms. Positive equality literals are eliminated by
positive symmetry elimination rules:

(C ∨ s ≈ t) · γ ⇒ (C ∨ s ' t) · γ
(C ∨ s ≈ t) · γ ⇒ (C ∨ t ' s) · γ

If a clause C contains n positive equality literals, then clearly n transformation
steps will eliminate all positive occurrences of equality. There are 2n different
normal forms, all of which need to be retained to eliminate symmetry. For ex-
ample, from the clause

g(x) 6≈ z ∨ f(z) 6≈ h(x) ∨ h(z) ≈ x

we obtain both
g(x) 6≈ z ∨ f(z) 6≈ h(x) ∨ h(z) ' x

and
g(x) 6≈ z ∨ f(z) 6≈ h(x) ∨ x ' h(z).

Negative occurrences of ≈ can in principle be simply replaced by ', but we
prefer a slightly refined transformation that moves variables to the right-hand
side.4 The following negative symmetry elimination rules achieve this purpose:

(s 6≈ t ∨ C) · γ ⇒ (s 6' t ∨ C) · γ if s is not a variable
(s 6≈ t ∨ C) · γ ⇒ (t 6' s ∨ C) · γ if s is a variable, but t is not

The normal forms produced by these additional transformation rules are unique,
as at most one rule can be applied to any negative equality literal.5

We denote by S the set of all positive and negative symmetry elimination
rules. If a clause contains n positive equality literals, then 2n different S-normal
forms can be derived from it. Two S-normal forms that can be derived from the
same clause are said to be symmetric variants of each other.
4 The advantage is that fewer splitting rules (described below) will be applicable.
5 Negative literals x 6≈ y, with variables x and y, are not eliminated by symmetry

elimination, but by reflexivity resolution.



Elimination of Equality via Transformation with Ordering Constraints 181

3.4 Elimination of Transitivity

The transitivity axioms are eliminated by splitting positive and negative equal-
ity literals via introduction of so-called “link variables.” The idea is the same
as in Brand’s method, but we also introduce constraints on variables, which ne-
cessitates slightly different transformations from Brand’s, as will be explained
below.

We have both positive and negative splitting rules of the form:

(C ∨ s ' t) · γ ⇒ (C ∨ t 6' z ∨ s ' z) · (γ ∧ t � z ∧ s � z)
(C ∨ s 6' t) · γ ⇒ (C ∨ t 6' z ∨ s 6' z) · (γ ∧ t � z ∧ s � z)

where t is not a variable and z is a variable not occurring in C, s or t. The
variable z is called a link variable (between s and t) and the corresponding
constraints are called link constraints.

We emphasize that equality literals are not split if the right-hand side is
already a variable. This is different from Brand’s method, where literals are split
regardless of whether the right-hand side is a variable or not.

We do not split equality literals with a variable on the right-hand side, but
still may add corresponding ordering constraints, as expressed by the following
positive and negative link constraint rules:

(C ∨ s ' x) · γ ⇒ (C ∨ s ' x) · (γ ∧ s � x)
(C ∨ s 6' x) · γ ⇒ (C ∨ s 6' x) · (γ ∧ s � x)

where the constraints s � x and s � x, respectively, must not be contained in γ
already.6

By T we denote the set of all splitting and link constraint rules. The T-normal
form of a clause is unique up to renaming of link variables.

The flat clause (with empty constraint)

i(x) 6' x1 ∨ x1 ∗ x ' e

is transformed by T to the constrained clause

(i(x) 6' x1 ∨ e 6' y ∨ x1 ∗ x ' y) · (i(x) � x1 ∧ e � y ∧ x1 ∗ x � y),

whereas its symmetric variant

i(x) 6' x1 ∨ e ' x1 ∗ x

is transformed to

(i(x) 6' x1 ∨ x1 ∗ x 6' y ∨ e ' y) · (i(x) � x1 ∧ x1 ∗ x � y ∧ e � y).

Observe that the constraint of the last clause is unsatisfiable if e is a minimal
ground term with respect to the given ordering �. In other words, the clause is
6 There is no point in introducing the same constraint repeatedly.



182 Leo Bachmair et al.

void in that case, and the constraint e � y in the other clause can be simplified
to e = y.

Note. The example indicates that it is not necessary to apply subterm abstraction
to a minimal constant c, as the corresponding constraint c � x associated with
the abstraction of c can be simplified to x = c. Also, Skolem constants that occur
only negatively need not be abstracted.

4 Preservation of Satisfiability

The sets M, R, S, and T contain all the transformation rules we need. They
eliminate all equality axioms, except reflexivity. Thus, for any set of clauses N ,
let CEE(N) be the clause set T(S(R(M(N)))) ∪ {x ' x}.7 Our main result can
then be stated as follows:

Theorem 1. A set N of unconstrained equational clauses is equationally un-
satisfiable if and only if the transformed set CEE(N) is unsatisfiable.

It is not difficult to prove that if N is equationally satisfiable, then the trans-
formed set CEE(N) is satisfiable. (In other words, the transformations are all
sound.) The difficult part is to show that CEE(N) is unsatisfiable, whenever N
is equationally unsatisfiable.

It suffices to establish this property for M(N) or, generally, for sets of flat
(unconstrained) clauses. For that purpose we introduce a refutationally complete
calculus for flat equational clauses (the “flat basic superposition calculus”) and
show that all inferences in this calculus are reflected by logical consequences on
the transformed clauses. This will imply, in particular, that a transformed set of
clauses is unsatisfiable whenever a contradiction can be derived from the original
clauses by flat basic superposition.

The inference rules of the flat basic superposition calculus are depicted in
Figure 1. We should point out that in the presentation of superposition calculi,
one usually identifies (as we have done here) a literal s≈t with t≈s (and similarly
for negative literals s 6≈ t). This calculus is a slimmed-down version of a strict
basic superposition calculus restricted to flat clauses, and the following theorem
is a direct consequence of the results in (Bachmair & Ganzinger 1997).

Theorem 2. Let N be a set of flat unconstrained equational clauses. The fol-
lowing statements are equivalent:
1. N is equationally unsatisfiable;
2. FBS∗(N) contains a contradiction;
3. (R ◦ FBS)∗(R(N)) contains a contradiction.

Moreover, if N is a set of flat clauses, then so are the sets FBS∗(N) and (R ◦
FBS)∗(R(N)).

By contrast to previous formulations of basic superposition, FBS has no equal-
ity factoring inferences, and no positive (top-level) superposition inferences from

7 CEE is an acronym for “constrained equality elimination”.



Elimination of Equality via Transformation with Ordering Constraints 183

Positive flat basic superposition

(C ∨ s ≈ t) · γ (D ∨ u ≈ v) · δ
(C ∨ D ∨ t ≈ v) · (γ ∧ δ ∧ s = u ∧ s � v � t)

,

where neither s nor u is a variable.
Negative flat basic superposition

(C ∨ s ≈ t) · γ (D ∨ u 6≈ v) · δ
(C ∨ D ∨ t 6≈ v) · (γ ∧ δ ∧ s = u ∧ s � t ∧ s � v)

,

where u is not a variable.
Reflexivity resolution

(C ∨ s 6≈ t) · γ
C · (γ ∧ s = t)

.

Factoring
(C ∨ s ≈ t ∨ u ≈ v) · γ

(C ∨ s ≈ t) · (γ ∧ s = u ∧ t = v)
,

where sσ = uσ and tσ = vσ, for some variable renaming σ.

Fig. 1. Flat Basic Superposition FBS

variables, and factoring is restricted to atoms with identical term skeletons. make
it possible to state in the Lemma below a connection between flat basic superpo-
sition and the transformation system CEE, forming the core of our completeness
proof.

Lemma 1. Let N be a set of flat constrained equational clauses simplified with
respect to reflexivity resolution (so that R(N) = N). If D is a clause in R ◦
FBS(N), then any T ◦ S-normal form of D is a logical consequence of T ◦ S(N)∪
{x ' x}.8

Proof. Let D be the simplified (by R) conclusion of an inference in FBS from
premises in N and let C be in T ◦ S(D). For demonstrating that C is logically
implied by T ◦ S(N)∪ {x' x} we will usually apply resolution-based reasoning,
followed by some strengthening of the constraint.

We prove the assertion by a case analysis over the inferences in FBS. Let

(C ∨ s ≈ t) · γ (D ∨ u ≈ v) · δ
(C ∨ D ∨ t ≈ v) · (γ ∧ δ ∧ s = u ∧ s � t ∧ u � v � t)

be an inference by positive flat basic superposition from premises in N . Then
neither s nor u is a variable. Also, the conclusion D is already simplified by R
as any clause in N has this property by assumption. Any T ◦ S-normal form of
D has the form
8 We use the symbol ◦ to denote composition of operators. Thus, T ◦ S(N) = T(S(N)).



184 Leo Bachmair et al.

C = (C′ ∨ D′ ∨ E) · (γ ∧ δ ∧ λC′ ∧ λD′ ∧ s = u ∧ s � t ∧ u � v � t ∧ ε).

where (i) C′ · (γ ∧ λC′) and D′ · (δ ∧ λD′) are T ◦ S-normal forms of C · γ and
D · δ, respectively; (ii) the subclause E and the link constraints ε for the literals
in E depend on (a) whether the new equation t≈v has been oriented into t'v or
v't during S normalization; and (b) on the result of T normalization, depending
on whether or not t or v are variables.9

(i) Variant t ' v, and v is a variable. Then C has the form

(C′ ∨ D′ ∨ t ' v) · (γ ∧ δ ∧ λC′ ∧ λD′ ∧ s = u ∧ s � t ∧ u � v � t ∧ t � v)

Evidently, the constraint part of C is unsatisfiable, that is, C is void, hence
trivially follows from T ◦ S(N).

From now on, to simplify notation, we shall omit the “side-literals” C′ and
D′ as well as the respective “standard constraints” γ ∧ δ ∧ λC′ ∧ λD′ which
are inherited from the C and D subclauses of the respective premises and their
T ◦ S normal forms.

(ii) Variant t ' v, and v is not a variable. Here, C has the form

(v 6' x ∨ t ' x) · (s = u ∧ s � t ∧ u � v � t ∧ v � x ∧ t � x),

or, equivalently,

(v 6' x ∨ t ' x) · (s = u ∧ u � v � t � x) (1)

with x a fresh link variable. As neither s nor u is a variable, T ◦ S(N) contains
the clauses (u 6' x ∨ v ' x) ·(u � x ∧ v � x) and (s 6' y ∨ t ' y)·(s � y ∧ t � y),
with link variables x and y. Consider the resolution inference

(u 6' x ∨ v ' x) · (u � x ∧ v � x) (s 6' y ∨ t ' y) · (s � y ∧ t � y)
(v 6' y ∨ t ' y) · (s � y ∧ t � y ∧ u � x ∧ v � x ∧ s = u ∧ y = x) .

Since x and y are variables not occuring in s, t, u, v, the conclusion of this infer-
ence is equivalent to

(v 6' x ∨ t ' x) · (t, v � x ∧ s, u � x ∧ s = u) (2)

The clause (2) is more general than (1) since the constraint s = u ∧ u � v � t �
x implies the constraint t, v � x ∧ s, u � x. We have shown, as was required,
that (1) is a logical consequence of T ◦ S(N).

(iii) Variant v' t, t is a variable. After simplifying the constraint, C has the
form

(v ' t) · (s = u ∧ s � t ∧ u � v � t). (3)

9 When we say that a constraint γ has the form γ′ ∧ γ′′ we assume matching modulo
associativity, commutativity, and idempotence of conjunction.



Elimination of Equality via Transformation with Ordering Constraints 185

In this case, consider the resolution inference

(s ' t) · (s � t) (u 6' x ∨ v ' x) · (u � x ∧ v � x)
(v ' x) · (s � t ∧ u � x ∧ v � x ∧ s = u ∧ t = x)

from premises in T ◦ S(N). Since x does not occur in s, t, u, v, the conclusion of
this inference is equivalent to

(v ' t) · (u � t ∧ s, v � t ∧ s = u) (4)

which is more general than (3).
(iv) Variant v ' t, t is not a variable. In this case, C is equivalent to

(t 6' x ∨ v ' x) · (s = u ∧ s � t ∧ u � v � t � x), (5)

with a fresh variable x. C can be derived from T ◦ S(N) via the inference

(t 6' y ∨ s ' y) · (t � y ∧ s � y) (u 6' x ∨ v ' x) · (u � x ∧ v � x)
(t 6' y ∨ v ' x) · (t � y ∧ s � y ∧ u � x ∧ v � x ∧ s = u ∧ y = x) .

Since x and y are variables not occuring in s, t, u, v, the conclusion of this infer-
ence is equivalent to

(t 6' x ∨ v ' x) · (t, u � x ∧ s, v � x ∧ s = u) (6)

which is more general than (5).
The cases of the other inferences in FBS are dealt with in a similar way. The

details are included in the appendix.

By inductive application of this lemma we obtain the desired property for
flat clauses:

Theorem 3. Let N be a set of flat equational clauses without constraints. Then
N is equationally satisfiable if and only if T ◦ S ◦ R(N) ∪ {x ' x} is satisfiable.

Proof. It can easily be shown that T ◦S ◦R(N)∪ {x' x} is satisfiable whenever
N is equationally satisfiable. Suppose that N is equationally unsatisfiable, and
let N ′ denote R(N). By the completeness of flat basic superposition, we may
infer that (R ◦ FBS)∗(N ′) contains a contradiction. The set N ′, and all sets
(R◦FBS)k(N ′) are simplified (with respect to R) flat equational clauses to which
we may (inductively) apply the above lemma. Therefore, all clauses in T ◦ S((R◦
FBS)∗(N ′)) are logical consequences of T ◦ S ◦ R(N) ∪ {x ' x}. As the T ◦ S
normal form of a contradiction is also a contradiction, T ◦ S ◦ R(N) ∪ {x ' x}
must be unsatisfiable.



186 Leo Bachmair et al.

5 Related Transformations

Let us now briefly discuss the connection of our method to other transformation
methods. Brand’s original method is not directly comparable to our method.
The main difference (aside from the fact that we use constraints) is that Brand
uses only a positive splitting rule,

(C ∨ u ' v) ⇒ (C ∨ v 6' z ∨ u ' z),

but no negative splitting rule. However, the positive splitting rule is applied even
if the right-hand side v of an equality literal is a variable. With Brand’s method
the clause

f(g(x)) 6≈ h(x) ∨ h(g(x)) ≈ x

is transformed into two clauses

g(x) 6' z ∨ f(z) 6' h(x) ∨ x 6' y ∨ h(z) ' y

and
g(x) 6' z ∨ f(z) 6' h(x) ∨ h(z) 6' y ∨ x ' y,

whereas our transformation results in different (constrained) clauses

(g(x) 6' z ∨ f(z) 6' z1 ∨ h(x) 6' z1 ∨ h(z) ' x) ·
(g(x) � z ∧ f(z), h(x) � z1 ∧ h(z) � x)

and
(g(x) 6' z ∨ f(z) 6' z1 ∨ h(x) 6' z1 ∨ h(z) 6' y ∨ x ' y) ·

(g(x) � z ∧ f(z), h(x) � z1 ∧ h(z) � y ∧ x � y).

It is not possible, though, to simply add link constraints to Brand’s original
transitivity elimination rule.

For example, Brand’s transitivity elimination with link constraints, when
applied to the unsatisfiable set of unit clauses a ≈ b, a≈ c and b 6≈ c yields a set
of constrained clauses

(b 6' x ∨ a ' x) · (b � x ∧ a � x)
(a 6' x ∨ b ' x) · (a � x ∧ b � x)
(c 6' x ∨ a ' x) · (c � x ∧ a � x)
(a 6' x ∨ c ' x) · (a � x ∧ c � x)
b 6' c

that is satisfiable (in combination with the reflexivity axiom x ' x), given an
ordering in which c � b � a! (The first and third clause contain the unsatisfiable
constraint a � x and hence are void. The remaining clauses, along with x ' x,
are satisfiable even without the constraints.) In short, ordering constraints are
not compatible with Brand’s original transformations.

The method implemented in the Setheo prover (Moser & Steinbach 1997)
can be described with our transformation rules, except that no link constraints
are introduced. Positive equations with a variable on the right-hand side are not



Elimination of Equality via Transformation with Ordering Constraints 187

split, and hence negative equations with a non-variable right-hand side must be
split also.

For example, the three unit clauses f(x) ≈ x, g(x) ≈ x and f(x) 6≈ g(x) are
unsatisfiable. However, if negative equality literals are not split, we obtain a
satisfiable set of clauses f(x) ' x, f(x) 6' y ∨ x ' y, g(x) ' x, g(x) 6' y ∨ x ' y,
f(x) 6' g(x), and x ' x.

Let us conclude this section with an example. The presentation of group
theory by three equations, x ∗ e ≈ x, x ∗ i(x) ≈ e, and (x ∗ y) ∗ z ≈ x ∗ (y ∗ z), is
transformed with our method into the following set of constrained clauses:

x ∗ e ' x
x ∗ e 6' u ∨ x ' u · x � u

i(x) 6' u ∨ x ∗ u ' e · i(x) � u
x ∗ y 6' u ∨ y ∗ z 6' v ∨ u ∗ z 6' w ∨ x ∗ v ' w ·

u ∗ z � w ∧ x ∗ v � w ∧ x ∗ y � u ∧ y ∗ z � v
x ∗ y 6' u ∨ y ∗ z 6' v ∨ x ∗ v 6' w ∨ u ∗ z ' w ·

x ∗ v � w ∧ u ∗ z � w ∧ x ∗ y � u ∧ y ∗ z � v

where � refers to a lexicographic path ordering induced by the precedence rela-
tion i > ∗ > e and constraints have been simplified accordingly. Note that with
Brand’s modification or with equality elimination as used in Setheo one gets an
additional clause,

i(x) 6' z ∨ x ∗ z 6' w ∨ e ' w.

This clause can be omitted, as its associated constraint e � w is unsatisfiable in
the given ordering.

6 Experiments

We present some experimental results with the Protein prover (Baumgartner
& Furbach 1994) on certain simple problems in group theory. In the figure 6,
“L” means that the goal was attempted in the presence of a previously proved
lemma. In the table we list runtimes and number of computed inferences (“K”
denotes kilo, and “M” denotes mega inferences) for four kinds of transformation.
The “B” column depicts the results for Brand’s original modification. “S” refers
to the method that is implemented in Setheo with splitting of both positive
and negative equations that have no variable right-hand side, without attach-
ing ordering constraints. “Ss” is like “S” except that Skolem constants in the
goals have not been abstracted. Compared with Brand’s method, the Setheo
method avoids more of those inferences which correspond to superposition into
or from variables. However, it comes at the expense of also splitting negative
equations. The experiments show that the price to pay is indeed very high so
that in some of our experiments, “S” performs much worse than Brand’s original
method. However, if disequations s 6' t in which t is a Skolem constant of the
goal are not split we obtain a uniform and more significant improvement. Finally,
“C” is CEE transformation, using the presentation of group theory as presented



188 Leo Bachmair et al.

number of inferences time [sec]
Problem ord B S Ss C B S Ss C

x ∗ e ≈ x – 1.3M 21.4K 1.5K 578 123 2.1 0.16 0.1
i(i(x)) ≈ x 1 4.7M ∞ 83.6M 15.5K 508 ∞ 10191 4.8
i(i(x)) ≈ x 2 ∞ ∞ ∞ 178K ∞ ∞ ∞ 84
i(i(x)) ≈ x 3 4.7M ∞ 83.6M 15.5K 502 ∞ 10191 4.8
x ∗ i(x) ≈ e 1 4.1K 288K 288K 461 0.4 30 30.4 0.1
x ∗ i(x) ≈ e 2 2.4M 17.5M 17.6M 671 272 2204 2204 0.2
i(x) ∗ (x ∗ y) ≈ y L 1 19.5K 267K 267M 3.8K 1.9 28 28.3 0.9
i(x) ∗ (x ∗ y) ≈ y L 2 ∞ ∞ ∞ 12.2M ∞ ∞ ∞ 3235
i(x) ∗ (x ∗ y) ≈ y 1 9.1M ∞ ∞ 24M 950 ∞ ∞ 10574
i(x) ∗ (x ∗ y) ≈ y 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Fig. 2. Benchmarks on a 167MHz UltraSparc for simple problems in group the-
ory

in Section 5. We have implemented constraint inheritance and checking in a
straightforward manner. Ordering constraints are collected through additional
arguments of predicate symbols. (As to what extent the additional predicates
affect Protein’s proof strategy, we do not know.) The first subgoal of any (non-
unit) clause first calls upon a satisfiability check (implemented in Prolog) for
the accumulated constraint at this point. Constraint solving was implemented
incompletely by simply checking independent satisfiability of each inequality in
any conjunction of inequalities. A complete constraint solving which is available
for large classes of lexicographic path orderings, is very expensive and does not
seem to reduce the number of inferences by another order of magnitude.

Protein is extremely sensitive to how the clauses and the literals in a clause,
respectively, are ordered. In the examples we have experimented with three dif-
ferent orderings of the subgoals in the goal clause. In ordering 1 the variable
definitions for inner subterm positions precede those of the outer positions. This
ordering seems to work better with Protein most of the time. Ordering 2 is the
inverse of ordering 1. Ordering 3 is some mixture of orderings 1 and 2. Order-
ings 2 and 3 coincide for the CEE transformation. For ordering 2, the speedups
obtained from the optimization are much more dramatic. This seems to indicate
that with the constraints the performance of model elimination is somewhat less
dependent on subgoal selection strategies. In particular upon backtracking, or-
dering constraints prevent one from searching redundant alternative proofs of
subgoals.

Although these experiments are far from being conclusive, it appears as if
the CEE transformation can have a dramatic effect on proof search. Except for
one case, proofs using CEE transformation were found much faster, usually by
several orders of magnitude. With the rather incomplete method of constraint
satisfiability checking, the price paid on each single inference seems affordable.

As said before, Protein proof search is too much dependent on the ordering
of clauses and of subgoals within clauses. It would be interesting to see the effect



Elimination of Equality via Transformation with Ordering Constraints 189

of our improvements on Setheo where dynamic goal selection strategies result
in a more predictable behavior and find proofs more often, also for less trivial
problems than the ones studied in our experiments (Ibens & Letz 1997).

7 Conclusions

We have described a refined variant of Brand’s modification method via order-
ing constraints that also improves equality elimination as implemented in the
prover Setheo. Our theoretical results imply that equality handling in Setheo is
indeed refutationally complete (which was an open problem). The completeness
proof draws on recent results about basic superposition and thus establishes a
connection between the theory underlying local saturation-based methods, such
as paramodulation and superposition, and optimizations of equality handling
in global theorem proving methods, such as model elimination and semantic
tableau-methods.

Our experiments seem to indicate that with the ordering constraints the
search space in model elimination theorem proving is indeed drastically reduced.
This does not imply, however, that our results are of immediate practical sig-
nificance as global theorem proving methods appear to be inherently limited in
their ability of handling equality efficiently.

Acknowledgements. We are grateful to J. Steinbach for his comments on this
paper and for his help in clarifying the relationship to (Moser & Steinbach 1997).

References

Bachmair, L. & Ganzinger, H. (1997), Strict basic superposition and chaining, Re-
search Report MPI-I-97-2-011, Max-Planck-Institut für Informatik, Saarbrücken,
Saarbrücken.
URL: www.mpi-sb.mpg.de/˜hg/pra.html#MPI-I-97-2-011

Bachmair, L., Ganzinger, H. & Voronkov, A. (1997), Elimination of equality via
transformation with ordering constraints, Research Report MPI-I-97-2-012, Max-
Planck-Institut für Informatik, Saarbrücken, Saarbrücken.
URL: www.mpi-sb.mpg.de/˜hg/pra.html#MPI-I-97-2-012

Baumgartner, P. & Furbach, U. (1994), PROTEIN: A PROver with a Theory Extension
INterface, in A. Bundy, ed., ‘Automated Deduction — CADE-12. 12th Interna-
tional Conference on Automated Deduction.’, Vol. 814 of Lecture Notes in Artificial
Intelligence, Nancy, France, pp. 769–773.

Brand, D. (1975), ‘Proving theorems with the modification method’, SIAM Journal of
Computing 4, 412–430.

Degtyarev, A. & Voronkov, A. (1996a), Equality elimination for the tableau method, in
J. Calmet & C. Limongelli, eds, ‘Design and Implementation of Symbolic Compu-
tation Systems. International Symposium, DISCO’96’, Vol. 1128 of Lecture Notes
in Computer Science, Karlsruhe, Germany, pp. 46–60.

Degtyarev, A. & Voronkov, A. (1996b), What you always wanted to know about rigid
E-unification, in J. Alferes, L. Pereira & E. Orlowska, eds, ‘Logics in Artificial In-
telligence. European Workshop, JELIA’96’, Vol. 1126 of Lecture Notes in Artificial
Intelligence, Évora, Portugal, pp. 50–69.



190 Leo Bachmair et al.

Ibens, O. & Letz, R. (1997), Subgoal alternation in model elimination, in D. Galmiche,
ed., ‘Automated Reasoning with Analytic Tableaux and Related Methods’, Vol.
1227 of Lecture Notes in Artificial Intelligence, Springer Verlag, pp. 201–215.

Moser, M., Lynch, C. & Steinbach, J. (1995), Model elimination with basic ordered
paramodulation, Technical Report AR-95-11, Fakultät für Informatik, Technische
Universität München, München.

Moser, M. & Steinbach, J. (1997), STE-modification revisited, Technical Report AR-
97-03, Fakultät für Informatik, Technische Universität München, München.

Schumann, J. (1994), ‘Tableau-based theorem provers: Systems and implementations’,
Journal of Automated Reasoning 13(3), 409–421.


	Introduction
	Preliminaries
	Transformations
	Preservation of Satisfiability
	Related Transformations
	Experiments
	Conclusions

