15-462 Computer Graphics I Lecture 19

Global Illumination

Substructuring
Progressive Refinement
Bidirectional Reflectance Dist. Fcn.
Combining Radiosity and Ray Tracing
[Angel, Ch 13.5]

April 10, 2003
Frank Pfenning
Carnegie Mellon University

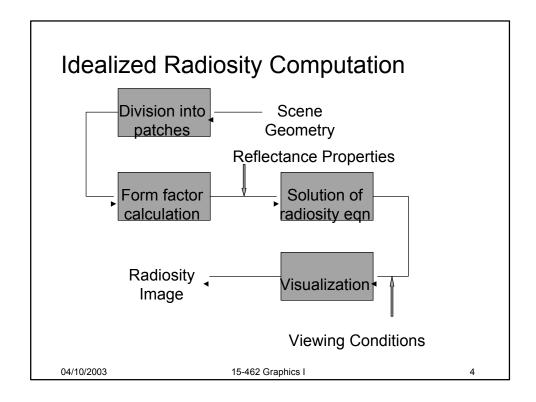
http://www.cs.cmu.edu/~fp/courses/graphics/

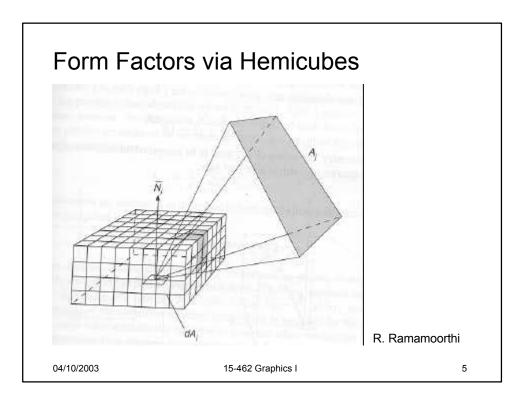
Classical Radiosity Method

- Divide surfaces into patches
- Model light transfer between patches as system of linear equations
- Important assumptions (so far):
 - Reflection and emission are diffuse
 - No participating media (no fog)
 - No transmission (only opaque surfaces)
 - Radiosity is constant across each patch
 - Solve for R, G, B separately

04/10/2003

15-462 Graphics I


Radiosity Equation


· For each patch i:

$$B_i = E_i + \rho_i \sum_j (F_{ji} A_j / A_i) B_j$$
$$= E_i + \rho_i \sum_j F_{ij} B_j$$

3

- Variables
 - $-B_i = radiosity (unknown)$
 - E_i = emittance of light sources (given)
 - ρ_i = reflectance (given)
 - F_{ij} = form factor from i to j (computed)
 fraction of light emitted from patch i arriving at patch j
 - $-A_i$ = area of patch i (computed)

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

04/10/2003 15-462 Graphics I

Substructuring

- Radiosity assumed constant across patch
- · Impact of number of patches
 - Few: fast, but very inaccurate (blocky)
 - Many: slow O(n²), but much more accurate
- Substructuring
 - Introduce elements as a substructure for patches
 - Use adaptively where radiosity varies rapidly
 - Distinguish elements and patches to avoid explosion

04/10/2003 15-462 Graphics I

Elements vs. Patches

- · Analyse transport from patch onto elements
- · Do not analyze element-to-element detail
- This means
 - Compute form factors from elements to patches
 - Do not compute form factors from patches to elements
 - Use weighted patch to parent-of-element
 - Complexity O(m · n) for m elements, n patches

15-462 Graphics I

- Typically substructured areas
 - Near lights

04/10/2003

- Shadow boundaries

- Substructuring
- · Progressive Refinement
- Bidirectional Reflectance Distribution Function
- · Combining Radiosity and Ray Tracing

04/10/2003 15-462 Graphics I

-462 Graphics I

Matrix Radiosity Revisited

- Compute all form factors F_{ij}
- · Make initial approximation to radiosity
 - Emitting elements $B_i = E_i$
 - Other elements $B_i = 0$
- · Apply equation to get next approximation

$$B_i' = E_i + \rho_i \sum_j F_{ij} B_j$$

- · Iterate with new approximation
- Intuitively
 - Gather incoming light for each element i
 - Base new estimate on previous estimate

04/10/2003

15-462 Graphics I

Progressive Refinement

- · Shoot light instead of gathering light
- · Basic algorithm
 - Initialize emitting element with $B_i = E_i$
 - Initialize others with with $B_i = 0$
 - Pick source i (start with brightest)
 - Using hemicube around source, calculate Fii
 - For each j \neq i, approximate B'_j = ρ_j B_i F_{i j} (A_i / A_j)
 - Pick next source i and iterate until convergence
- Each iteration is O(n)
- May or may not keep F_{ij} after each iteration

04/10/2003 15-462 Graphics I 11

Progressive Refinement Corrected

- Problem: double-count if source is used more than once as source
- Solution: compute and use difference from last time a patch was used as a source (ΔB_i)
 - Initialize ΔB_i , $B_i = E_i$
 - Pick source i with maximum unshot power
 - Using hemicube, calculate F_{i j} for each j
 - $\Delta R = \rho_i \Delta B_i F_{ij} (A_i / A_j)$
 - $B_i = B_i + \Delta R$
 - $\Delta B_i = \Delta B_i + \Delta R$
 - $-\Delta B_i = 0$

04/10/2003

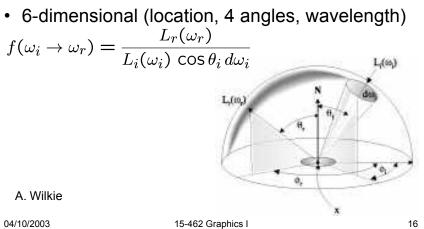
15-462 Graphics I

Some Special Cases

- Image after we have iterated through all light sources?
 - Shadows, but no interreflections
- Can incrementally display image while iterating
 - Add ambient light at each stage for visibility
 - Ambient shading if progressively refined
- Incremental form factor computation

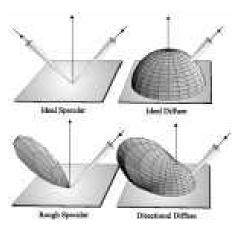
04/10/2003 15-462 Graphics I 13

Radiosity Algorithms Summary


- Matrix radiosity algorithm
 - Pre-compute all form factors
 - Iterative solution (Gauss-Seidel)
 - · Start with emission
 - · Each objects gathers light from all other objects
- Progressive refinement
 - Pick brightest patch
 - Compute outgoing form factors
 - Shoot light from this patch to all other patches
 - Repeat for next brightest batch
- · Combine substructuring and progressive refnt.

- Substructuring
- **Progressive Refinement**
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

04/10/2003 15-462 Graphics I 15


Bidirectional Reflectance Distribution

- · General model of light reflection
- · Hemispherical function

BRDF Examples

· Measure BRDFs for different materials

04/10/2003 15-462 Graphics I

17

Material Examples

Marschner et al. 2000

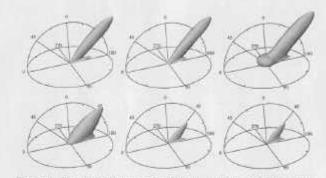


Fig. 16. Resampled scattering diagrams of the BRDF measurements of two paints: a blue enamel (top row) and a red automotive lacquer (bottom row). The RGB color measurements are shown from left to right.

04/10/2003

15-462 Graphics I

BRDF Isotropy

- · Rotation invariance of BRDF
- Reduces 4 angles to 2
- Holds for a wide variety of surfaces
- Anisotropic materials
 - Brushed metal
 - Others?
- · How many parameters for
 - Ideal specular?
 - Ideal diffuse?

04/10/2003 15-462 Graphics I 19

Subsurface Light Transport

· Jensen et al. 2001

Using only BRDF

With subsurface light transport

04/10/2003

15-462 Graphics I

- Substructuring
- · Progressive Refinement
- Bidirectional Reflectance Distribution Function
- · Combining Radiosity and Ray Tracing

04/10/2003 15-462 Graphics I 2

Light Transport and Global Illumination

- · Diffuse to diffuse
- · Diffuse to specular
- · Specular to diffuse
- Specular to specular
- Ray tracing (viewer dependent)
 - Light to diffuse
 - Specular to specular
- Radiosity (viewer independent)
 - Diffuse to diffuse
- Inherent limitations

Specular Radiosity

- · Diffuse radiosity
 - Light reflected equally in all directions
 - Relationship between patches limited to form factor
- Specular radiosity
 - Retain viewer independence (unlike ray tracing)
 - Light reflected differently in different directions
 - For each source and each direction, need to calculation interaction
 - Not practical

04/10/2003 15-462 Graphics I 23

Two-Pass Approach

- · View-dependent specular is tractable
- · View-independent diffuse is tractable
- · First pass view independent
 - Enhanced radiosity
- · Second pass is view dependent
 - Enhanced ray tracing

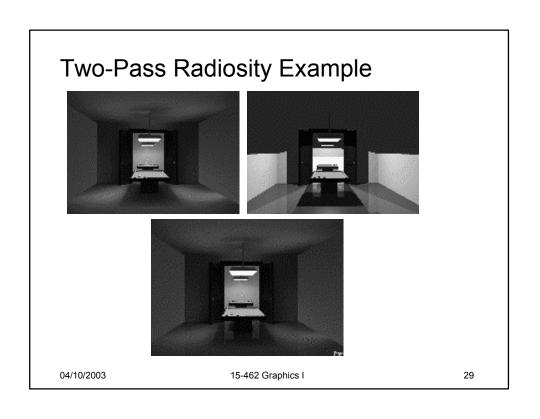
Pass 1: Enhanced Radiosity

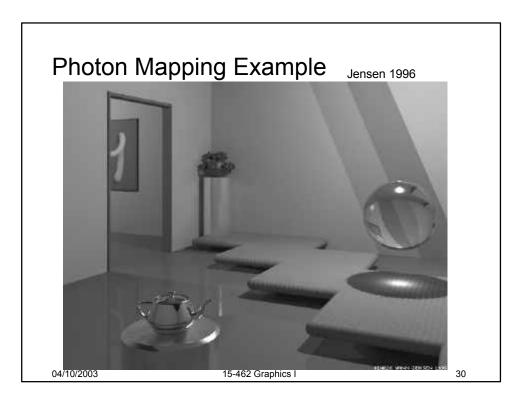
- Diffuse transmission (translucent surfaces)
 - Backwards diffuse form factor
- Specular transmission
 - Extended form factor computation
 - Consider occluding translucent surfaces
 - Window form factor
- Specular reflection
 - Create "virtual" (mirror-image) environment
 - Use specular transmission technique
 - Mirror form factor

04/10/2003 15-462 Graphics I 25

Pass 1 Result

- Account only for one specular reflection between surfaces (diffuse-specular-diffuse)
- Accurate diffuse component
- · Solve enhanced radiosity equation as before
- · Viewer independent solution


Pass 2: Enhanced Ray Tracing


- · Classical ray tracing
 - Specular to specular light transport
- For diffuse-to-specular transport:
 - Should integrate incoming light over hemisphere
 - Approximate by using small frustum in direction of ideal reflection
 - Use radiosity of pixels calculated in Pass 1
 - Apply recursively if visible surface is specular

04/10/2003 15-462 Graphics I 27

Two-Pass Global Illumination

- Still several approximating assumptions
- Appropriate for scenes with few specular reflecting or transmitting surfaces
- More expensive than already expensive methods
- Photon Mapping: another two-pass algorithm

Summary

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

04/10/2003 15-462 Graphics I 31

Preview

• Tuesday: Scientific Visualization