15-462 Computer Graphics I Lecture 20

Visualization

Height Fields and Contours
Scalar Fields
Volume Rendering
Vector Fields

[Angel Ch. 12]

April 15, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Scientific Visualization

- · Generally do not start with a 3D model
- · Must deal with very large data sets
 - MRI, e.g. $512\times512\times200\approxeq50\text{MB}$ points
 - Visible Human 512 \times 512 \times 1734 \approxeq 433 MB points
- Visualize both real-world and simulation data
- User interaction
- Automatic search

04/15/2003 15-462 Graphics I 2

Types of Data

- Scalar fields (3D volume of scalars)
 - E.g., x-ray densities (MRI, CT scan)
- Vector fields (3D volume of vectors)
 - E.g., velocities in a wind tunnel
- Tensor fields (3D volume of tensors [matrices])
 - E.g., stresses in a mechanical part [Angel 12.7]
- · Static or through time

04/15/2003 15-462 Graphics I

Height Field

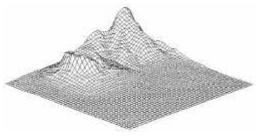
· Visualizing an explicit function

$$z = f(x,y)$$

Adding contour curves

$$g(x,y) = c$$

04/15/2003


15-462 Graphics I

Meshes

- Function is sampled (given) at x_i , y_i , $0 \le i$, $j \le n$
- · Assume equally spaced

$$x_i = x_0 + i\Delta x$$

 $y_j = y_0 + j\Delta y$ $z_{ij} = f(x_i, y_j)$

- Generate quadrilateral or triangular mesh
- [Asst 1]

04/15/2003

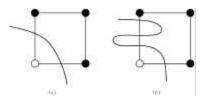
15-462 Graphics I

-

Contour Curves

- Recall: implicit curve f(x,y) = 0
- f(x,y) < 0 inside, f(x,y) > 0 outside
- Here: contour curve at f(x,y) = c
- Sample at regular intervals for x,y

$$\begin{aligned}
 x_i &= x_0 + i\Delta x \\
 y_j &= y_0 + j\Delta y
 \end{aligned}$$


How can we draw the curve?

04/15/2003

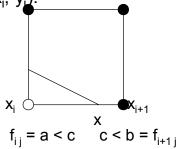
15-462 Graphics I

Marching Squares

- Sample function f at every grid point x_i , y_j
- For every point $f_{ij} = f(x_i, y_j)$ either $f_{ij} \le c$ or $f_{ij} > c$
- Distinguish those cases for each corner x
 - White: $f_{ij} \le c$
 - Black: f_{ij} > c
- Now consider cases for curve
- · Assume "smooth"
- Ignore $f_{ij} = 0$

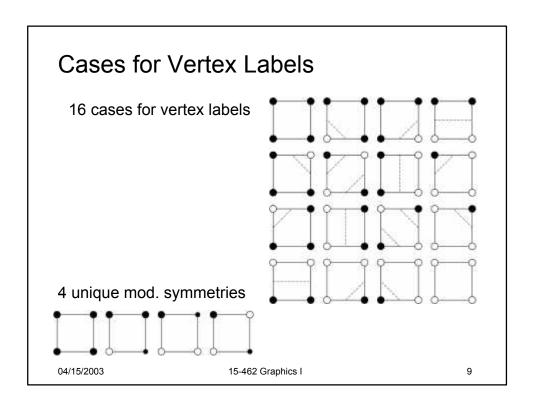
04/15/2003

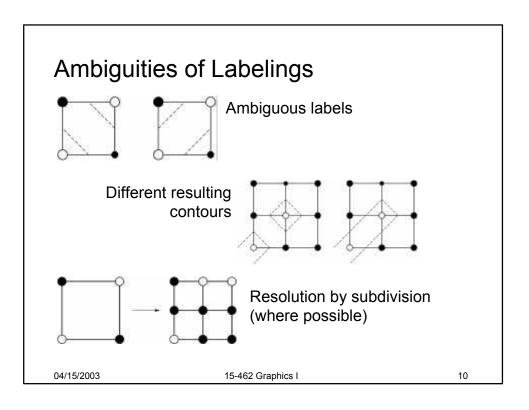
15-462 Graphics I


7

Interpolating Intersections

- · Approximate intersection
 - Midpoint between $\mathbf{x_i}$, $\mathbf{x_{i+1}}$ and $\mathbf{y_j}$, $\mathbf{y_{j+1}}$
 - Better: interpolate
- If f_{ij} = a is closer to c than b = f_{i+1j} then intersection is closer to (x_i, y_i):


$$\frac{x - x_i}{x_{i+1} - x} = \frac{c - a}{b - c}$$


 Analogous calculation for y direction

04/15/2003

15-462 Graphics I

Marching Squares Examples

• Ovals of Cassini, 50×50 grid $f(x,y) = (x^2 + y^2 + a^2)^2 - 4a^2x^2 - b^4$ a = 0.49, b = 0.5

Midpoint

Interpolation

11

Contour plot of Honolulu data

04/15/2003 15-462 Graphics I

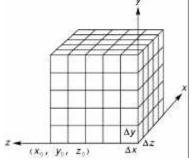
Outline

- · Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields

04/15/2003

15-462 Graphics I

Scalar Fields


- Volumetric data sets
- · Example: tissue density
- · Assume again regularly sampled

$$x_i = x_0 + i\Delta x$$

$$y_j = y_0 + j\Delta y$$

$$z_k = z_0 + k\Delta z$$

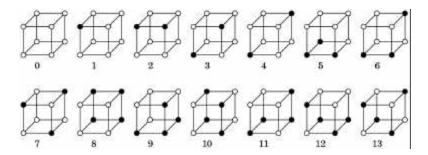
· Represent as voxels

04/15/2003

15-462 Graphics I

13

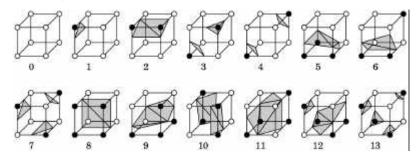
Isosurfaces


- f(x,y,z) represents volumetric data set
- · Two rendering methods
 - Isosurface rendering
 - Direct volume rendering (use all values [next])
- Isosurface given by f(x,y,z) = c
- Recall implicit surface g(x, y, z):
 - -g(x, y, z) < 0 inside
 - -g(x, y, z) = 0 surface
 - -g(x, y, z) > 0 outside
- Generalize right-hand side from 0 to c

04/15/2003

15-462 Graphics I

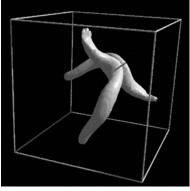
Marching Cubes


- · Display technique for isosurfaces
- 3D version of marching squares
- 14 cube labelings (after elimination symmetries)

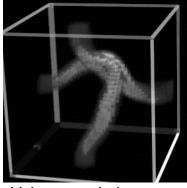
04/15/2003 15-462 Graphics I 15

Marching Cube Tessellations

- Generalize marching squares, just more cases
- Interpolate as in 2D
- · Ambiguities similar to 2D



04/15/2003


15-462 Graphics I

Volume Rendering

- Sometimes isosurfaces are unnatural
- Use all voxels and transparency (α-values)

Ray-traced isosurface

Volume rendering

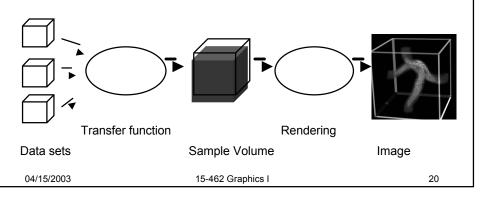
04/15/2003 15-462 Graphics I

17

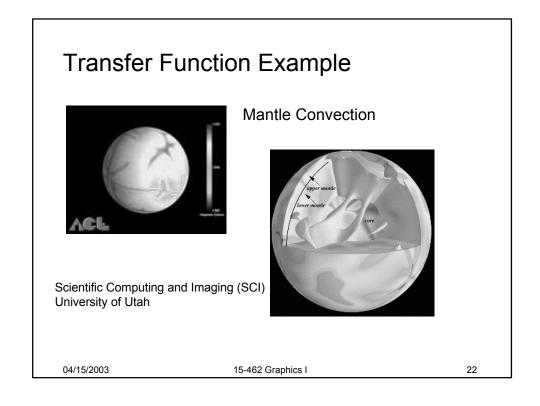
Surface vs. Volume Rendering

- 3D model of surfaces
- Convert to triangles
- Draw primitives
- Lose or disguise data See data as given
- Good for opaque objects
- Scalar field in 3D
- · Convert to RGBA values
- Render volume "directly"
- Good for complex objects

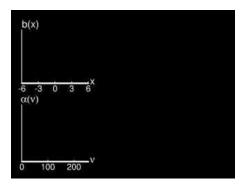
04/15/2003 15-462 Graphics I


Sample Applications

- Medical
 - Computed Tomography (CT)
 - Magnetic Resonance Imaging (MRI)
 - Ultrasound
- · Engineering and Science
 - Computational Fluid Dynamic (CFD)
 - Aerodynamic simulations
 - Meteorology
 - Astrophysics


04/15/2003 15-462 Graphics I 19

Volume Rendering Pipeline


- Transfer function: from data set to colors and opacities
 - Example: $256 \times 256 \times 64 \times 2 = 4 \text{ MB}$
 - Example: use colormap (8 bit color, 8 bit opacity)

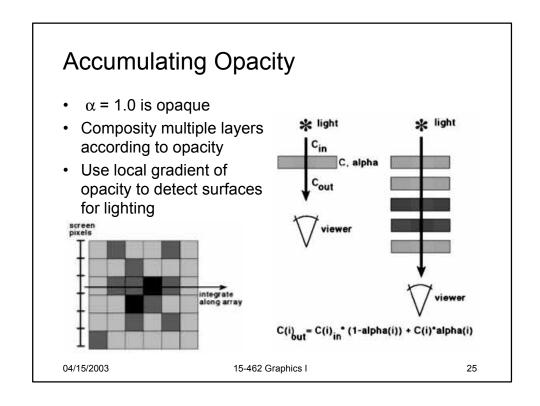
Transfer Functions Transform scalar data values to RGBA values Apply to every voxel in volume Highly application dependent Start from data histogram Opacity for emphasis

Transfer Function Example

G. Kindlmann

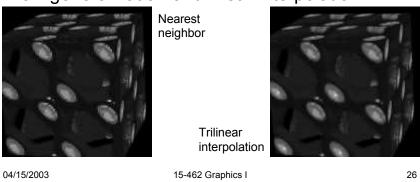
04/15/2003

15-462 Graphics I

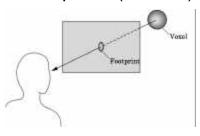

23

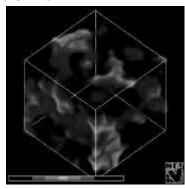
Volume Ray Casting

- · Three volume rendering techniques
 - Volume ray casting
 - Splatting
 - 3D texture mapping
- · Ray Casting
 - Integrate color through volume
 - Consider lighting (surfaces?)
 - Use regular x,y,z data grid when possible
 - Finite elements when necessary (e.g., ultrasound)
 - 3D-rasterize geometrical primitives


04/15/2003

15-462 Graphics I

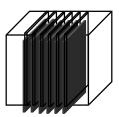

Trilinear Interpolation


- Interpolate to compute RGBA away from grid
- · Nearest neighbor yields blocky images
- Use trilinear interpolation
- 3D generalization of bilinear interpolation

Splatting

- · Alternative to ray tracing
- Assign shape to each voxel (e.g., Gaussian)
- Project onto image plane (splat)
- Draw voxelsback-to-front
- Composite (α-blend)

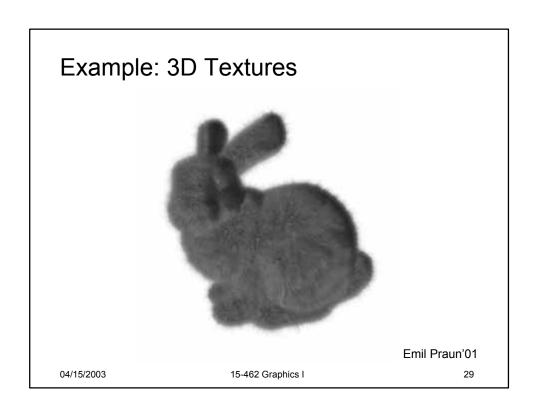
04/15/2003

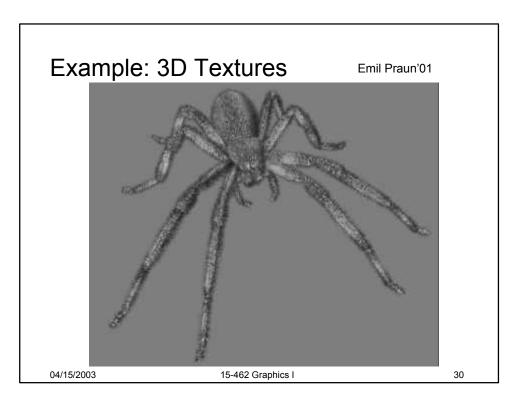

15-462 Graphics I

27

3D Textures

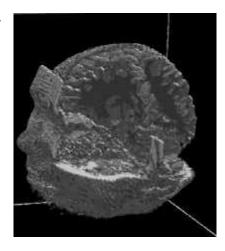
- · Alternative to ray tracing, splatting
- Build a 3D texture (including opacity)
- · Draw a stack of polygons, back-to-front
- Efficient if supported in graphics hardware
- Few polygons, much texture memory




3D RGBA texture

Draw back to front

15-462 Graphics I


04/15/2003

Other Techniques

Use CSG for cut-away

04/15/2003 15-462 Graphics I 31

Acceleration of Volume Rendering

- · Basic problem: Huge data sets
- Program for locality (cache)
- · Divide into multiple blocks if necessary
 - Example: marching cubes
- · Use error measures to stop iteration
- Exploit parallelism

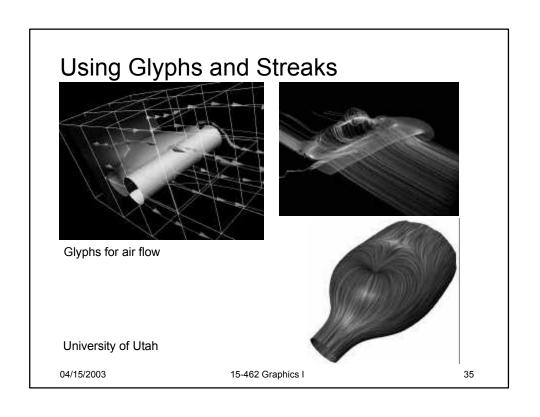
04/15/2003 15-462 Graphics I 32

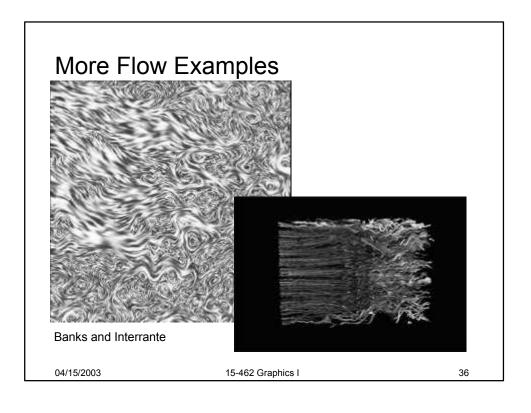
Outline

- Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields

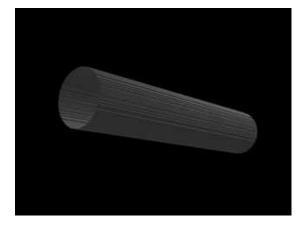
04/15/2003 15-462 Graphics I

Vector Fields


- Visualize vector at each (x,y,z) point
 - Example: velocity field
 - Example: hair
- Hedgehogs
 - Use 3D directed line segments (sample field)
 - Orientation and magnitude determined by vector
- Animation
 - Use for still image
 - Particle systems


Blood flow in human carotid artery

04/15/2003 15-462 Graphics I



Example: Jet Shockwave

P. Sutton University of Utah

http://www.sci.utah.edu/

04/15/2003 15-462 Graphics I

37

Summary

- · Height Fields and Contours
- Scalar Fields
 - Isosurfaces
 - Marching cubes
- Volume Rendering
 - Volume ray tracing
 - Splatting
 - 3D Textures
- Vector Fields
 - Hedgehogs
 - Animated and interactive visualization

04/15/2003

15-462 Graphics I

Preview

- Thursday
 - Non-photo-realistic rendering (NPR)
 - 4:00-5:00 Distinguished Lecture
 Ed Catmull, Pixar, WeH 7500
- Assignment 7 (Ray Tracing) due Thu 4/24
- Assignment 8 (written) out Thu (early!)
- Note: no late hand-in on assignment 8!

04/15/2003 15-462 Graphics I 39