15-462 Computer Graphics I Lecture 18

Radiosity

Measures of Illumination The Radiosity Equation Form Factors Radiosity Algorithms

[Angel, Ch 13.4-13.5]

April 8, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Local vs. Global Illumination

- Local illumination: Phong model (OpenGL)
 - Light to surface to viewer
 - No shadows, interreflections
 - Fast enough for interactive graphics
- Global illumination: Ray tracing
 - Multiple specular reflections and transmissions
 - Only one step of diffuse reflection
- · Global illumination: Radiosity
 - All diffuse interreflections; shadows
 - Advanced: combine with specular reflection

04/08/2003

15-462 Graphics I

Image vs. Object Space

- · Image space: Ray tracing
 - Trace backwards from viewer
 - View-dependent calculation
 - Result: rasterized image (pixel by pixel)
- · Object space: Radiosity
 - Assume only diffuse-diffuse interactions
 - View-independent calculation
 - Result: 3D model, color for each surface patch
 - Can render with OpenGL

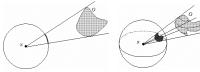
04/08/200

15-462 Graphics

Classical Radiosity Method

- · Divide surfaces into patches (elements)
- Model light transfer between patches as system of linear equations
- · Important assumptions:
 - Reflection and emission are diffuse
 - Recall: diffuse reflection is equal in all directions
 - So radiance is independent of direction
 - No participating media (no fog)
 - No transmission (only opaque surfaces)
 - Radiosity is constant across each element
 - Solve for R, G, B separately

04/08/2003


15-462 Graphics I

Outline

- · Measures of Illumination
- · The Radiosity Equation
- · Form Factors
- · Radiosity Algorithms

Solid Angle

- 2D angle subtended by object O from point x:
 - Length of projection onto unit circle at x
 - Measured in radians (0 to 2π)
- 3D solid angle subtended by O from point x:
 - Area of of projection onto unit sphere at x
 - Measured in steradians (0 to $4\pi)\,$

J. Stewart

04/08/2003

5-462 Graphics I

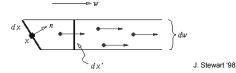
Radiant Power and Radiosity

- · Radiant power P
 - Rate at which light energy is transmitted
 - Dimension: power = energy / time
- Flux density Φ
 - Radiant power per unit area of the surface
 - Dimension: power / area
- · Irradiance E: incident flux density of surface
- · Radiosity B: exitant flux density of surface
 - Dimension: power / area
- Flux density at a point $\Phi(x) = dP/dx$

04/08/2003

15-462 Graphics I

Power at Point in a Direction


- · Radiant intensity I
 - Power radiated per unit solid angle by point source
 - Dimension: power / solid angle
- Radiant intensity in direction ω
 - $I(\omega) = dP/d\omega$
- Radiance L(x, ω)
 - Flux density at point x in direction ω
 - Dimension: power / (area × solid angle)

04/08/2003

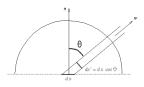
15-462 Graphics I

Radiance

• Measured across surface in direction $\boldsymbol{\omega}$

• For angle θ between ω and normal \boldsymbol{n}

$$L(x, \omega) = \frac{d^2P}{d\omega \, dx'} = \frac{d^2P}{d\omega \, \cos\theta \, dx}$$


04/08/20

15-462 Graphics I

Radiosity and Radiance

- Radiosity B(x) = dP / dx
- Radiance $L(x,\omega) = d^2P / d\omega \cos\theta dx$
- Let Ω be set of all directions above x

$$B(x) = \int_{\Omega} L(x, \omega) \cos \theta d\omega$$

04/08/2003

15-462 Graphics I

Outline

- · Measures of Illumination
- · The Radiosity Equation
- · Form Factors
- · Radiosity Algorithms

Balance of Energy

- · Lambertian surfaces (ideal diffuse reflector)
- · Divided into n elements
- Variables
 - A_i Area of element i (computable)
 - B_i Radiosity of element i (unknown)
 - $\rm E_{i}~$ Radiant emitted flux density of element i (given)
 - $-\ \rho_i$ Reflectance of element i (given)
 - $-F_{j\,i}$ Form factor from j to i (computable)

$$A_iB_i = A_iE_i + \rho_i \sum_{j=1}^n F_{ji}A_jB_j$$

04/08/200

15-402 Graphics I

8/2003 15-402 Graphics

Form Factors

- Form factor Fij: Fraction of light leaving element i arriving at element j
- · Depends on
 - Shape of patches i and j
 - Relative orientation of both patches
 - Distance between patches
 - Occlusion by other patches

04/08/2003

15-462 Graphics I

Form Factor Equation

- Polar angles θ and θ' between normals and ray between x and y
- Visibility function v(x,y) = 0 if ray from x to y is occluded, v(x,y) = 1 otherwise
- · Distance r between x and y

$$A_i F_{ij} = \int_{x \in P_i} \int_{y \in P_i} \frac{\cos \theta \, \cos \theta'}{\pi r^2} v(x, y) \, dy \, dx$$

04/08/2003

15-462 Graphics I

Reciprocity

• Symmetry of form factor
$$A_i \, F_{ij} = \int_{x \in P_i} \int_{y \in P_j} \frac{\cos \theta \, \cos \theta'}{\pi r^2} v(x,y) \, dy \, dx = A_j \, F_{ji}$$

· Divide earlier radiosity equation

$$A_iB_i = A_iE_i + \rho_i \sum_{j=1}^n F_{ji}A_jB_j$$

by
$$A_i$$
 $B_i = E_i + \rho_i \sum_j (F_{ji}A_j/A_i)B_j$
 $= E_i + \rho_i \sum_j F_{ij}B_j$

Radiosity as a Linear System

- Restate radiosity equation $B_i \rho_i \sum_i F_{ij} B_j = E_i$
- · In matrix form

$$\begin{bmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & \rho_1 F_{1n} \\ -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & \rho_2 F_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ -\rho_n F_{n1} & \rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_n \end{bmatrix}$$

- Known: reflectances ρ_i, form factors F_i, emissions E_i
- · Unknown: Radiosities B_i
- · n linear equations in n unknowns

04/08/2003

15-462 Graphics I

Radiosity "Pipeline" Scene Geometry Reflectance Properties Form factor Solution of calculation Radiosity Eq Radiosity Visualization -Image Viewing Conditions

Visualization

- · Radiosity solution is viewer independent
- · Can exploit graphics hardware to obtain image
- · Convert color on patch to vertex color
- · Easy part of radiosity method

Outline

- · Measures of Illumination
- · The Radiosity Equation
- · Form Factors
- · Radiosity Algorithms

04/08/2003

15-462 Graphics I

Computing Form Factors

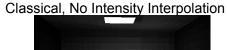
- · Visibility critical
- · Two principal methods
 - Hemicube: exploit z-buffer hardware
 - Ray casting (can be slow)
 - Both exhibit aliasing effects
- · For inter-visible elements
 - Many special cases can be solved analytically
 - Avoid full numeric approximation of double integral

04/08/2003

15-462 Graphics I

Hemicube Algorithm

- Render model onto a hemicube as seen from the center of a patch
- · Store patch identifiers j instead of color
- · Use z-buffer to resolve visibility
- Efficiently implementable in hardware
- Examples of antialiasing [Chandran et al.]

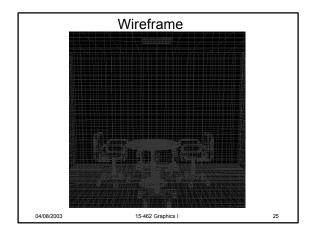

04/08/200

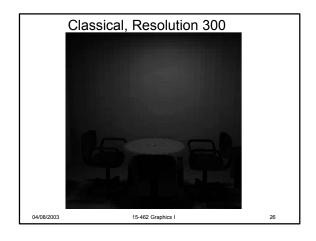
15-462 Graphics I

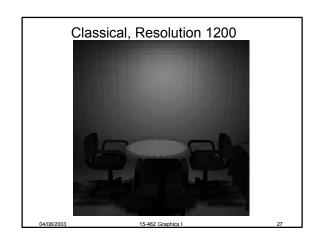
Wireframe

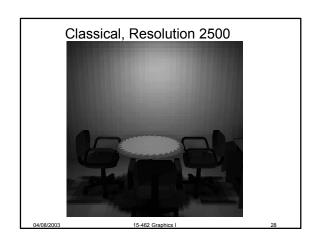
O4/08/2003

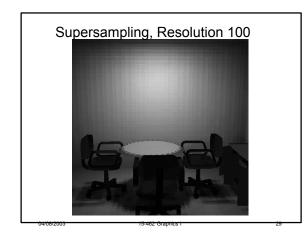
15-482 Graphics I

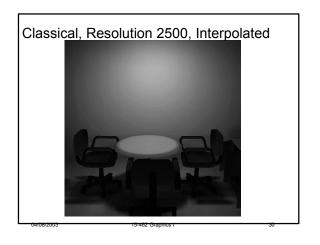


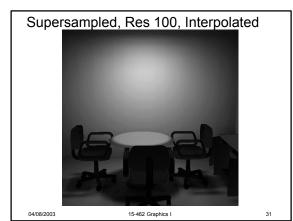

04/08/2003


15-462 Graphics I


Antialiasing, No Intensity Interpolation


04/06/2003 15-462 Graphic





Outline

- · Measures of Illumination
- · The Radiosity Equation
- Form Factors
- · Radiosity Algorithms

04/08/2003 15-462 Graphics I

Radiosity Equation Revisited

· Direct form

$$B_i = E_i + \rho_i \sum_j F_{ij}B_j$$

· As matrix equation

$$\begin{bmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & \rho_1 F_{1n} \\ -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & \rho_2 F_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ -\rho_n F_{n1} & \rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_n \end{bmatrix}$$

· Unknown: radiosity B_i

• Known: emission E_{i} , form factor $F_{i\; j}$, reflect. ρ_{i}

1/2003 15-462 Graphics I

Classical Radiosity Algorithms

- · Matrix Radiosity
 - Diagonally dominant matrix
 - Use Gauss-Seidel iterative solution
 - Time and space complexity is O(n2) for n elements
 - Memory cost excessive
- · Progressive Refinement Radiosity
 - Solve equations incrementally with form factors
 - Time complexity is $O(n \cdot s)$ for s iterations
 - Used more commonly (space complexity O(n))

08/2003 15-462 Graphics I

Matrix Radiosity

- · Compute all form factors Fii
- · Make initial approximation to radiosity
 - Emitting elements B_i = E_i
 - Other elements $B_i = 0$
- · Apply equation to get next approximation

$$B'_i = E_i + \rho_i \sum_j F_{ij}B_j$$

- · Iterate with new approximation
- · Intuitively
 - Gather incoming light for each element i
 - Base new estimate on previous estimate

04/08/2003

15-462 Graphics

Radiosity Summary

- Assumptions
 - Opaque Lambertian surfaces (ideal diffuse)
 - Radiosity constant across each element
- · Radiosity computation structure
 - Break scene into patches
 - Compute form factors between patches
 - Lighting independent
 - Solve linear radiosity equation
 - Viewer independent
 - Render using standard hardware

08/2003 15-462 Graphics

6

Lecture Summary

- · Measures of Illumination
- The Radiosity Equation
- Form Factors
- · Radiosity Algorithms

04/08/2003 15-462 Graphics I

Preview

- Next Lecture
 - Radiosity refinements
 - Combining ray tracing and radiosity
- Assignment 7 (Ray Tracer) due April 24
- Different from OpenGL programming (150 pts)

04/08/2003 15-462 Graphics I 38