15-462 Computer Graphics I Lecture 22

Non-Photorealistic Rendering

Pen-and-Ink Illustrations
Painterly Rendering
Cartoon Shading
Technical Illustrations
Acknowledgment: Steve Lin

April 17, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Goals of Computer Graphics

- · Traditional: Photorealism
- · Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization [Lecture 20]

04/17/2003

15-462 Graphics I

Non-Photorealistic Rendering

"A means of creating imagery that does not aspire to realism" - Stuart Green

David Gainey

Cassidy Curtis 1998

15-462 Graphics I

Some NPR Categories

- · Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art,etc.
- · Painterly rendering
 - Styles: impressionist, expressionist, pointilist, etc.
- · Cartoons
 - Effects: cartoon shading, distortion, etc.
- · Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- · Scientific visualization
 - Methods: splatting, hedgehogs, etc.

04/17/2003

15-462 Graphics I

2D Paint (Pixel Oriented) Bitmap paint systems 2D Paint (Brush Oriented) User intervention 2D/2.5D Paint Post-Processing Automatically generated from augmented images 3D Photorealistic Renderers Traditional Computer Graphies 3D Renderers Automatically generated based on 3D data

Outline

- · Pen-and-Ink Illustrations
- Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

04/17/2003

15-462 Graphics I

Pen-and-Ink Illustrations

- · Strokes
 - Curved lines of varying thickness and density
- Texture
 - Character conveyed by collection of strokes
- Tone
 - Perceived gray level across image or segment
- Outline
 - Boundary lines that disambiguate structure

04/17/2003

15-462 Graphics I

Strokes and Stroke Textures

- · Stroke generated by moving along straight path
- · Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- · Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- · How automatic are stroke textures

04/17/2003

15-462 Graphics I

Stroke Texture Examples Winkenbach and Salesin 1994

Prioritized Stroke Textures

- · Technique for limiting human intervention
- · Collection of strokes with associated priority
- · When rendering
 - First draw highest priority only
 - If too light, draw next highest priority, etc.
 - Stop if proper tone is achieved
- · Procedural stroke textures
- · Support scaling
- · Also applies to non-procedural stroke textures

04/17/2003

5-462 Graphics I

15-462 Graphics I

04/17/2003

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

Painterly Rendering

- · Physical simulation
 - User applies brushstrokes
 - Computer simulates media
- · Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes
- · Subject to controversy

2005 15-402 Graphics 1 25 04/17/2005 15-402 Graphics 1

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- · Paper saturation and capacity

· Discretize and use cellular automata

04/17/2003 15-462 Graphics I

Automatic Painting from Images

- · Start from color image: no 3D information
- · Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- · Layers are painted coarse-to-fine
- · Styles controled by parameters

94/17/2003 15-402 Graphics 1

Brush Strokes

- · Start at point of maximal error
 - Calculate difference between original image and image painted so far
- · Direction perpendicular to gradient
 - Stroke tends to follow equally shaded area
- · Stopping criteria
 - Difference between brush color and original image color exceeds threshold
 - Maximal stroke length reached

04/17/2003 15

15-462 Graphics I

Longer Brush Strokes

- · For longer, curved brush strokes
 - Repeat straight line algorithm
 - Stop, again on length or difference threshold
- · Use anti-aliased cubic B-spline

04/17/200

15-462 Graphics I

Painting Styles

- · Style determined by parameters
 - Approximation threshold
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- · Encapsulate parameter settings as style

04/17/2003

15-462 Graphics I

Some Styles

- · "Impressionist"
 - No random color, 4 \leq stroke length \leq 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, $10 \le$ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointilist"
 - Random factor ~0.75, 0 \leq stroke length ≤ 0
 - Brush sizes 4, 2; approximation threshold 100
- · Not convincing to artists

04/17/2003 15-462 Graphics 1 35

Style Examples Sepred image Tropountement Expressioners 15-402 Stappins 1 5-40

6

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

04/17/2003

15-462 Graphics I

Cartoon Shading

- · Shading model in 2D cartoon
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- · Used in many animated movies
- · Developing real-time techniques for games

04/17/2003 15-462 Graphics I

35 13-402 Oraphics 1 30

Cartoon Shading as Texture Map • Apply shading as 1D texture map Carl Marshall 2000

15-462 Graphics

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

Technical Illustrations

- · Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details Ruppel 1998

· Do not represent reality

04/17/200

15-462 Graphics I

2003 15-462 Graphi

Conventions in Technical Illustrations

- · Black edge lines
- · Cool to warm shading colors
- · Single light source; shadows rarely used

The Future

- · Smart graphics
 - Design from the user's perspective
 - HCI, AI, Perception
- · Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

04/17/2003 15-462 Graphics I 4

Movies

- Baxter et al, DAB: Interactive Haptic Painting with 3D Virtual Brushes, SIGGRAPH'01
- Kowalski et al., *Art-based Rendering of Fur, Grass and Trees,* SIGGRAPH'99

17/2003 15-462 Graphics I 46

Summary

- · Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- · Use all traditional computer graphics tools
- · Employ them in novel ways
- · Have fun!

Preview

- · Assignment 7 due next Thursday
- · Assignment 8 out today, due in 2 weeks
- · No late days on Assignment 8
- · Tuesday: TBA
- · Thursday: Advanced Global Illumination
- Tuesday: Guest Lecture/Games [Kuffner]
- · Thursday: Final Review

04/17/2003 15-462 Graphics I