15-462 Computer Graphics I Lecture 5

Viewing and Projection

Shear Transformation
Camera Positioning
Simple Parallel Projections
Simple Perspective Projections
[Angel, Ch. 5.2-5.4]

January 30, 2003
[Red's Dream, Pixar, 1987]
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Transformation Matrices in OpenGL

- Transformation matrices in OpenGI are vectors of 16 values (column-major matrices)
- In glLoadMatrixf(GLfloat *m);

$$m = \{m_1, m_2, ..., m_{16}\}$$
 represents

$$\mathbf{M} = \begin{bmatrix} m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \\ m_4 & m_8 & m_{12} & m_{16} \end{bmatrix}$$

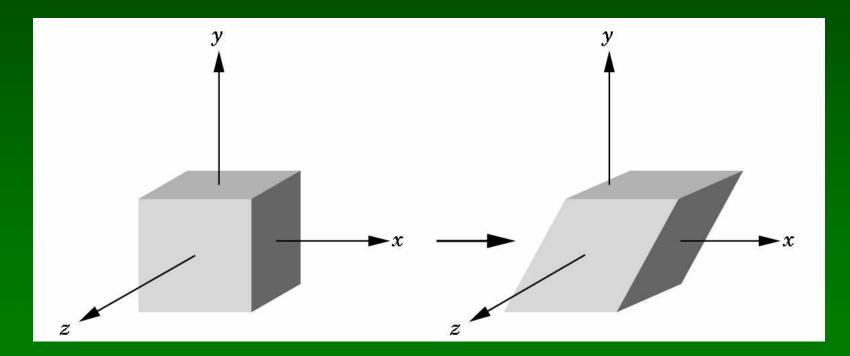
Some books transpose all matrices!

Pondering Transformations

- Derive transformation given some parameters
 - Choose parameters carefully
 - Consider geometric intuition, basic trigonometry
- Compose transformation from others
 - Use translations to and from origin
- Test if matrix describes some transformation
 - Determine action on basis vectors
- Meaning of dot product and cross product

Shear Transformations

- x-shear scales x proportional to y
- Leaves y and z values fixed

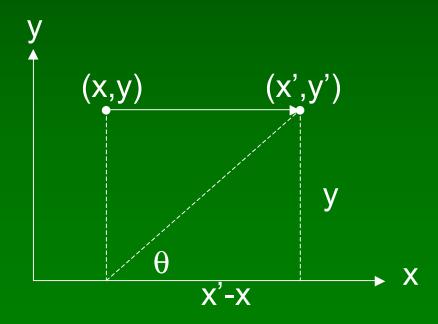


Specification via Angle

•
$$\cot(\theta) = (x'-x)/y$$

•
$$x' = x + y \cot(\theta)$$

$$\mathbf{H}_x(heta) = egin{bmatrix} 1 & \cot(heta) & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$



Specification via Ratios

- Shear in both x and z direction
- Leave y fixed
- Slope α for x-shear, γ for z-shear

• Solve
$$\mathbf{H}_{xz}(\alpha,\gamma) \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + \alpha y \\ y \\ z + \gamma y \\ 1 \end{bmatrix}$$

Yields

$$\mathbf{H}_{xz}(lpha,\gamma) = egin{bmatrix} 1 & lpha & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & \gamma & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Composing Transformations

- Every affine transformation is a composition of rotations, scalings, and translations
- How do we compose these to form an x-shear?
- Exercise!

Thinking in Frames

- Action on frame determines affine transfn.
- Frame given by basis vectors and origin
- xz-shear: preserve basis vectors u_x and u_z

$$\mathbf{M} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{M} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

• Move $u_y = [0 \ 1 \ 0 \ 0]^T$ to $u_y' = [\alpha \ 1 \ \gamma \ 0]^T$

$$\mathbf{M} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ 1 \\ \gamma \\ 0 \end{bmatrix}$$

Preservation of Origin

Preserve origin P₀

$$\mathbf{M} \left[egin{array}{c} 0 \ 0 \ 0 \ 1 \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \ 0 \ 1 \end{array}
ight]$$

• Results comprise columns of the transfn. matrix

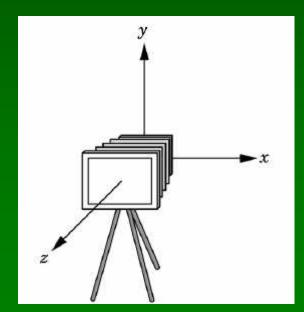
$$\mathbf{H}_{xz}(lpha,\gamma) = egin{bmatrix} 1 & lpha & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & \gamma & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

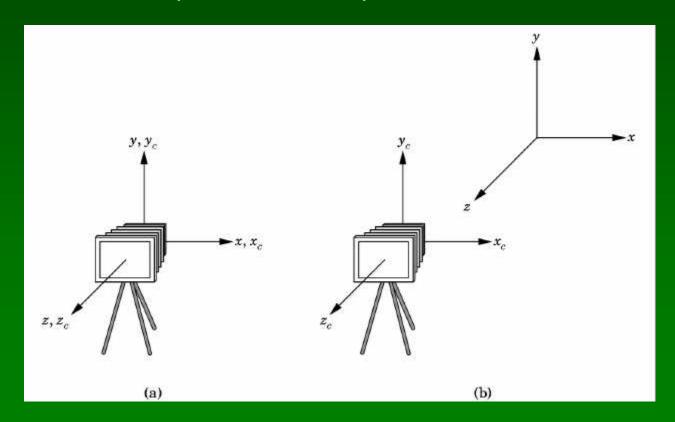
Camera in Modeling Coordinates

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Initially, pointing in negative z-direction
- Initially, camera at origin



Moving Camera and World Frame

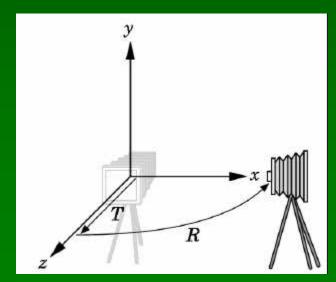
- Move world frame relative to camera frame
- glTranslatef(0.0, 0.0, -d); moves world frame



Order of Viewing Transformations

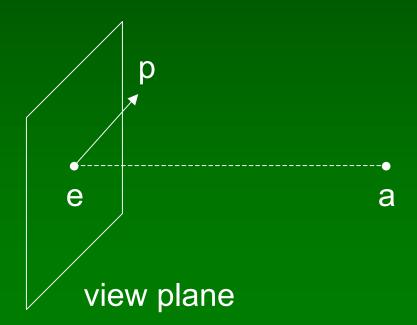
- Think of moving the world frame
- Viewing transfn. is inverse of object transfn.
- Order opposite to object transformations

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -d); /*T*/
glRotatef(-90.0, 0.0, 1.0, 0.0); /*R*/
```



The Look-At Function

- Convenient way to position camera
- gluLookAt(e_x, e_y, e_z, a_x, a_y, a_z, p_x, p_y, p_z);
- e = eye point
- a = at point
- p = up vector

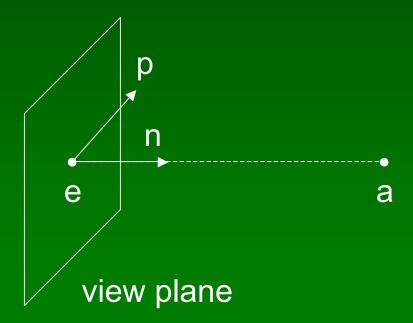


Implementing the Look-At Function

- (1) Transform world frame to camera frame
- Compose a rotation R with translation T
- W = T R
- (2) Invert W to obtain viewing transformation V
- $V = W^{-1} = (T R)^{-1} = R^{-1} T^{-1}$
- Derive R, then T, then R⁻¹ T⁻¹

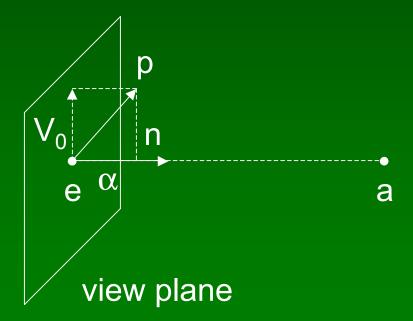
World Frame to Camera Frame I

- Camera points in negative z direction
- n = (a e) / |a e| is unit normal to view plane
- R maps $[0 \ 0 \ -1 \ 0]^T$ to $[n_x \ n_y \ n_z \ 0]^T$



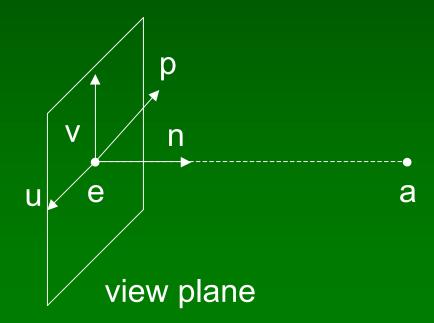
World Frame to Camera Frame II

- R maps y to projection of p onto view plane
- $\alpha = (p \cdot n) / |n| = p \cdot n$
- $v_0 = p \alpha n$
- $v = v_0 / |v_0|$



World Frame to Camera Frame III

- x is orthogonal to n and v in view plane
- $u = n \times v$
- (u, v, -n) is right-handed



Summary of Rotation

- gluLookAt(e_x , e_y , e_z , a_x , a_y , a_z , p_x , p_y , p_z);
- n = (a e) / |a e|
- $v = (p (p \cdot n) n) / [p (p \cdot n) n]$
- $u = n \times v$

$$\mathbf{R} = egin{bmatrix} u_x & v_x & -n_x & 0 \ u_y & v_y & -n_y & 0 \ u_z & v_z & -n_z & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

World Frame to Camera Frame IV

• Translation of origin to $e = [e_x e_y e_z 1]^T$

$$\mathbf{T} = egin{bmatrix} 1 & 0 & 0 & e_x \ 0 & 1 & 0 & e_y \ 0 & 0 & 1 & e_z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera Frame to World Frame

- $V = W^{-1} = (T R)^{-1} = R^{-1} T^{-1}$
- R is rotation, so $R^{-1} = R^{T}$

$$\mathbf{R}^{-1} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ -n_x & -n_y & -n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• T is translation, so T⁻¹ negates displacement

$$\mathbf{T}^{-1} = egin{bmatrix} 1 & 0 & 0 & -e_x \ 0 & 1 & 0 & -e_y \ 0 & 0 & 1 & -e_z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Putting it Together

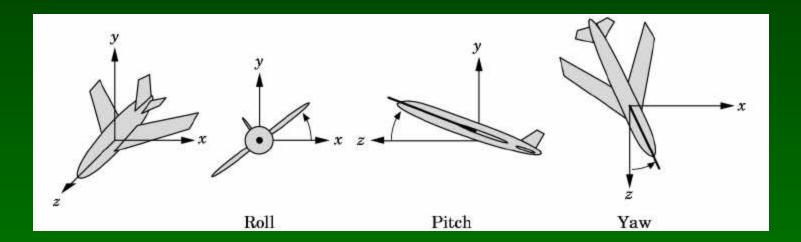
• Calculate V = R⁻¹ T⁻¹

$$\mathbf{V} = \begin{bmatrix} u_x & u_y & u_z & -u_x e_x - u_y e_y - u_z e_z \\ v_x & v_y & v_z & -v_x e_x - v_y e_y - v_z e_z \\ -n_x & -n_y & -n_z & n_x e_x + n_y e_y + n_z e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- This is different from book [Angel, Ch. 5.2.2]
- There, u, v, n are right-handed (here: u, v, -n)

Other Viewing Functions

Roll (about z), pitch (about x), yaw (about y)



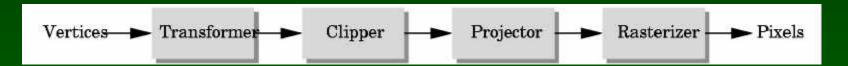
Assignment 2 poses related problem

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Projection Matrices

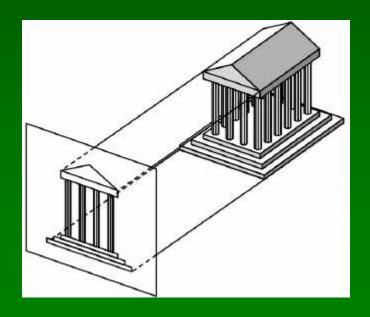
Recall geometric pipeline

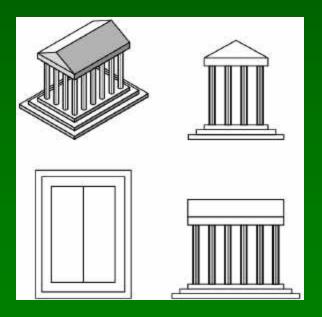


- Projection takes 3D to 2D
- Projections are not invertible
- Projections also described by matrix
- Homogenous coordinates crucial
- Parallel and perspective projections

Orthographic Projections

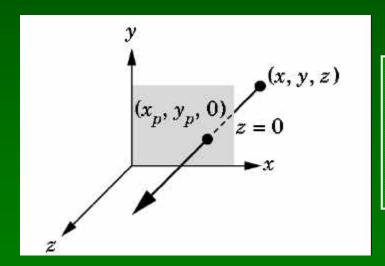
- Parallel projection
- Projectors perpendicular to projection plane
- Simple, but not realistic
- Used in blueprints (multiview projections)





Orthographic Projection Matrix

- Project onto z = 0
- $x_p = x$, $y_p = y$, $z_p = 0$
- In homogenous coordinates



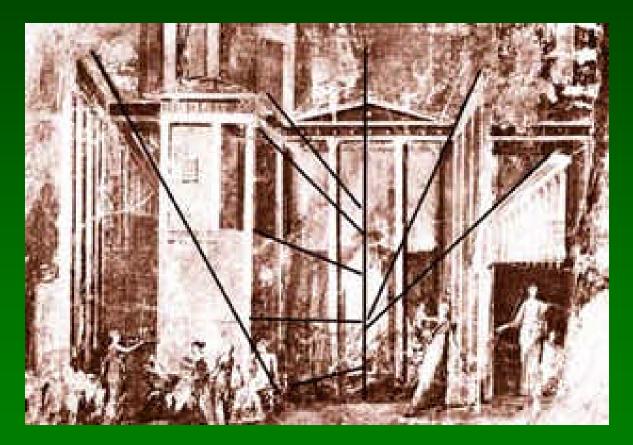
$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Perspective

- Perspective characterized by foreshortening
- More distant objects appear smaller
- Parallel lines appear to converge
- Rudimentary perspective in cave drawings

Discovery of Perspective

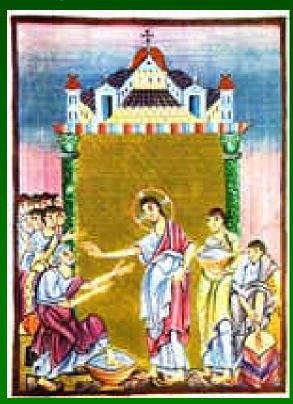
Foundation in geometry (Euclid)



Mural from Pompeii

Middle Ages

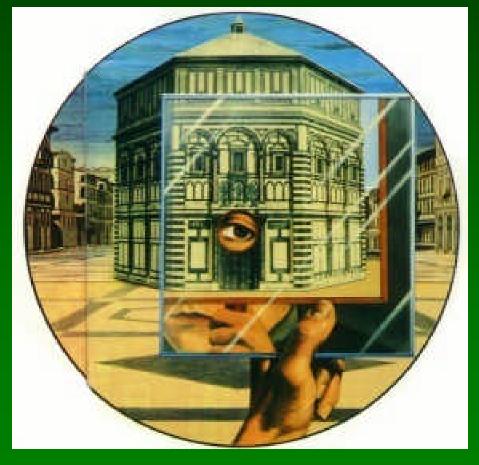
- Art in the service of religion
- Perspective abandoned or forgotten



Ottonian manuscript, ca. 1000

Renaissance

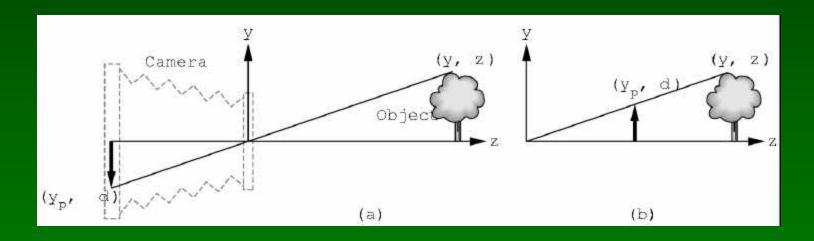
• Rediscovery, systematic study of perspective



Filippo Brunelleschi Florence, 1415

Perspective Viewing Mathematically

 More on history of perspective (icscis) <u>http://www.cyberus.ca/~icscis/icscis.htm</u>



- $y/z = y_p/d$ so $y_p = y/(z/d)$
- Note this is non-linear!

Exploiting the 4th Dimension

Perspective projection is not affine:

$$\mathbf{M} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} rac{x}{z/d} \\ rac{y}{z/d} \\ d \\ 1 \end{bmatrix}$$
 has no solution for \mathbf{M}

Idea: represent point [x y z 1]^T by line in 4D

$$\mathbf{p} = w \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \text{for arbitrary } \mathbf{w} \neq \mathbf{0}$$

Perspective Projection Matrix

Represent multiple of point

$$(z/d) \left[egin{array}{c} rac{x}{z/d} \ rac{y}{z/d} \ d \ 1 \end{array}
ight] = \left[egin{array}{c} x \ y \ z \ z/d \end{array}
ight]$$

Solve

$$\mathbf{M} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \text{ with } \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

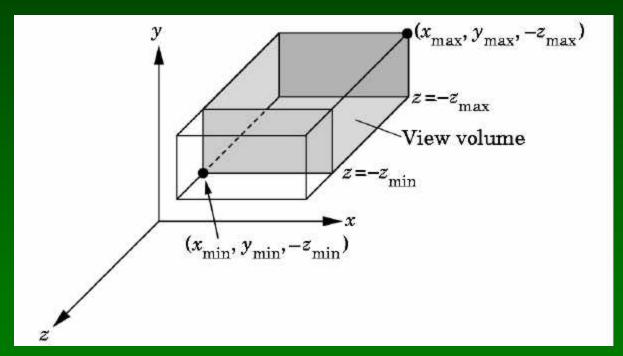
Perspective Division

- Normalize [x y z w]^T to [(x/w) (y/w) (z/w) 1]^T
- Perform perspective division after projection

Projection in OpenGL is more complex

Parallel Viewing in OpenGL

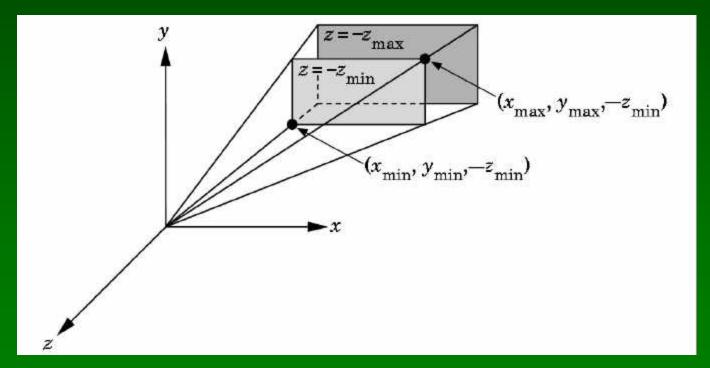
glOrtho(xmin, xmax, ymin, ymax, near, far)



$$z_{min}$$
 = near, z_{max} = far

Perspective Viewing in OpenGL

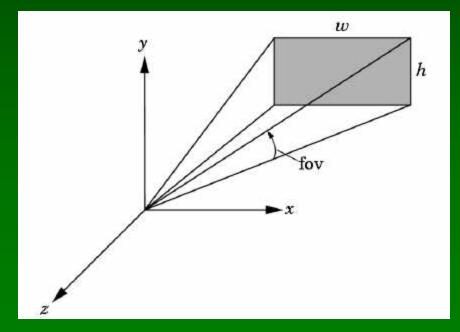
- Two interfaces: glFrustum and gluPerspective
- glFrustum(xmin, xmax, ymin, ymax, near, far);



$$z_{min}$$
 = near, z_{max} = far

Field of View Interface

- gluPerspective(fovy, aspect, near, far);
- near and far as before
- Fovy specifies field of view as height (y) angle



Matrices for Projections in OpenGL

- Next lecture:
 - Use shear for predistortion
 - Use projections for "fake" shadows
 - Other kinds of projections

Announcements

- Assignment 1 due Thursday midnight (100 pts)
- Late policy
 - Up to 3 days any time, no penalty
 - No other late hand-in permitted
- Assignment 2 out Thursday (1 week, 50 pts)
- Extra credit policy
 - Up to 20% of assignment value
 - Recorded separately
 - Weighed for "borderline" cases
- Remember: no collaboration on assignments!

Looking Ahead

- Lighting and shading
- Video: Red's Dream, John Lasseter, Pixar, 1987
 http://www.pixar.com/shorts/rd/index.html