
January 30, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Shear Transformation
Camera Positioning
Simple Parallel Projections
Simple Perspective Projections

[Angel, Ch. 5.2-5.4]
[Red’s Dream, Pixar, 1987]

Shear Transformation
Camera Positioning
Simple Parallel Projections
Simple Perspective Projections

[Angel, Ch. 5.2-5.4]
[Red’s Dream, Pixar, 1987]

Viewing and ProjectionViewing and Projection

15-462 Computer Graphics I
Lecture 5

01/30/2003 15-462 Graphics I 2

Transformation Matrices in OpenGLTransformation Matrices in OpenGL

• Transformation matrices in OpenGl are vectors
of 16 values (column-major matrices)

• In glLoadMatrixf(GLfloat *m);

• Some books transpose all matrices!

m = {m1, m2, ..., m16} represents

01/30/2003 15-462 Graphics I 3

Pondering TransformationsPondering Transformations

• Derive transformation given some parameters
– Choose parameters carefully
– Consider geometric intuition, basic trigonometry

• Compose transformation from others
– Use translations to and from origin

• Test if matrix describes some transformation
– Determine action on basis vectors

• Meaning of dot product and cross product

01/30/2003 15-462 Graphics I 4

Shear TransformationsShear Transformations

• x-shear scales x proportional to y
• Leaves y and z values fixed

01/30/2003 15-462 Graphics I 5

Specification via AngleSpecification via Angle

• cot(θ) = (x’-x)/y
• x’ = x + y cot(θ)
• y’ = y
• z’ = z

(x,y) (x’,y’)

θ x

y

y

x’-x

01/30/2003 15-462 Graphics I 6

Specification via RatiosSpecification via Ratios

• Shear in both x and z direction
• Leave y fixed
• Slope α for x-shear, γ for z-shear
• Solve

• Yields

01/30/2003 15-462 Graphics I 7

Composing TransformationsComposing Transformations

• Every affine transformation is a composition of
rotations, scalings, and translations

• How do we compose these to form an x-shear?
• Exercise!

01/30/2003 15-462 Graphics I 8

Thinking in FramesThinking in Frames

• Action on frame determines affine transfn.
• Frame given by basis vectors and origin
• xz-shear: preserve basis vectors ux and uz

• Move uy = [0 1 0 0]T

to uv’ = [α 1 γ 0]T

01/30/2003 15-462 Graphics I 9

Preservation of OriginPreservation of Origin

• Preserve origin P0

• Results comprise columns of the transfn. matrix

01/30/2003 15-462 Graphics I 10

OutlineOutline

• Shear Transformation
• Camera Positioning
• Simple Parallel Projections
• Simple Perspective Projections

01/30/2003 15-462 Graphics I 11

Camera in Modeling CoordinatesCamera in Modeling Coordinates

• Camera position is identified with a frame
• Either move and rotate the objects
• Or move and rotate the camera
• Initially, pointing in negative z-direction
• Initially, camera at origin

01/30/2003 15-462 Graphics I 12

Moving Camera and World FrameMoving Camera and World Frame

• Move world frame relative to camera frame
• glTranslatef(0.0, 0.0, -d); moves world frame

01/30/2003 15-462 Graphics I 13

Order of Viewing TransformationsOrder of Viewing Transformations

• Think of moving the world frame
• Viewing transfn. is inverse of object transfn.
• Order opposite to object transformations

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -d); /*T*/
glRotatef(-90.0, 0.0, 1.0, 0.0); /*R*/

01/30/2003 15-462 Graphics I 14

The Look-At FunctionThe Look-At Function

• Convenient way to position camera
• gluLookAt(ex, ey, ez, ax, ay, az, px, py, pz);
• e = eye point
• a = at point
• p = up vector

ae

p

view plane

01/30/2003 15-462 Graphics I 15

Implementing the Look-At FunctionImplementing the Look-At Function

• (1) Transform world frame to camera frame
• Compose a rotation R with translation T
• W = T R
• (2) Invert W to obtain viewing transformation V
• V = W-1 = (T R)-1 = R-1 T-1

• Derive R, then T, then R-1 T-1

01/30/2003 15-462 Graphics I 16

World Frame to Camera Frame IWorld Frame to Camera Frame I

• Camera points in negative z direction
• n = (a – e) / |a – e| is unit normal to view plane
• R maps [0 0 -1 0]T to [nx ny nz 0]T

ae

p

view plane

n

01/30/2003 15-462 Graphics I 17

World Frame to Camera Frame IIWorld Frame to Camera Frame II

• R maps y to projection of p onto view plane
• α = (p ¢ n) / |n| = p ¢ n
• v0 = p – α n
• v = v0 / |v0|

ae

p

view plane

nV0

α

01/30/2003 15-462 Graphics I 18

World Frame to Camera Frame IIIWorld Frame to Camera Frame III

• x is orthogonal to n and v in view plane
• u = n £ v
• (u, v, -n) is right-handed

ae

p

view plane

nv

u

01/30/2003 15-462 Graphics I 19

Summary of RotationSummary of Rotation

• gluLookAt(ex, ey, ez, ax, ay, az, px, py, pz);
• n = (a – e) / |a – e|
• v = (p – (p ¢ n) n) / |p – (p ¢ n) n|
• u = n £ v

01/30/2003 15-462 Graphics I 20

World Frame to Camera Frame IVWorld Frame to Camera Frame IV

• Translation of origin to e = [ex ey ez 1]T

01/30/2003 15-462 Graphics I 21

Camera Frame to World FrameCamera Frame to World Frame

• V = W-1 = (T R)-1 = R-1 T-1

• R is rotation, so R-1 = RT

• T is translation, so T-1 negates displacement

01/30/2003 15-462 Graphics I 22

Putting it TogetherPutting it Together

• Calculate V = R-1 T-1

• This is different from book [Angel, Ch. 5.2.2]
• There, u, v, n are right-handed (here: u, v, -n)

01/30/2003 15-462 Graphics I 23

Other Viewing FunctionsOther Viewing Functions

• Roll (about z), pitch (about x), yaw (about y)

• Assignment 2 poses related problem

01/30/2003 15-462 Graphics I 24

OutlineOutline

• Shear Transformation
• Camera Positioning
• Simple Parallel Projections
• Simple Perspective Projections

01/30/2003 15-462 Graphics I 25

Projection MatricesProjection Matrices

• Recall geometric pipeline

• Projection takes 3D to 2D
• Projections are not invertible
• Projections also described by matrix
• Homogenous coordinates crucial
• Parallel and perspective projections

01/30/2003 15-462 Graphics I 26

Orthographic ProjectionsOrthographic Projections

• Parallel projection
• Projectors perpendicular to projection plane
• Simple, but not realistic
• Used in blueprints (multiview projections)

01/30/2003 15-462 Graphics I 27

Orthographic Projection MatrixOrthographic Projection Matrix

• Project onto z = 0
• xp = x, yp = y, zp = 0
• In homogenous coordinates

01/30/2003 15-462 Graphics I 28

PerspectivePerspective

• Perspective characterized by foreshortening
• More distant objects appear smaller
• Parallel lines appear to converge
• Rudimentary perspective in cave drawings

01/30/2003 15-462 Graphics I 29

Discovery of PerspectiveDiscovery of Perspective

• Foundation in geometry (Euclid)

Mural from
Pompeii

01/30/2003 15-462 Graphics I 30

Middle AgesMiddle Ages

• Art in the service of religion
• Perspective abandoned or forgotten

Ottonian manuscript,
ca. 1000

01/30/2003 15-462 Graphics I 31

RenaissanceRenaissance

• Rediscovery, systematic study of perspective
Filippo Brunelleschi
Florence, 1415

01/30/2003 15-462 Graphics I 32

Perspective Viewing MathematicallyPerspective Viewing Mathematically

• More on history of perspective (icscis)
http://www.cyberus.ca/~icscis/icscis.htm

• y/z = yp/d so yp = y/(z/d)
• Note this is non-linear!

01/30/2003 15-462 Graphics I 33

Exploiting the 4th DimensionExploiting the 4th Dimension

• Perspective projection is not affine:

• Idea: represent point [x y z 1]T by line in 4D

has no solution for M

for arbitrary w ≠ 0

01/30/2003 15-462 Graphics I 34

Perspective Projection MatrixPerspective Projection Matrix

• Represent multiple of point

• Solve

with

01/30/2003 15-462 Graphics I 35

Perspective DivisionPerspective Division

• Normalize [x y z w]T to [(x/w) (y/w) (z/w) 1]T

• Perform perspective division after projection

• Projection in OpenGL is more complex

01/30/2003 15-462 Graphics I 36

Parallel Viewing in OpenGLParallel Viewing in OpenGL

• glOrtho(xmin, xmax, ymin, ymax, near, far)

zmin = near, zmax = far

01/30/2003 15-462 Graphics I 37

Perspective Viewing in OpenGLPerspective Viewing in OpenGL

• Two interfaces: glFrustum and gluPerspective
• glFrustum(xmin, xmax, ymin, ymax, near, far);

zmin = near, zmax = far

01/30/2003 15-462 Graphics I 38

Field of View InterfaceField of View Interface

• gluPerspective(fovy, aspect, near, far);
• near and far as before
• Fovy specifies field of view as height (y) angle

01/30/2003 15-462 Graphics I 39

Matrices for Projections in OpenGLMatrices for Projections in OpenGL

• Next lecture:
– Use shear for predistortion
– Use projections for “fake” shadows
– Other kinds of projections

01/30/2003 15-462 Graphics I 40

AnnouncementsAnnouncements

• Assignment 1 due Thursday midnight (100 pts)
• Late policy

– Up to 3 days any time, no penalty
– No other late hand-in permitted

• Assignment 2 out Thursday (1 week, 50 pts)
• Extra credit policy

– Up to 20% of assignment value
– Recorded separately
– Weighed for “borderline” cases

• Remember: no collaboration on assignments!

01/30/2003 15-462 Graphics I 41

Looking AheadLooking Ahead

• Lighting and shading
• Video: Red’s Dream, John Lasseter, Pixar,1987

http://www.pixar.com/shorts/rd/index.html

